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Background: Post-traumatic headache (PTH) and migraine often have similar
phenotypes. The objective of this exploratory study was to develop
classification models to differentiate persistent PTH (PPTH) from migraine
using clinical data and magnetic resonance imaging (MRI) measures of brain
structure and functional connectivity (fc).
Methods: Thirty-four individuals with migraine and 48 individuals with PPTH
attributed to mild TBI were included. All individuals completed questionnaires
assessing headache characteristics, mood, sensory hypersensitivities, and
cognitive function and underwent brain structural and functional imaging during
the same study visit. Clinical features, structural and functional resting-state
measures were included as potential variables. Classifiers using ridge logistic
regression of principal components were fit on the data. Average accuracy was
calculated using leave-one-out cross-validation. Models were fit with and
without fcdata. The importanceof specificvariables to theclassifierwereexamined.
Results: With internal variable selection and principal components creation the
average accuracy was 72% with fc data and 63.4% without fc data. This classifier
with fc data identified individuals with PPTH and individuals with migraine with
equal accuracy.
Conclusion: Multivariate models based on clinical characteristics, fc, and brain
structural data accurately classify and differentiate PPTH vs. migraine suggesting
differences in the neuromechanism and clinical features underlying both
headache disorders.
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ASC-12, allodynia symptom checklist; BDI, beck depression inventory; COMPASS 31, composite
autonomic symptom scale 31; dfc, dynamic functional connectivity; DLPFC, dorsolateral prefrontal
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PC, principal component; PCS, pain catastrophizing scale; PPTH, persistent post-traumatic headache;
PTH, post-traumatic headache; RAVLT, Rey Audiovisual Learning Test; ROI, region of interest; SCAT,
Sport Concussion Assessment Tool; sfc, static functional connectivity; STAI, state-trait anxiety
inventory; TBI, traumatic brain injury; TMT, trail making test.
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Background

Migraine and post-traumatic headache (PTH) often share

similar phenotype and most individuals with persistent PTH

(PPTH) have a migraine-like phenotype (1, 2). New headaches

starting in close temporal relation to traumatic brain injury

(TBI) are easy to identify as PTH when pre-existing headaches

are not present. However, the differentiation is more difficult

when the headaches are longstanding and recollection of the

timing of TBI and specific headache symptoms may be unclear.

In these situations, when the diagnosis lacks certainty on

clinical grounds alone, an objective method to help differentiate

PPTH from migraine could be of significant value and increase

confidence in the diagnosis.

Recent studies have found disease-specific differences in

clinical characteristics and unique differences in brain structure

and function underlying both headache disorders (3–6). In a

previously published study, we developed a logistic regression

classifier based on principal components (PCs) using clinical

variables and brain structural data to understand the extent to

which PPTH and migraine have disparate pathophysiology. In

this study, machine learning classifiers incorporating functional

imaging data as well as clinical and structural imaging data

were constructed. In addition to clinical utility of differentiating

those with migraine from those with PPTH, the classifiers

provide an opportunity to learn more about the diseases and

what separates them, by discovering patterns not apparent with

a simpler analysis such as univariate analysis.

The goal of this current study was to assess whether adding

resting state static and dynamic fc measures in these models

could improve classification accuracy for differentiating those

with migraine from those with PPTH.
Methods

Participant eligibility criteria

Male and female study participants ages 18–65 years were

recruited from the Phoenix Veterans’ Administration (VA)

Health Care System and Mayo Clinic Arizona, both sites from

which IRB approvals were obtained. Prior to participation, study

participants completed written informed consent at the

recruitment site. Diagnosis of migraine or PPTH attributed to

mild TBI was made according to ICHD-3 beta (8) criteria and

assigned by a headache specialist. Migraine subjects were

excluded if they had any history of TBI. Individuals with PTH

were excluded if they had a history of migraine or a history of

moderate or severe TBI.

Thirty-four individuals with migraine and 48 participants

with PPTH are included in this study. Subjects from this

study have been included in prior publications which have
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shown differences between migraine and PPTH groups in

brain structure (9, 10), fibertract profiles (11), static and

dynamic functional connectivity (12), autonomic symptoms

(3) and insomnia (4). Extending a classifier based on clinical

data and structural imaging data (7), here for the first time we

create a migraine vs. PPTH classifier including clinical data,

structural and functional imaging data.

In the PPTH group 10 subjects reported one lifetime

concussion, 19 reported two, 15 reported 3–10 and four

PPTH subjects reported 10 + concussions. Of the group with

10 + concussions two were due to repeated impacts from

sports and two were due to military training or active-duty

blast-related injuries. In total 10 subjects’ most recent

concussions were sport related, seven were due to motor

vehicle accident, 10 were due to falls and 21 were blast related.

Thirty migraine subjects met the headache frequency

criteria for chronic migraine per ICHD-3 beta with the

remaining four classified as episodic.
Clinical data collection

Study participants completed a battery of psychological and

cognitive evaluations including the Rey Auditory Verbal

Learning Test (RAVLT); immediate and delayed memory

recall (13); Trail Making Test (TMT) (14); Beck Depression

Inventory (BDI) (15); and State-Trait Anxiety Inventory

(STAI); Form Y-1 and Form Y-2 (16). Other symptoms were

assessed with Hyperacusis Questionnaire (17); Photophobia

Assessment Questionnaire (PAQ) (18); Allodynia Symptom

Checklist, (ASC)-12 (19); COMPASS 31 (20); Migraine

Disability Assessment Scale (MIDAS) (21); a validated post-

traumatic stress disorder checklist (DSM-5) (22); the Pain

Catastrophizing Scale (PCS) (23, 24) and a detailed headache

questionnaire developed by headache specialists at Mayo

Clinic. Patients completed the Ohio State University TBI

identification method questionnaire (25). A case report form

containing Common Data Elements developed by the

National Institute of Neurological Disorders and Stroke (26)

and a 22-item Symptom Evaluation Checklist from the Sport

Concussion Assessment Tool (SCAT) 5th edition (27) were

used to characterize headache and TBI characteristics.
Brain imaging data

Following questionnaire completion subjects had structural

and resting-state functional imaging of the brain. Images were

collected on a single 3-Tesla Siemens MAGNETOM (Erlangen,

Germany) scanner. 3D T1-weighted sagittal MPRAGE, axial

T2-weighted imaging, Diffusion Tensor Imaging (DTI) (non-

linear directions and one image without diffusion weighting)

and ten minutes of blood oxygenation level dependent (BOLD)
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resting state imagine data were collected. For the resting state

scans, participants were instructed to keep their eyes closed but

to remain awake, to relax, and to try to clear their minds.

See appendix for imaging sequence details.

T1 and T2 weighted scans were reviewed by a board certified

neuroradiologist. Subjects with presence of gross anatomical

abnormalities on imaging (including T2 hyperintensities) were

excluded from the final analysis. T1-weighted images were

segmented using FreeSurfer version 6.0 (28) using the Desikan-

Killiany Atlas.

DTI preprocessing was done using the automated tractography

toolbox TRACULA (TRActs Constrained byUnderlying Anatomy)

(29). Preprocessing steps included image correction, brain

extraction, within-subject registration to the individual’s

T1-weighted image, and co-registration to a template. The

distribution of fibertracts was estimated using a Markov Chain

Monte Carlo algorithm. A total of 18 fibertracts were extracted.

Resting state data were slice-time and motion corrected, and

realigned. Skull and non-brain tissue were removed, data were

smoothed, aligned to each subject’s own T1-weighted scan, and

transformed to the standardized Montreal Neurological Institute

(MNI) template. Data were bandpass filtered and signals of no

interest and head motion were regressed from the data.

Functional connectivity was assessed using a region of

interest approach with 69 regions drawn according to findings

from prior literature. Static fc was assessed by finding the

correlation between the time series of two regions. Dynamic

fc for each region pair was calculated by sliding window

correlations with window length of 60 s and overlap of 1

frame. Window-length of 60 s was chosen to be consistent

with our previous work (12) and with findings that window-

lengths of approximately this length are optimal in the

absence of information about the true correlation timescale

(30). Regions of interest, detailed imaging parameters and

preprocessing details can be found in the appendix material

[Supplementary Table S1, Appendix].
Classification model

Some collected clinical data were not included as variables in

the model because the data were directly tied to the classification

in a way that would unfairly bias the model and artificially increase

the model accuracy or because their inclusion would negatively

affect the applicability of the model to other populations. For

example, variables related to history of TBI were excluded

because every PPTH participant had a previous TBI but history

of TBI was an exclusion criterion for the Migraine group. PTSD

(which would likely be much higher in the Phoenix VA PPTH

population), headache frequency, years with headache, family

history of migraine, and presence of aura were also excluded.

In our prior publication, clinical data, structural and fiber tract

measures were standardized, converted to principal components
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and a logistic ridge regression model was fit on the principal

components (PC) (7). Leave one out cross-validation was used to

assess model performance and the ridge L2 regularization

parameter was set within the cross-validation loop. Within each

cross validation loop an additional, inner, leave one out cross

validation (81-fold) was performed for each candidate

regularization parameter. The candidate ridge parameter with the

best performance over the inner cross validation loops was chosen

as the ridge parameter for the primary, outer, cross validation loop.

In this analysis, the addition of the many (4692) fc derived

variables necessitated variable selection prior to model fitting.

Welch’s t-tests were used to identify static and dynamic

connectivity variables that showed group differences between

migraine and PPTH. The fc variables with significant

differences between groups were included as candidate

variables for the classification model. Candidate variables were

standardized to mean 0, and unit variance. PCs of the

standardized data set were found using the PCA function

from Python’s scikit-learn package. Candidate variables from

all data sources were utilized together to create the PCs. These

PCs were the feature set for the classification model.

Leave one-out cross-validation was used to estimate model

accuracy. Within the cross-validation loop, the preferred L2

penalty (regularization parameter) was determined from a list

of candidates. The overall classification model was a logistic

regression model with L2 penalty with PCs as the model

variables. Candidate ridge parameter values and the use of 65

PCs were chosen for consistency with the previous publication.
Bias correction

When variable selection is performed outside of a cross-

validation loop all data are used to select variables, including

the held-out sample. This may result in a biased estimate of

model accuracy. To address this, a second approach was taken

in which the variable selection was performed inside the

cross-validation loop, meaning that the held-out sample was

not used in variable selection. This is referred to as the

internal model. When the variable selection of fc data was

performed within the cross-validation loop, the number of

variables used to create the PCs varied by loop, but the

number of PCs remained at 65. Within each cross-validation

loop the entire set of candidate variables selected within that

loop were utilized to create the PCs for that loop.
Variable importance

Following the model fitting, variable importance in the

internal variable selection and PC creation model with fc data

was estimated with the following custom metric: first the

contribution of each variable to each PC was found. Then the
frontiersin.org
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Table 1 Subject Descriptors.

Migraine PPTH p-value
n/total, (%) n/total, (%)

Sex (male) 12/34, (35.3%) 31/48, (64.6%) 0.017

Aura 18/34, (52.9%) 23/48, (47.9%) 0.823

Race White/Caucasian 32/34, (94.1%) 45/48, (93.8%) 1
American Indian,
Alaska Native

1/34, (2.9%) –

Black/African
American

1/34, (2.9%) 1/48, (2.6%)

Other – 2, (5.3%)

Ethnicity (Hispanic) 1/34, (4.2%) 8/48, (16.7%) 0.073

mean (sd) mean (sd) p-value

Age 41.7 (10.9) 38.1 (10.7) 0.12

Headache Frequency 20.4 (6.2) 16.1 (8.6) 0.015
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contribution of each PC to the logistic regression was found

from the standardized regression coefficients. Each value is a

percentage. By multiplying the two it is possible to estimate

the contribution of each variable to the model. The sum of

the contribution of all variables for one model is 1. Two

things must be noted about this metric. First, ridge regression

does not permit a coefficient value to be set to 0, meaning

that the minimum contribution of each PC to the model is

greater than zero. Secondly, the contribution of an individual

variable is tied to the contribution of the PCs onto which it

projects. Only variables that are excluded during variable

selection or which mapped entirely to PCs not passed to the

regression model will have a contribution of zero. Mean

variable importance over all cross-validation loops was used

to rank model importance.
Years w/headache 24.9 (14.4) 10.6 (8) <0.001

ASC 5 (4.1) 5.6 (5.2) 0.895

BDI 9 (6) 17.1 (8.9) <0.001

COMPASS31 27.3 (12.9) 36.6 (14.4) 0.006

Hyperacusis 14.4 (8.5) 23.3 (10.7) <0.001

Insomnia 18.3 (6.8) 23.5 (6.6) 0.002

MIDAS 48.4 (33.5) 67.9 (59.8) 0.305

PCS 19.9 (10.9) 24.4 (13.2) 0.155

State Anxiety 34.8 (8.9) 37.7 (13.4) 0.498

Trait Anxiety 40 (10.3) 45 (13.4) 0.062

Photophobia 0.49 (0.29) 0.61 (0.33) 0.080

ASC, allodynia Symptom checklist; BDI, beck depression index; COMPASS,

composite autonomic symptom score; MIDAS, migraine disability

assessment; PCS, pain catastrophizing scale; n, sample size.
Results

Information on subject demographics can be found in

Table 1. Thirty-four individuals with migraine and 48 PPTH

participants were included. There were no significant

differences in age between the migraine and PPTH groups

(mean(sd): Migraine: 41.7 (10.9); PPTH: 38.1 (10.7); p =

0.120). The PPTH group had a higher proportion of males

(Migraine: 35.3%; PPTH: 64.6%; p = 0.017), lower headache

frequency (Migraine: 20.4 (6.2); PPTH: 16.1 (8.6); p = 0.015)

and less years lived with headache (Migraine: 24.9 (14.4);

PPTH: 10.6 (8.0); p < 0.001). The PPTH group also had

higher scores on the BDI (Migraine: 9.0 (6.0); PPTH: 17.1

(8.9); p < 0.001), COMPASS 31 (Migraine: 27.3 (12.9); PPTH:

36.6 (14.4); p = 0.006), hyperacusis (Migraine:14.4 (8.5);

PPTH:23.3 (10.7); p < 0.001) and insomnia (Migraine:18.3

(6.8); PPTH 23.5 (6.6); p = 0.002) questionnaires. There were

no significant differences between the migraine and

PPTH groups in percentage reporting “White/Caucasian”

race (Migraine: 94.1%; PPTH: 93.8%; p = 1), Hispanic

ethnicity (Migraine: 4.2%; PPTH 16.7%; p = 0.073), or in

ASC-12 (Migraine: 5 (4.1); PPTH: 5.6 (5.2); p = 0.895),

MIDAS (Migraine: 48.5 (33.5); PPTH: 67.9 (59.8); p = 0.305),

PCS (Migraine: 19.9 (10.9); PPTH: 24.4 (13.2); p = 0.155),

state anxiety (Migraine:34.8 (8.9), PPTH: 37.7 (13.4); p =

0.498) or trait anxiety (Migraine: 40 (10.3); PPTH: 45 (13.4);

p = 0.062) scores. Information on income, educational level

and other socioeconomic status indicators was not collected.

Thirty subjects with migraine had 15 or more headache days

per month (chronic migraine). Twenty-eight of the PPTH

subjects had 15 or more headache days per month. Forty-six

of the PPTH participants had a migraine-like phenotype, with

the other two displaying a tension-type headache-like

phenotype. On the day of the visit 26/34 (76.4%) migraine

participants and 42/48 (87.5%) PPTH participants reported a
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current pain level greater than zero (p = 0.8226). Presence of

headache at time of imaging was not recorded.
Classification models

The number of potential variables by category are shown in

Table 2. All classification models described here include all of

the same questionnaire data, structural imaging data, and DTI

data as variables. Each classifier model created 65 PCs from

those variables which were used as variables in the model’s

ridge regression. The classification models differ in which fc

data is included and whether the PC creation occurred inside

or outside of the cross-validation loop. Showing the different

models illustrates the benefit of including functional

connectivity data; in the way the model was created in the

previous publication (Figure 1A–C) and in a more

conservative approach to model appraisal where the PC

creation and variable selection happen inside the cross-

validation loop (Figure 1D,E). In Figure 1 A is the model

from the previous publication, B and C add fc data to

A. Model D uses the same data as A but with PC creation
frontiersin.org

https://doi.org/10.3389/fpain.2022.1012831
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


FIGURE 1

Model comparison. Figure shows the relationship between the
classification models and each model’s average accuracy. Each
approach utilizes the same data set. Model A is the model from
Chong et al., 2021 (78.0%). All models include the same patients,
and same questionnaire data, structural and DTI data as variables.
There was no variable selection on clinical or structural data in any
model. The improvement in classifier accuracy by including fc data
is seen in the increase in accuracy from A to C and from D to
E. The performance metrics of models with internal pc creation
and variable selection (D,E) are more conservative than the
models with external pc creation and variable selection (A,B,C).

Table 2 Candidate Variables by Source.

Data Source Imaging Sequence Description Candidate Variables

Clinical Data n/a Questionnaire Data 284

Cortical Volume T1 Desikan Atlas regional Volume 134

Cortical Thickness T1 Desikan Atlas regional thickness 70

Cortical Area T1 Desikan Atlas regional area 70

Brain Curvature T1 Desikan Atlas regional curvature 68

Fibertract DTI Axial, radial, and mean diffusivity, fractional anisotrophy,
length and volume for 18 fibertracts

306

Static FC Resting State fMRI Region-to-region static fc 2346

Dynamic FC Resting State fMRI Region-to-region dynamic fc 2346

Total 5624
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inside the cross-validation loop. Model E adds fc data to D. The

same subjects are used in all cases.
Models with PC creation outside the cross-
validation loop

When no fc data is included, and PC creation is outside of

the cross-validation loop, average model accuracy is 78.0%. If all

fc data is included (no variable selection), then average model

accuracy is 52.4%. When variable selection of fc data prior to

PC creation is implemented the number of included static fc

variables decreases to 144 and the number of included
Frontiers in Pain Research 05
dynamic fc variables to 166. The resulting classifier has an

average accuracy of 87.8%.

Models with pc creation inside the cross-
validation loop

To address issues potentially arising from performing

variable selection outside of the cross-validation loop, we

performed an additional analysis where the variable selection

and PC creation was moved inside the cross-validation loop.

Doing this provides a more conservative appraisal of the

generalizability of the model. In these models the average

accuracy with fc data is 72.0% compared to 63.4% without the

fc data.

Because it is more conservative, the classification model

with fc variable selection and PC creation inside the cross-

validation loop was used as the basis of all further analysis in

this document. The confusion matrix for this model is shown

in Table 3.

Balanced accuracy for this model is 71.8%. 72.9% of PPTH

patients and 70.6% of migraine patients were correctly classified.
Variable importance

Of the 5,624 unique candidate variables, 1,521 were selected

for inclusion across one or more of the cross-validation loops in

the internal variable selection model, including 310 static fc

variables and 287 dynamic fc variables. Of those, 101 static fc

and 103 dynamic fc variables were selected in every cross-

validation loop.

Of the highest contributing 100 variables in the internal

variable selection approach, 24 are fiber tract/DTI data, 22 are

static fc and 18 are dynamic fc (Table 4).

Figure 2 shows boxplots of contribution of the top 100 most

contributing variables in the internal variable selection and PC

creation model, ordered by ranking. While fiber tract data has

more variables in the top 100 (24) than static fc (22) or
frontiersin.org
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Table 4 Number of Variables in the Top 100 Most Contributing; by
Source.

Source N

Clinical Data 9

Cortical Volume 8

Cortical Thickness 7

Cortical Area 0

Brain Curvature 12

Fibertract 24

Static fc 22

Dynamic fc 18

Variables in internal PC with selected fc data model.

Table 3 Confusion Matrix for Model with Internal Variable Selection
and PC Creation Including FC Data.

Predicted Class

Actual Class Migraine PPTH

Migraine 24 10

PPTH 13 35

Matrix shows the number of migraine subjects correctly (24) and incorrectly

(10) classified and the number of PPTH subjects correctly (35) and

incorrectly (13) classified by the model.
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dynamic fc (18) all the top ten most contributing variables are

static or dynamic fc.
Static functional connectivity
Sfc pairs found in the highest contributing 100 variables are

shown in Figure 3. Five of the 22 most contributing static fc

variables involve the left secondary somatosensory region and

three involve the right somatosensory region. The right

posterior insula, left DLPFC, right hypothalamus, and left

fusiform gyrus are also part of three pairwise connections

each. The right lingual gyrus, periaqueductal gray, left rostral

ventromedial medulla, and left superior parietal lobule are

each found twice while the remaining regions are found only

once.
Dynamic functional connectivity
Dfc pairs found in the highest contributing 100 variables are

shown in Figure 4. The left posterior insula, left VMPFC, right

spinal trigeminal region, left hypothalamus, and left middle

frontal were each part of three dynamic fc pairwise

connections in the top 100 variables. The right somatomotor

was involved in two dynamic fc pairwise connections in the

top 100 variables. The other regions in this list were involved

in a single pairwise dynamic fc connection in the top 100

variables.
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Differences between correctly and incorrectly
classified

In general, the misclassified PPTH group was less severely

affected than the correctly classified PPTH group. The

incorrectly classified PPTH group had lower median BDI,

COMPASS 31, hyperacusis, insomnia, MIDAS, photophobia,

PCS, state anxiety, trait anxiety and headache symptom score

than the correctly classified PPTH group. (Figure 5). Median

allodynia scores (ASC) were higher for the misclassified

PPTH group than the correctly classified PPTH group. The

opposite pattern is repeated for the misclassified migraine

group compared to the correctly classified migraine group but

to a lesser degree. The exception is that the incorrectly

classified migraine group had higher median allodynia than

the correctly classified migraine group. It is not surprising to

find the correctly classified cases at the extremes with the

incorrectly classified groups between them; the cases that look

most like the other group will be the hardest to distinguish.

However, large differences are interesting because while the

variables shown here were included in the model, they weren’t

found among the most influential variables.

Sex was included as a candidate variable in each model but

was not found to have high importance in the final model (see

Table 5). Males were more likely than females to be correctly

categorized, especially within the PPTH group (Chi-sq,

p = 0.008).

There were no apparent differences between the correctly

and incorrectly classified subjects in terms of pain intensity,

headache duration, frequency, or years with headache. This

suggests their inclusion in the model would be unlikely to

improve the performance.

Correctly and incorrectly classified subjects were equally

likely to have taken medication in the last 48 h (Table 6)

(p = 0.23, Chi-squared), suggesting having done so does not

substantially impact imaging findings included in this analysis.

Those with migraine were more likely to have reported a

family history of migraine but it did not relate to classification

success. A greater percentage of PPTH subjects who had aura

were correctly classified compared to those who did not have

aura, although aura was not included as a candidate variable.

The two PPTH subjects with a tension-type headache

phenotype were both correctly classified.
Discussion

Adding static and dynamic fc data to a machine learning

classifier based on clinical and structural data can improve

classifier ability to distinguish individuals with migraine from

those with PPTH. The average accuracy of our previously

published model was 78.0%. However, this study showed that

the addition of pre-selected functional connectivity data
frontiersin.org
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FIGURE 2

Variables contributing most to internal variable selection model. Internal PC with selected fc data model. Individual data points represent the
contribution of a single variable to the model created in a single-cross validation loop. Data is grouped by variable to form a single boxplot for
each variable on the plot. Bar indicates median, box ends at 1st and 3rd quartiles, whiskers show extent of non-outlier data. Dots are outliers.
Boxes are sorted in order of decreasing ranking (mean contribution). Calculation of contribution is described in the methods section. Sfc: static
functional connectivity; dfc: dynamic functional connectivity; R: right; L: left; mean_curv: mean curvature; vol: volume; RD: radial diffusivity;
SLFP: superior longitudinal fasciculi - parietal; SLFT: superior longitudinal fasciculi – temporal; Symp. Eval.: Symptom Evaluation. See
supplemental information for functional connectivity region number descriptions.
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increased model accuracy to 87.8%. For the models with

variable selection and PC creation inside the cross-validation

loop the addition of fc data raised the average accuracy from

63.4% to 72.0%. Within each of these pairings (78% vs. 87.8%

and 63.4% vs. 72.0%) the models being compared are directly

comparable; the inclusion of fc data is the only difference, so

we can confidently assert that inclusion of fc data improves

the model performance. The model with variable selection

and PC creation outside of the cross-validation represents a

more optimistic view while the model with variable selection

and PC creation on the inside represents a more

conservative view.

When it is difficult to find/create a data set with the

necessary variables that is large enough to allow for a separate

held-out test set, cross-validation is frequently used. Cross-
Frontiers in Pain Research 07
validation allows a data set to be used for both model training

and evaluation (non-simultaneously) as well as variable

selection, but the use of the data in all of these roles

concurrently can lead to bias in the model and overestimation

of model performance. The substantial difference in

performance (∼16%) between the internal and external

models, which were built with the same general method on

the same data set, illustrates the importance of understanding

how classification model accuracy is reported in the literature.

By presenting both the internal and external model here we

can have a better understanding of the potential range of

performance we would be likely to see if the modeling was

used to classify new groups of people with PPTH and migraine.

Given the improvement to model accuracy with inclusion of

fc data it is not surprising that many of the most important
frontiersin.org
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FIGURE 3

Static FC variables in the Top 100. Internal PC with selected fc data model. Network vertices labeled by ROI number as in Supplementary Table S1,
Appendix. Vertex positions are approximate. DLPFC: Dorsolateral prefrontal cortex; Inf Lat Parietal: Inferior lateral. Used with permission of Mayo
Foundation for Medical Education and Research. All rights reserved.

FIGURE 4

Dynamic FC variables in the Top 100. Internal PC with selected fc data model. Network vertices labeled by ROI number as in Supplementary Table S1,
Appendix. Vertex positions are approximate. VMPFC: ventromedial prefrontal cortex; Sup Parietal: Superior Parietal. Used with permission of Mayo
Foundation for Medical Education and Research. All rights reserved.
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variables are tied to fc. Regions that were important

contributors to the model included those located within

somatosensory cortex, posterior insula, prefrontal cortex,

hypothalamus, periaqueductal gray, rostral ventral medulla,
Frontiers in Pain Research 08
fusiform gyrus, and lingual gyrus. These are regions that

participate in different aspects of the migraine and PPTH

experience including sensory-discriminative and cognitive

processing of pain (31), pain modulation (32, 33), migraine
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FIGURE 5

Instrument scores by correctly vs incorrectly classified migraine vs PPTH groups. Internal PC with selected fc data model. ASC = Allodynia Symptom
Checklist; BDI = Beck Depression Inventory; COMPASS =Composite Autonomic Symptom Score; MIDAS =Migraine Disability Assessment; PAQ=
Photosensitivity Assessment Questionnaire; State = state anxiety; Trait = trait anxiety. Dots are outliers.

Table 5 Sex Breakdown Correctly vs Incorrectly Classified.

Migraine PPTH

Sex

Female Male % Male Female Male % Male

Correct 14 10 41.7% 8 27 77.1%

Incorrect 8 2 20.0% 9 4 30.8%

% Correct 63.6% 83.3% 47.1% 87.1%

Internal PC with selected fc data model.
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attack generation (34), and multisensory integration (35). These

regions have previously been demonstrated to have atypical

function amongst individuals with PPTH and/or migraine

(36–40). Precise explanations for why the functional

connections between specific brain regions were important for
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differentiating migraine and PTH are speculative. The

hypothalamus is known to be involved in chronic pain,

including migraine and PTH. Altered activity and functional

connectivity of the hypothalamus has been identified early in

the migraine attack, suggesting the hypothalamus plays a role

in migraine attack generation (41–44). It has also been

implicated in the premonitory and headache phases of

migraine (32, 45). The role of the hypothalamus in PTH is

less certain, although there is emerging literature suggesting

the hypothalamus is involved in PTH. For example, a sfc

study of PTH demonstrated that altered connectivity between

the hypothalamus and frontal lobe correlated with headache

frequency and intensity (46). In the analysis reported herein,

the hypothalamus was involved with several static and

dynamic functional connections that provided important

contributions to the classification task. Similarly, the
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Table 6 Group Differences for Discrete Characteristics Not Included in the Classification Models.

Migraine PPTH

Handedness

right left % left right left % left

Correct 22 2 8.3% 33 2 5.7%

Incorrect 8 2 20.0% 12 1 7.7%

% Correct 73.3% 50.0% 73.3% 66.7%

Taking Preventive Medications

No Yes % Yes No Yes % Yes

Correct 12 12 50.0% 16 19 54.3%

Incorrect 6 4 40.0% 9 4 30.8%

% Correct 66.7% 75.0% 64.0% 82.6%

Meds in last 48 hours

No Yes % Yes No Yes % Yes

Correct 11 12 52.2% 16 19 54.3%

Incorrect 5 5 50.0% 6 6 50.0%

% Correct 68.8% 70.6% 72.7% 76.0%

Migraine Family History

No Yes % Yes No Yes % Yes

Correct 7 17 70.8% 29 5 14.7%

Incorrect 2 8 80.0% 11 2 15.4%

% Correct 77.8% 68.0% 72.5% 71.4%

Aura

No Yes % Yes No Yes % Yes

Correct 12 12 50.0% 16 19 54.3%

Incorrect 4 6 60.0% 9 4 30.8%

% Correct 75.0% 66.7% 64.0% 82.6%

Headache Phenotype

Migraine Probable migraine TTH

Correct Migraine 28 7 0

Incorrect 9 2 2

% Correct 75.7% 77.8% 0.0%

Internal PC with selected fc data model; correctly vs incorrectly classified, Migraine vs PPTH. Meds in last 48 hours = individuals who had taken a pain medication or

acute medication for treatment of headache within the prior 48 hours.
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secondary somatosensory region was included in multiple highly

contributing sfc connections. This might be expected based on its

role in the processing and integration of painful and non-painful

somatosensory stimuli, prior studies demonstrating alterations in

responses to tactile stimulation in migraine and PTH, prior

evidence for atypical pain-induced secondary somatosensory

cortex activation in people with migraine and ictal allodynia,

and atypical sfc of secondary somatosensory cortex in those

with PTH (47–50). Since functional connectivity of the

hypothalamus and secondary somatosensory cortex contributed

to differentiating migraine and PTH, the contributions of these

regions to the pathophysiology of these two distinct headache

types might differ; further studies are needed to better explain

these differences.
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The variable ranked as most important for classification was

the dfc between the posterior insula and the left lingual gyrus.

These brain regions are known to be involved in the

processing of somatic sensations and visual processing

respectively. Several prior studies have demonstrated structural

and functional alterations in insula and the visual network in

migraine (51–53). Their inclusion together here could be

indicative of differences in brain function related to visual

hypersensitivities and integration of visual and somatosensory

stimuli (e.g., photo-allodynia, worsening of headache when

exposed to visual stimuli), a known phenomenon in both

migraine and PTH. Of note, photophobia questionnaire scores

did not differ by group and were not included as top ranked

variables themselves. It is possible that the inclusion of this
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dynamic functional connectivity information, in combination

with the other information captured across the included

principal components, is telling us something more nuanced

about migraine vs. PTH differences in photosensitivity or

other forms of visual hypersensitivity than is captured by the

photophobia questionnaire.

The top ranked sfc input was between the right lingual

gyrus and the periaqueductal gray. The periaqueductal gray is

an important region for pain modulation. Numerous prior

studies have identified atypical structure and function of the

periaqueductal gray in chronic pain and migraine (54–57).

A PTH study demonstrated altered sfc of the periaqueductal

gray in patients who were imaged within one week of their

brain injuries, and the periaqueductal gray connectivity helped

to predict PTH persistence at three months (58). Activation of

the lingual gyrus has also been shown to vary between

individuals with migraine with simple visual aura and those

with complex aura (59). Our study populations were both

equally likely to report the presence of aura, but the inclusion

of the lingual gyrus in multiple highly ranked fc variables may

reflect a more subtle difference in the type of aura

experienced in each group.

Identification of regions that most contribute to

differentiating migraine and PTH assist with choosing which

brain regions to further interrogate in future studies

interested in pathophysiological differences between migraine

and PTH. These future studies might also be able to provide

greater insights into clinical characteristics of migraine and

PTH that associate with aberrant functional connectivity of

these regions.

The internal PC model with fc data had nearly equal

accuracy between the two classes; 70.6% of migraine and

72.9% of PPTH subjects were correctly classified. Positive

predictive value for identifying PPTH subjects was 77.8%.

This contrasts with the previous publication where 97.7% of

the migraine group but only 64.6% of the PPTH group were

correctly classified. This result further supports the

importance of including fc data for PPTH classification.
Limitations

Our fMRI set up did not include collection of pulse,

breathing or blood pressure measurements, nor did we

account for spontaneous blood pressure changes that may

occur at the upper limit of the frequency band (60), which

are study limitations.

Machine learning models are sensitive to the choice of

hyperparameters; variables which control the model’s learning

process. In the models reported here, the number of PCs, the

ridge regression regularization parameter, and the parameters

controlling the inclusion and exclusion of candidate variables

are hyperparameters which must be set. The set of
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regularization parameter candidate values, the use of 65 PCs,

and the use of p <= 0.05 in variable selection may not be

absolutely optimal. Future studies should include individuals

with PPTH with history of migraine pre-mTBI. Sex was

accounted for by its inclusion as a model variable however

future studies would benefit by utilizing cohorts that are more

closely matched in sex and years lived with headache.

Similarly, the choice of sliding window length when

calculating the dfc may affect the outcome. While we have

made every effort to make the models directly comparable,

we have not shown the statistical significance of the

improvement in model accuracy due to the addition of the

fc data.

We did not account for race and ethnicity in this analysis.

The homogeneity of race and ethnicity overall as well as the

uniformity of race and ethnicity across groups (PPTH and

healthy controls) makes it unlikely that these variables

influenced the outcome of this analysis. The small numbers of

non-White and Hispanic study participants makes sub-

analysis infeasible.
Future work

In the future, a relatively objective method for

differentiating PPTH from migraine might increase confidence

in the diagnosis when doing so is difficult on clinical grounds

alone. A classifier would be particularly useful when details

about the TBI and timing of headache symptoms are less

clear. Currently, accurate differentiation is particularly

important when enrolling subjects into clinical trials; it will

also be important when recommending treatment as soon as

PTH-specific treatments are available.
Conclusions

A classification model based on clinical questionnaire data,

structural imaging features and fc features can differentiate

those with PPTH from those with migraine with 87.8%

accuracy. The inclusion of fc data improved the accuracy of

the model from the previously published 78%.

A more conservative method with variable selection and

PC creation inside the cross-validation loop showed 72%

accuracy when fc data were included, compared to 63.4%

when fc data were not included. Fc and fibertract data were

important contributors to the classifier. Classification

accuracy was approximately equal for classifying PPTH and

migraine.
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