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Mitochondria and sensory
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Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over
750 million people worldwide and contribute to approximately 40% of chronic
pain cases. Inflammation and tissue damage contribute to pain in rheumatic
diseases, but pain often persists even when inflammation/damage is
resolved. Mechanisms that cause this persistent pain are still unclear.
Mitochondria are essential for a myriad of cellular processes and regulate
neuronal functions. Mitochondrial dysfunction has been implicated in
multiple neurological disorders, but its role in sensory processing and pain in
rheumatic diseases is relatively unexplored. This review provides a
comprehensive understanding of how mitochondrial dysfunction connects
inflammation and damage-associated pathways to neuronal sensitization and
persistent pain. To provide an overall framework on how mitochondria
control pain, we explored recent evidence in inflammatory and neuropathic
pain conditions. Mitochondria have intrinsic quality control mechanisms to
prevent functional deficits and cellular damage. We will discuss the link
between neuronal activity, mitochondrial dysfunction and chronic pain.
Lastly, pharmacological strategies aimed at reestablishing mitochondrial
functions or boosting mitochondrial dynamics as therapeutic interventions
for chronic pain are discussed. The evidence presented in this review shows
that mitochondria dysfunction may play a role in rheumatic pain. The
dysfunction is not restricted to neuronal cells in the peripheral and central
nervous system, but also includes blood cells and cells at the joint level that
may affect pain pathways indirectly. Pre-clinical and clinical data suggest that
modulation of mitochondrial functions can be used to attenuate or eliminate
pain, which could be beneficial for multiple rheumatic diseases.
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Introduction

Rheumatic diseases are often grouped under the term “arthritis”, which is used to

describe over 100 diseases that include rheumatoid arthritis (RA), osteoarthritis (OA),

fibromyalgia, systemic lupus erythematosus (SLE), ankylosing spondylitis (AS),

psoriatic arthritis (PsA), and juvenile idiopathic arthritis (JIA). These rheumatic

diseases are characterized by inflammation and tissue damage (1). In several of these
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rheumatic pathologies, e.g., RA and SLE, an autoimmune

component is present (2). In most rheumatic diseases, joints,

cartilage, tendons, ligaments, bones, and muscles are the main

and most commonly affected tissues. Although specific

mechanisms differ between diseases, the release of pro-

inflammatory molecules or damage-associated molecules by

cells, contributing to tissue inflammation and destruction, is a

common feature among these rheumatic conditions. For

example, in RA, fibroblast-like synoviocytes (FLSs) release

pro-inflammatory molecules, leading to tissue damage. In OA,

chondrocyte cell death triggers the release of inflammatory

cytokines in surrounding tissues (3). Another shared element

among rheumatic patients is that they often report pain as

their most debilitating symptom (4–7). Fibromyalgia has an

unknown pathophysiology, but is characterized by chronic

widespread pain, which is also present in 65%–80% of SLE

patients (8).

Although inflammatory components are present in

rheumatic diseases, it is still not completely understood what

drives pain in these diseases. The magnitude of inflammation

in RA or SLE, or the severity of damage assessed by

radiographic knee damage in OA, do not correlate with pain

intensity (8–13). Moreover, 12%–70% of RA patients have

persistent pain after remission or under minimal disease

activity (13–15). In OA, 10%–40% of the patients still have

pain even 5 years after total knee replacement surgery (11). In

summary, pain is not directly associated with the magnitude

of damage/inflammation and often persists even when the

inflammation or damage is minimal or resolved.

Chronic pain affects at least 20% of the world population

(∼1.4 billion people), with rheumatic diseases, such as OA

and RA, contributing to approximately 40% of these chronic

pain cases (1, 16–19). Currently available pain treatments

include analgesics [e.g., paracetamol, non-steroidal anti-

inflammatory drugs (NSAIDs), opioids, and steroids],

physiotherapy or surgery (20). The available treatments are

often not very effective to treat chronic pain (21, 22). NSAIDs

and steroids are the most common treatments for rheumatic

diseases, due to their anti-inflammatory and analgesic

properties. Nonetheless, renal, hepatic, cardiovascular and

gastrointestinal adverse effects are commonly reported (23,

24). Most importantly, despite their anti-inflammatory

properties, the highest pain reduction reported was lower than

10% in average, further supporting a lack of correlation

between inflammation and pain intensity in rheumatic disease

(24). Additionally, preclinical evidence supports clinical

observations, as the anti-inflammatory corticosteroid

(dexamethasone) prevents acute inflammatory pain, but no

longer has an effect when pain becomes chronic (25). Finally,

opioids, the last resource in terms of analgesics, reduce pain

intensity 20%–30% in OA patients and only 10% in

musculoskeletal pain in general (22). The limited therapeutic

outcome of opioids comes with potential side effects,
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the current opioid crisis (26, 27).

Most studies on pain in rheumatic disease focus on cellular

and molecular alterations in joint tissues induced by

inflammation. It is well known that inflammatory mediators can

directly activate or sensitize sensory neurons (28–30). Yet, given

that pain often persists with minimal or no joint inflammation/

damage, it is likely that changes in the peripheral and central

nervous system also drive pain in rheumatic disease. Indeed,

inflammation and tissue damage may determine long lasting

neuronal plasticity (28–30). Joint inflammation alters protein

expression in sensory neurons that innervate the joints and have

their cell bodies in the dorsal root ganglia (DRG) (31). In

patients with mild and severe OA, sensory innervation is

increased in the subchondral bone (32), potentially enhancing

pain signaling pathways. Primary sensory neurons synapse in

the dorsal horn in the spinal cord. In rheumatic diseases,

exacerbated sensory neuron activity or neuronal damage may

promote the activation of astrocytes and microglia in these

spinal regions (31). Increased activation of glia may explain why

the levels of pro-inflammatory cytokine interleukine-1β (IL-1β)

are increased in the cerebrospinal fluid of RA patients (33).

Overall, the magnitude of rheumatic pain likely depends on the

interplay between joint damage and pain signaling pathways at

various levels including DRG, spinal cord and brain.

Mitochondria are essential for a myriad of cellular processes

and play a key role in regulating inflammatory responses (34), but

also neuronal functions. Neurons have a higher energetic demand

in comparison to other cell types (35). Mitochondria are a main

source of adenosine triphosphate (ATP) in neurons. This ATP is

essential to maintain the membrane potential and restore it after

an action potential (36). Mitochondria are Ca2+ reservoirs,

regulating intracellular Ca2+ concentration (37, 38). Moreover,

they are a source of reactive oxygen species (ROS).

Mitochondria control the release of neurotransmitters, neuronal

excitability, signaling and plasticity (39). The role of

mitochondria in neuronal activity has been extensively explored

in the context of neurodegenerative diseases. For example,

changes in mitochondrial axonal transport or the removal of

damaged mitochondria in neurons contribute to Alzheimer’s

disease (40) and Parkinson’s disease, respectively (41).

Furthermore, intercellular transfer of mitochondria from

astrocytes or macrophages to neurons promotes neuronal

survival after stroke, or resolves inflammatory pain, respectively

(25, 42). However, the role of mitochondria in the regulation of

pain is only begun to be understood. Importantly, modulating

mitochondrial functions in sensory neurons reduces

hyperalgesia in pre-clinical models of neuropathic and

inflammatory pain (43–48). Genetic disruption of complex IV

of the mitochondrial electron transport chain in primary

sensory neurons causes pain hypersensitivity (49). Moreover,

70% of humans with inherited mitochondrial deficits develop

chronic pain (50). Thus these data suggest an association
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between mitochondrial dysfunction, neuronal activity, and

chronic pain.

The role of mitochondria in rheumatic diseases in general

has been discussed in other reviews (51–55). However, their

role in the development of rheumatic pain has not been well

covered. In this review, we will focus on the contribution of

mitochondria to pain in rheumatic diseases. In the following

sections, we will discuss how mitochondria affect sensory

processing and pain development, using inflammatory and

neuropathic pain models. Furthermore, we discuss to what

extent modulating mitochondrial functions may be promising

to treat chronic rheumatic pain.
Mitochondrial dysfunction in the
nervous system and pain

Inflammatory pain is caused by tissue damage and

inflammatory responses, while neuropathic pain is usually

described as a consequence of neuronal damage in the

peripheral or central nervous system (16, 56, 57). Pain in

rheumatic diseases is often considered as inflammatory, but

nerve damage may also contribute to pain. Vice versa,

neuropathic pain shares features of inflammatory pain.

Inflammation can trigger neuronal damage and consequently

neuropathic pain. Therefore, the discrimination between these

two types of pain can be sometimes difficult (16, 56). As

example, inflammatory mediators sensitize afferent nociceptive

nerve fibers and trigger damage of sympathetic nerve fibers in

the joints of rodents in experimental models of inflammatory

arthritic pain (58). In addition, several OA patients show signs

of neuropathic pain (9). Therefore, we will discuss findings in

common inflammatory pain models [e.g., induced by

carrageenan or Complete Freund’s Adjuvant (CFA)], but also

discuss the role of mitochondria in neuropathic pain (e.g.,

induced by nerve ligation or chemotherapeutic drugs), as it

may inform us on what happens in rheumatic diseases when

nerves are damaged. These models are very relevant and their

significance in the pain field is discussed elsewhere (59, 60).

Mitochondria are presumably developed from engulfed

prokaryotes that were once independent organisms (61).

Mitochondria are complex organelles that have their own

mitochondrial deoxyribonucleic acid (mtDNA) and a very

characteristic morphology. Each mitochondrion is formed by

a double membrane. The outer membrane has a composition

similar to the plasma membrane of an eukaryotic cell. The

inner membrane is organized in several cristae to maximize

efficient ATP production during oxidative phosphorylation

(OxPhos) (53, 62). The main mitochondrial functions and

associated pathways are displayed in Figure 1. Each of these

functions will be discussed in the context of rheumatic pain.

A detailed overview of all specific alterations in

mitochondrial functions reported in pre-clinical studies and
Frontiers in Pain Research 03
in humans with rheumatic diseases can be found in

Tables 1, 2, respectively.
Mitochondrial respiration

The five mitochondrial respiratory chain complexes

(complex I–V), known as the mitochondrial electron transport

chain (mETC), are located in the inner membrane. These

series of complexes transfer electrons from nicotinamide

adenine dinucleotide (NADH) or flavin adenine dinucleotide

(FADH), formed in the tricarboxylic acid cycle (TCA) in the

mitochondrial matrix, to oxygen. This electron transfer is

needed to create a transmembrane electrochemical gradient by

pumping protons across the membrane. The flow of protons

back into the matrix through complex V allows ATP

production (45, 122, 123). OxPhos is responsible for 90% of

the ATP consumed by neurons. Its importance is highlighted

by deficits in OxPhos, which reduces dendritic synaptic

plasticity in neurons, leading to neuronal injury or even cell

death (39, 124). Exposure of neurons to inflammatory

cytokines, such as TNF and/or IFNγ, depolarizes the

mitochondrial membrane potential, impairs OxPhos and ATP

production (125, 126). Conversely, exposure of sensory

neurons to IL-17, IL-1α or IL-1β increased mitochondrial

respiration to support neurite outgrowth (127, 128). Thus,

inflammation affects mitochondrial respiration and neuronal

function directly. Importantly, interfering with mitochondrial

respiration in neurons affects sensory processing and pain.

For example, intrathecal administration of complex I or III

inhibitors induced mechanical allodynia in naïve mice (129).

Furthermore, complex I deficiency in humans is associated

with muscle pain (111). In addition, a deficit in mitochondrial

respiration may also indirectly contribute to pain

development. Genetic disruption of mETC complex IV

activity in mouse DRG neurons increased the adenosine

diphosphate (ADP)/ATP ratio due to impaired ATP

production. The relative increase in ADP induced mechanical

and thermal hypersensitivity through activation of purinergic

receptor P2Y1 expressed on sensory neurons afferents (49).

The oxygen consumption rate (OCR), a measure of

mitochondrial respiration, is reduced in lumbar DRG neurons

at the peak of transient carrageenan-induced inflammatory

pain, but is increased again when pain had resolved (25). In

CFA-induced persistent inflammatory pain, mass

spectrometry analysis identified that several proteins involved

in mETC are reduced, suggesting that mitochondrial

respiration in the DRG is affected in persistent inflammatory

pain (66). In the lumbar spinal cord, OxPhos is reduced in

rats with CFA-induced pain, or in mice after chronic

constriction induced nerve injury (65), indicating that deficits

in mitochondrial respiration may contribute to persistent

inflammatory pain and neuropathic pain, respectively.
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FIGURE 1

Overview of mitochondrial functions. Mitochondria are pleiotropic organelles with multiple functions. The most relevant ones are depicted in the
figure. Mitochondria produce ATP via oxidative phosphorylation (OxPhos), which involves the interaction between the mitochondrial electron
transport chain (mETC) and enzymes from the tricarboxylic acid (TCA) cycle. The mETC is the main source of mtROS, which are eliminated by
mitochondrial antioxidant enzymes like superoxide dismutase (SOD), peroxidase or glutathione. Ca2+ enters the mitochondria through the
mitochondrial Ca2+ uniporter (MCU) and is released through the Na+/Ca2+ exchanger (NCLX), or in case of Ca2+ overload in the mitochondrial
matrix through assembly of the mitochondrial permeability transition pore (mPTP). Increased mtROS production or mitochondrial Ca2+

concentration can trigger nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation
and/or binding of Parkin and PTEN-induced kinase 1 (PINK1) to mitochondria, which leads to the elimination of damaged mitochondria via
mitophagy. Quality control mechanisms, such as mitophagy, fusion, fission and biogenesis ensure a healthy and functional mitochondria pool.
Optic atrophy 1 (OPA1) and mitofusins1 and 2 (MFN1 or MFN2) allow mitochondria to merge (fusion), while dynamin-related protein (DRP1)
permits mitochondria to segment (fission). New mitochondria are produced through biogenesis, which is promoted by peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α). Decreased energy production detected by energy sensors sirtuin1 (SIRT1) and adenosine
monophosphate (AMP)-activated protein kinase (AMPK) will activate PGC-1α. Quality control mechanisms are highly dynamic and adapt to the
cells’ needs. Mitochondria are transported to the area where they are required. In neurons, mitochondria travel from the soma to the axons and
damaged mitochondria back to the soma. Anterograde transport of mitochondria is mediated by mitochondrial Rho GTPases (MIROs) and
kinesins, whilst retrograde transport is mediated by MIROs and dynein-dynactin complexes. Syntaphilin is an anchor protein that stabilizes
mitochondria in a fixed spot. Histone deacetylase 6 (HDAC6) indirectly reduces mitochondrial transport by deacetylation of the cytoskeletal α-
tubulin, a protein that facilitates dynein-dependent mitochondrial transport when acetylated. Figure created with BioRender.com.
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TABLE 1 Detailed overview of pre-clinical findings showing mitochondrial dysfunction in inflammatory and neuropathic pain models.

Mitochondrial
function

Protein/pathway affected Pathology Tissue/cell type Species References

Mitochondrial
respiration

↓ OxPhos Transient inflammatory pain
(carrageenan)

DRG neurons Mice (25)

↑ OxPhos and TCA cycle Transient inflammatory pain (PGE2) DRG neurons Mice (63)
↑ OxPhos Hyperalgesic priming

(PGE2 + carrageenan)
DRG neurons Mice (64)

↓ OxPhos Chronic inflammatory/RA pain
(CFA)

Spinal cord Rats (65)
↓ Expression of mETC related

proteins
DRG Mice (66)

↑ ATPSc-KMT expression DRG neurons Mice (46)

↓ ATP levels OA (meniscal destabilization) Chondrocytes Rabbits (67)
OA (spontaneous) Chondrocytes Hartley

guinea pigs
(68)

↓ OxPhos CCI induced neuropathic pain Spinal cord Mice (65)

Oxidative stress ↑ MtROS Transient inflammatory pain
(carrageenan)

Spinal cord Mice (69)

↑ MtROS SNL induced neuropathic pain Spinal cord neurons Rats (70)
Cisplatin induced CINP DRG neurons Mice (71)

Ca2+ buffering ↑ Intracellular Ca2+ Transient inflammatory pain
(carrageenan)

Brain neurons Rats (72)

↑ Evoked Ca2+ transients Chronic inflammatory/RA pain
(CFA)

DRG neurons Rats (73, 74)

↓ Mitochondrial Ca2+ storage
capacity

SNL induced neuropathic pain DRG neurons Rats (75)

↑ mPTP-mediated Cytochrome C
release

SNI induced neuropathic pain Spinal cord neurons Rats (76, 77)

↑ Mitochondrial Ca2+ uptake Paclitaxel induced CINP Skin innervating DRG neurons Rats (78)
↑ MCU-mediated mitochondrial

Ca2+ uptake
Painful diabetic neuropathy (high fat

diet)
DRG neurons Mice (79)

Mitophagy ↑ PINK1 and Parkin expression OA (MIA) Knee cartilage Rats (44)

↑ PINK1 expression SNL induced neuropathic pain Spinal cord neurons Rats (80)

Mitochondrial biogenesis ↓ AMPK activity, SIRT-1, PGC-
1α, TFAM, and NRF-2
expression

OA (medial meniscectomy,
spontaneous due to aging)

Chondrocytes Mice (81, 82)

Fusion/fission ↑ DRP1 expression and ↓ OPA1
expression

Chronic inflammatory/RA pain
(CFA)

Spinal cord Rats (83)

↑ DRP1 expression and ↓ OPA1
expression

CIBP (intramedullary injection of
mammary carcinoma cells in the

tibia)

Spinal cord Rats (84)

Mitochondrial transport ↑ HDAC6 activity Cisplatin induced CINP DRG neurons, tibial nerve Mice (85, 86)

NLRP3 inflammasome
activation

↑ NLRP3 and IL-1β expression Chronic inflammatory/RA pain
(CFA)

Spinal cord Mice (87)

↑ NLRP3 expression Experimental arthritis/RA pain (CIA) Synovial tissues Mice (88)

↑ NLRP3, Caspase-1, ASC, IL-1β,
IL-18 expression

OA (MIA) Synovial tissues, FLSs Rats (89, 90)

↑ NLRP3, Caspase-1, ASC
expression

OA (destabilization of the medial
meniscus)

Cartilage Rats (91)

↑ NLRP3, ASC, Caspase-1, IL-1β,
IL-18

CCI induced neuropathic pain Spinal cord astrocytes and
microglia, spinal cord, DRG, sciatic

nerves

Mice, rats (92–95)

↑ NLRP3, ASC, P-Caspase-1,
Caspase-1, IL-1β expression

SNL induced neuropathic pain Spinal cord Mice (96)

↑ NLRP3, ASC, IL-1β and IL-18
expression

CIBP (injection of mammary
carcinoma cells in the tibia)

Spinal cord neurons Rats (97)

↑ NLRP3 and ASC expression,
increased IL-1β release

Oxaliplatin induced CINP Spinal cord Rats (98)

↑ NLRP3 expression Bortezomib induced CINP DRG Rats (99)
↑ NLRP3 expression; caspase 1/IL-

1β activation
Paclitaxel induced CINP DRG macrophages; DRG and

sciatic nerve
Rats (100)

CFA, complete Freund’s adjuvant; CIA, collagen-induced arthritis; CIBP, cancer-induced bone pain; CINP, chemotherapy-induced neuropathic pain; DRG, dorsal root

ganglia; FLSs, fibroblast-like synoviocytes; MIA, monosodium iodoacetate; OA, osteoarthritis; RA, rheumatoid arthritis; SNI, spared nerve injury; SNL, spinal nerve

ligation. Light grey shading refers to findings in neuropathic models, very light blue in transient inflammatory pain, mid blue in RA and dark blue in OA.
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TABLE 2 Overview of mitochondrial dysfunction in patients with rheumatic disease.

Mitochondrial function Protein/pathway affected Pathology Tissue/cell type References

Mitochondrial respiration ↓ mETC activity and ATP levels OA Chondrocytes (101–103)
↑ Increased ATPSc-KMT expression OA Subchondral bone (104)
↓ Expression of mETC complexes RA,

Fibromyalgia
PBMCs (105–107)

↓ mETC activity and OxPhos Fibromyalgia Skin fibroblasts (108)
↓ Expression of OxPhos associated genes JIA Peripheral leukocytes (109)
↓ ATP levels SLE T lymphocytes (110)
Complex I deficiency Muscle Pain Skin fibroblasts, skeletal

muscle
(111)

Oxidative stress ↓ Expression of antioxidant molecules OA/RA/PsA Synovium/cartilage (51, 112–118)
↑ MtROS SLE PBMCs (119)
↑ MtROS Fibromyalgia Skin fibroblasts (108)
↑ MtROS PsA Blood monocytes (118)

Mitophagy ↑ PINK1 expression OA Chondrocytes (44)

Mitochondrial biogenesis ↓ AMPK activity, SIRT-1, PGC-1α, TFAM, and NRF-2
expression

OA Chondrocytes (81, 82)

↓ Expression of PGC-1α, TFAM, NRF1 Fibromyalgia PBMCs (105)

Fusion/fission ↑ DRP1 expression RA Synovial tissues and FLSs (120)

NLRP3 inflammasome
activation

↑ IL-1β production OA Synovial fluid (91)
↑ IL-1β and IL-18 production Fibromyalgia PBMCs, serum (105, 108)
↑ NLRP3 expression Neuropathic

pain
DRG neurons (121)

FLSs, fibroblast-like synoviocytes; JIA, juvenile idiopathic arthritis; OA, osteoarthritis; PBMCs, peripheral blood mononuclear cells; PsA, psoriatic arthritis; RA,

rheumatoid arthritis; SLE, systemic lupus erythematosus.

Silva Santos Ribeiro et al. 10.3389/fpain.2022.1013577
Dichloroacetate (DCA), which activates pyruvate

dehydrogenase through inhibiting pyruvate dehydrogenase

kinase, boosts the TCA cycle and OxPhos (130). The reversal

in mitochondrial respiration deficit induced by DCA in the

spinal cord reduced pain-associated behaviors in rats and

mice after CFA-induced inflammatory pain and chronic

construction induced nerve injury (65). In contrast, when

rotenone, a mETC complex I inhibitor that decreases

OxPhos, is injected at the site of inflammation, it decreased

CFA-induced mechanical hypersensitivity (66). Even though

these findings seem contradictory, they may be explained by

differential effects of modulating mitochondrial respiration at

peripheral nerves and at the spinal cord/DRG. Indeed,

preliminary data shows that intrathecal administration of

complex III inhibitor myxothiazol into the spinal cord/DRG

inhibited hyperalgesic priming, a form of latent nociceptor

plasticity, but not when myxothiazol was injected locally in

the inflamed paw (64). Moreover, intrathecal injection of

rotenone (complex I inhibitor) or antimycin (complex III

inhibitor) in naive mice generated persistent pain (129),

whilst rotenone decreased CFA-pain when injected into the

inflamed hind paw (66). To what extent these differences are

merely a difference between non-inflammatory and

inflammatory conditions remains to be determined.

Moreover these injections do not target only neurons, but

also various other cells such as skin cells, immune cells, glia,

and others. Thus, differences may depend on which cells are

targeted.
Frontiers in Pain Research 06
There is also evidence that a single inflammatory agent

changes mitochondrial activity in sensory neurons. As

example, the prototypic inflammatory prostaglandin E2
(PGE2) increased the TCA cycle and OxPhos through an

EPAC2 dependent pathway, contributing to acute

inflammatory pain (63). Another indication that

mitochondrial respiration may contribute to inflammatory

pain is that expression of ATPSc-KMT (also known as

FAM173B), a mitochondrial methyltransferase that promotes

OxPhos and mtROS production in neurons (131), is increased

in DRG neurons of mice with chronic inflammatory pain.

Knockdown of ATPSc-KMT in the lumbar DRG during the

established chronic inflammatory pain attenuated

hyperalgesia. Conversely, expression of ATPSc-KMT in

sensory neurons of mice with transient inflammatory pain

caused persistent pain (46). These findings may be relevant to

rheumatic pain patients because a genetic polymorphism

downstream of the ATPSc-KMT gene is linked to joint-

specific chronic widespread pain (132). Moreover, ATPSc-

KMT expression is increased in the subchondral bone of OA

patients and is negatively correlated with pressure pain

sensitivity (104). The cells in which ATPs-KMT expression is

increased remain to be determined. Nerve cells may be

possible candidates, because innervation is increased in the

subchondral bone of OA patients (32), but nerve cells are still

much less abundant than joint cells in this case.

Hyperalgesic priming triggered by peripheral inflammation

affects the plasticity of sensory neurons, by augmenting mRNA
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translation and causing a switch from cyclic adenosine

monophosphate (cAMP) to protein kinase C ϵ (PKCϵ-

dependent signaling, following a subsequent inflammatory

stimulus that acts on G-protein-coupled receptors (GPCRs)

(30, 133). Hyperalgesic priming requires the activity of mETC

complexes and various mitochondrial proteins are targets of

PKCϵ-dependent signaling (134, 135), pointing to a role of

mitochondria in hyperalgesic priming. Activated PKCϵ

promotes the opening of mitochondrial ATP-dependent K+

channels (mitoKATP) and increases OxPhos (136, 137).

Moreover, preliminary data suggest that hyperalgesic priming

increased OxPhos in DRG sensory neurons (64).

Overall, inflammatory mediators alter mitochondrial

respiration in neurons. Based on current evidence, some

inflammatory agents promote mitochondrial respiration,

whilst others reduce it. Possibly, the effect differs depending

on the time point after the administration of the

inflammatory agent (25). Nevertheless, current data show that

both increased and decreased OxPhos result in pain. The

question remains why both reduced and increased OxPhos

may contribute to pain? Possibly, impaired OxPhos reduces

ATP production, which could affect the stability of the

membrane potential and disturb neuronal excitability (45,

138). In contrast, increased OxPhos may come at the costs of

more production of mtROS as a byproduct of mETC, leading

to hyperexcitability, as will be discussed in the next section.

Further research will need to contemplate how exactly

mitochondrial respiration is linked to sensory neuron function.
Oxidative stress

Mitochondria generate approximately 90% of cellular ROS

(139). MtROS production damages mitochondria in a range

of pathologies, including neuropathies (45), and is important

in redox signaling (140). Superoxide (O2
−) is the proximal

mtROS, mainly released at the mETC during OxPhos.

Complex I and Complex III are the major sources of mtROS,

and complex II to a lesser extent. Although the mETC is the

main source of ROS, several other matrix proteins and

complexes, like TCA cycle enzymes (e.g., pyruvate

dehydrogenase), or some inner mitochondrial membrane

proteins whose activity is partially dependent on

mitochondrial membrane potential, also produce ROS.

Approximately 0.2%–2.0% of the oxygen consumed by

mitochondria is reduced to O2
−, which is subsequently converted

to other ROS, such as hydrogen peroxide (H2O2) and hydroxyl

ions (OH−) (140, 141). An imbalance between mtROS

production and its removal, either due to ROS overproduction

and/or decreased antioxidants defense, causes oxidative stress

(139, 142). Neurons, like all other mammalian cells, have

antioxidant enzyme systems, such as superoxide dismutase,

peroxidases or catalases, which scavenge mtROS when they are
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generated. Despite contributing to pathology, mtROS also act as

signaling molecules, to ensure quality control and maintenance

of functional cells, and regulate a variety of physiological

processes, such neuronal differentiation, synaptic pruning, and

neurotransmission (143, 144). A disturbed mETC is one of the

major drivers of mtROS (139), but also decreased mitochondrial

membrane potential, disrupted mitochondrial Ca2+ buffering,

altered mitochondrial morphology, or cellular stress in general

augment mtROS production, which disrupts the redox balance

and causes oxidative stress that negatively affects neuron

function (143, 145).

Neurons are more likely to suffer from mtROS-induced

oxidative stress compared to other cell types, because of their

large energy consumption, mainly supported through OxPhos.

Moreover, neurons have a high content of unsaturated fatty

acids and proteins that are vulnerable to oxidation (146). A

disrupted redox balance has detrimental consequences for

neuronal functioning (139, 141, 147). As an example,

mutations in superoxide dismutase (Cu-Zn), also known as

superoxide dismutase 1 (SOD1), cause motor neuron

degeneration in amyotrophic lateral sclerosis patients (125,

148), of which 60% develop pain (149). Antimycin A (mETC

complex III inhibitor) induces mtROS, which activates TRPA1

receptor and increases the excitability of sensory neurons

(150–152). Similarly, treatment of spinal cord neurons with

ROS donors augmented their excitability and intrathecal

administration of these ROS donors induced mechanical

hypersensitivity in rats (153). Increased ROS production in

the spinal cord also promoted pain through reducing firing of

spinal inhibitory neurons. In contrast, others have found that

ROS increase the activity of a different subset of inhibitory

neurons (154, 155). Although some studies have shown

decreased activity, in general, ROS appears to increase

neuronal excitability and promote pain.

Both inflammatory and neuropathic pain are associated with

increased ROS production in the peripheral and central nervous

system. In mice, intraplantar capsaicin administration induced

mtROS in spinal cord neurons. Overexpression of the anti-

oxidant mitochondrial manganese dependent superoxide

dismutase (MnSOD), also called SOD2, prevented capsaicin-

induced hyperalgesia, indicating requirement of mtROS for

hyperalgesia development (69). Importantly, rare variants

present in mETC genes that are major sites of mtROS

formation, are associated with the severity of erosive RA (156).

Accordingly, increased mtDNA mutations, often a consequence

of mtROS, are found in RA and PsA patients (157). These

mtDNA mutations affect mitochondrial function and further

promote mtROS production (144, 158). Even though these

mutations were identified in synoviocytes, similar mutations

may occur in sensory neurons innervating chronically inflamed

tissues. Indeed, inflammation triggers mtROS production

causing mutations in mtDNA in neurons (146). A role for

mtROS in pain is further substantiated by findings that
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overexpression of mitochondrial ATPSc-KMT induced mtROS

formation in DRG neurons and prolonged inflammatory pain.

The antioxidant phenyl-N-t-butylnitrone (PBN) or the

mitochondria-targeted antioxidant mitoTEMPOL reversed the

persistent pain induced by ATPSc-KMT overexpression (46, 64).

Various other studies showed that antioxidants (e.g., resveratrol)

reduced pain in rodent models of OA and neuropathic pain

(159–162). Overall, these data indicate that ROS, likely

mitochondrial derived, contributes to inflammatory pain.

There is even more evidence for a role of mtROS in

neuropathic pain. In spinal dorsal horn neurons, mtROS is

increased in rats 1 week after spinal nerve ligation (70).

SOD2-like antioxidants reduced mechanical and heat

hyperalgesia induced by spinal nerve ligation or chronic

constriction injury in rats (163, 164). Chemotherapeutic

agents, such as cisplatin and oxaliplatin, cause nerve damage

and pain through mitochondrial dysfunction, due to increased

mtROS production and decreased antioxidant protection (58,

71, 144, 158, 165, 166). Intraperitoneal administration of

mitochondria specific (SS-31, TEMPOL, or a SOD2 mimetic)

or unspecific antioxidants (PBN, pioglitazone) reduced ROS

production and attenuated pain in chemotherapy-induced

neuropathy models (45, 47, 48, 71), showing that mtROS

production is a driver of neuronal dysfunction and pain.

Although direct evidence for a contribution of mtROS in the

nervous system for pain in rheumatic disease is still lacking,

findings in neuropathic pain and inflammatory pain models

suggest that oxidative stress induced by mitochondrial

dysfunction may contribute to pain by increasing neuronal

excitability.
Ca2+ buffering

The endoplasmic reticulum and mitochondria are the two

major intracellular Ca2+ storages (167). In neurons,

mitochondria take up Ca2+ into the mitochondrial matrix

through the mitochondrial Ca2+ uniporter (MCU) complex

(55, 167–169). The MCU is Ca2+-sensitive and opens by

elevated cytosolic Ca2+, allowing Ca2+ to flow into the matrix.

Mitochondria release Ca2+ primarily by the Na+/Ca2+

exchanger (NCLX) (170). The maximal rate of release is

much lower than the maximal uptake rate. Therefore, under

conditions of continuous high cytosolic Ca2+, e.g., due to

continuous firing of neurons, mitochondrial Ca2+

accumulates. Mitochondria have an enormous capacity to

accumulate and store Ca2+. In resting neurons, total

mitochondrial Ca2+ is approximately 100 μM and free

mitochondrial Ca2+ only 0.1 μM (171). These concentrations

steeply increase when neurons are active and mitochondria

start accumulating Ca2+ (172). In extreme conditions,

mitochondrial Ca2+ reaches a concentration of up to 1,500

μM (173). In case of mitochondrial Ca2+ overload, the
Frontiers in Pain Research 08
mitochondrial permeability transition pore (mPTP) is formed,

which releases Ca2+ and other molecules, such as Cytochrome

C, into the cytosol, inducing apoptosis. This pore has been

mainly studied under pathological conditions, and several core

components like ATP synthase, cyclophilin D, and the

adenine nucleotide translocators are thought to be involved

(123, 167, 174).

Only a relatively small fraction of Ca2+ is handled by

mitochondria during physiological cytosolic Ca2+ signals.

Nevertheless, mitochondrial Ca2+ influx and efflux play a

role in the spatiotemporal organization of the cytosolic Ca2+

signals (175), which regulates activity-dependent signaling

and neuronal excitability in nociceptors, thus is important

to prevent aberrant signaling and pain (176). A rise in

mitochondrial matrix Ca2+ stimulates OxPhos-mediated

ATP and mtROS production, regulates organelle dynamics

and trafficking, and modulates neurotransmitter release,

synaptic transmission, and excitability. Mitochondria are a

major regulator of Ca2+ signaling at the first sensory

synapse (39, 76, 174, 177, 178). Moreover, mitochondrial

Ca2+ mediates signaling to the nucleus and the release of

death signals, in case of very high Ca2+ (39, 75, 76, 174,

177, 179–181).

Inflammatory stimuli can lead to a rise in cytosolic Ca2+ in

sensory neurons, which facilitates the release of

neurotransmitters, excitability, and pain (39, 76, 177, 181).

Studies showed that inflammatory cytokines increase

spontaneous Ca2+ oscillations in organotypic spinal cord slices

(182). Intraplantar carrageenan or CFA injection in rats

increased intracellular Ca2+ in brain neurons or increased

evoked Ca2+ transients in DRG neurons, respectively (72–74).

These studies show that cytosolic Ca2+ is regulated by

inflammation, yet direct evidence that mitochondrial Ca2+ is

affected during inflammatory pain is lacking. Because

mitochondrial and cytosolic Ca2+ are interdependent, the data

may suggest a potential involvement of mitochondrial Ca2+ in

inflammatory pain.

Nerve damage causes disturbed mitochondrial Ca2+

buffering (180). For example, spinal nerve ligation in rats

reduced mitochondrial Ca2+ storage capacity in lumbar DRG

neurons (75). Rats with chemotherapy-induced neuropathic

pain have a decreased duration of depolarization-evoked Ca2+

transient, which is partially mediated by an augmented

mitochondrial Ca2+ uptake and increased mitochondrial

volume (78). In vitro studies showed that the

chemotherapeutic drug paclitaxel induces the formation of

mPTP and promotes the release of mitochondrial Ca2+,

contributing to sensory neuron hyperexcitability and cell

death (76). The chemotherapeutic drugs cisplatin and

oxaliplatin increased cytosolic Ca2+ concentration and

depolarization-evoked Ca2+ transients in cultured sensory

neurons (71, 165). Taken together, different insults disturb

distinctive aspects of mitochondrial Ca2+ buffering.
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Does modulating mitochondrial Ca2+ buffering affect

neuronal excitability and pain? The noxious heat-activated

receptor TRPV1 conducts Ca2+ and Na+, producing a

depolarizing receptor potential that activates nociceptors.

Knockdown of NCLX in DRG neurons decreased

mitochondrial Ca2+ release, reduced capsaicin-induced TRPV1

activation and neuronal firing (183), indicating that

mitochondrial Ca2+ buffering is important for neurons’ ability

to respond to pungent reagents. Blocking MCU, with an

intrathecal injection of a MCU inhibitor, prevents

mitochondrial Ca2+ uptake in spinal cord neurons and

diminished capsaicin-induced neuron hyperexcitability and

pain in mice (184). Mechanistically, by regulating cytosolic

and mitochondrial ionic transients, NLCX and MCU

modulate Ca2+-dependent desensitization of TRPV1 channels,

thereby controlling nociceptive signaling (183). Oxaliplatin

increases cytosolic Ca2+ by increasing the expression of non-

selective cation channel TRPV1 in DRG neurons, thus

increasing sensory neurons’ excitability. Silencing or blocking

TRPV1 reduced both oxaliplatin and paclitaxel induced

neuropathic pain (185–188), which is indirect evidence that

mitochondrial Ca2+ buffering is also involved in

chemotherapy-induced neuropathic pain. A role for MCU in

mechanical allodynia has been found in mice with painful

diabetic neuropathy. Selective knockdown of the MCU in

Nav1.8-positive DRG neurons resolved mechanical allodynia

in diabetic mice (79). Likewise, blocking mPTP through

intraperitoneal injection of cyclosporine A reversed spared

nerve injury-induced allodynia in rats, by reducing

Cytochrome C release and loss in activity of spinal cord

GABAergic inhibitory neurons (76, 77).

Mitochondrial Ca2+ buffering also plays a role in spinal

synaptic plasticity (184). Inhibition of spinal mitochondrial

Ca2+ uptake in mice, using different pharmacological

strategies, blocked N-methyl D-aspartate (NMDA)-induced

activation of downstream protein kinases that mediate spinal

synaptic plasticity, and reduced induction of long term

potentiation, a process that increases synaptic strength in the

dorsal horn of the spinal cord and contributes to chronic

pain. Importantly, inhibition of mitochondrial Ca2+ uptake in

the spinal cord prevented animals from developing

mechanical hyperalgesia in response to intrathecal NMDA or

intradermal capsaicin injection (184).
Mitochondrial mediated NLRP3
inflammasome activation

Inflammasomes are intracellular multiproteic complexes,

composed of a sensor protein that oligomerizes, in order to

recruit caspase-1. MtROS production is a main trigger of

nucleotide-binding oligomerization domain-like receptor pyrin

domain containing 3 (NLRP3) inflammasome activation (189,
Frontiers in Pain Research 09
190). MtROS causes translocation of the inner mitochondrial

membrane protein cardiolipin to the outer mitochondrial

membrane, where cardiolipin serves as a docking place for

caspase-1 and NLRP3. Subsequently, the adaptor apoptosis-

associated speck-like protein containing a CARD (ASC) binds

both NLRP3 and caspase-1, activating the inflammasome to

initiate caspase-1-mediated cleavage of pro-IL-1β and pro-IL-18

into their active mature form (189). Mitochondria can also

sustain NLRP3 inflammasome activation via generation of ATP

(191) and disturbed Ca2+ signaling (189, 190). While NLRP3

inflammasome activation is classically thought to occur in

immune cells, such as macrophages, it has also been detected

in neurons (97, 192). Moreover, NLRP3 expression is increased

in the DRG neurons of patients with neuropathic pain in

comparison with controls with no pain (121). Neuronal NLRP3

inflammasome activation likely contributes to neuro-

inflammation and neurodegeneration, as it has been detected in

brain neurons in Parkinson’s and Huntington’s disease (193–

195). It is not known whether NLRP3 inflammasome activation

interferes directly with neuronal functioning.

In the context of rheumatic diseases, mitochondrial

dysfunction (e.g., increased mtROS, disturbed OxPhos or Ca2+

uptake) may trigger NLRP3 inflammasome activation in the

nervous system, affecting sensory processing. For example, in

the CFA-induced chronic inflammatory pain, the compound

muscone, which diminishes ROS production, prevented the

loss of mitochondrial membrane potential and Ca2+ influx.

Moreover, it blocked the CFA-induced increase in spinal cord

NLRP3 and IL-1β expression and hyperalgesia (87, 196).

Importantly, the downstream product of inflammasome

activation, IL-1β, induces firing of nociceptors and mediates

CFA-induced pain (189, 197, 198), suggesting a putative role

for NLRP3 inflammasome activation in inflammatory pain.

Although studies about the role of NLRP3 inflammasome in

the nervous system in inflammatory pain models are still scarce,

various findings suggest the involvement of this pathway in

other types of pain. Intraperitoneal or intrathecal

administration of MCC950, a specific NLRP3 inflammasome

inhibitor, alleviated mechanical allodynia, and decreased IL-1β

and IL-18 release in the lumbar dorsal spinal cord in cancer-

induced bone pain and oxaliplatin-induced neuropathy,

respectively (97, 98). In the cancer-induced bone pain model,

IL-1β and IL-18 were detected predominantly in neurons (97).

Suppressing NLRP3 inflammasome activation with different

microRNAs, reduced NLRP3 inflammasome activation in the

sciatic nerve, spinal astrocytes and microglia, while

concurrently attenuating mechanical allodynia after chronic

constriction injury in mice and rats (92–96). The

chemotherapeutic drug bortezomib, which disrupts

mitochondrial Ca2+ buffering and promotes mtROS

production in neurons, increased NLRP3 expression in the

DRG (138). Silencing NLRP3 in the DRG prevented the

development of bortezomib-induced neuropathic pain in mice
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and rats (99). Treatment with a ROS scavenger decreased

paclitaxel-induced mechanical allodynia and reduced NLRP3

expression in DRG macrophages and caspase 1/IL-1β

activation in lumbar DRG and sciatic nerve (100). These

studies indicate that nerve damage and inflammation may

lead to inflammasome activation in the nervous system,

although the majority of these studies did not identify in

which cells the inflammasome was activated. Given that nerve

damage and inflammation promote mtROS production in

neurons, it is possible that mtROS triggers inflammasome

activation in neurons and contributes to pain.
Quality control mechanisms

Mitochondria are highly dynamic organelles and have

several quality control pathways in order to maintain their

integrity. A controlled balance between mitophagy and

mitochondrial biogenesis guarantees optimal mitochondrial

turnover. Mitochondrial dynamics involve continuous fission

and fusion forming a dynamic network to maintain their

content, morphology and quality (145, 199).

Mitophagy and mitochondrial biogenesis
Damaged mitochondria are selectively degraded by auto-

phagosomes engulfment, followed by lysosomal degradation, a

controlled process called mitophagy. Mitophagy involves

PTEN-induced kinase 1 (PINK1), which binds the surface of

depolarized and damaged mitochondria and to recruit Parkin

and trigger mitochondrial aggregation, engulfment, and

digestion by lysosomes (44). The production of new

functional mitochondria, mitochondrial biogenesis, is mainly

driven by peroxisome proliferator-activated receptor-gamma

coactivator-1α (PGC-1α). Increased AMP/ATP and ADP/ATP

ratios activate the energy sensor AMPK, which activates PGC-

1α by phosphorylation. An increase in the NAD+/NADH

ratio triggers PGC-1α activation via sirtuin1 (SIRT1)-

mediated deacetylation. Thus, mitochondrial biogenesis is

highly influenced by the cellular energy state and redox

balance. PGC-1α promotes mtDNA replication and the

expression of mitochondrial genes, such as transcription

nuclear factors (NRF-1 and NRF-2), which prompt the

expression of mitochondrial transcription factor A (TFAM)

and mETC complexes subunits (200). Dysfunctional

mitophagy or defective mitochondrial biogenesis results in an

overall less efficient mitochondrial pool with impaired ATP

production and increased mtROS production, which

ultimately may affect sensory processing (201).

Some studies suggest a link between dysfunctional

mitophagy and pain. Following spinal nerve ligation, PINK1

expression is increased in inhibitory GABAergic interneurons,

suggesting increased mitophagy in these spinal cord neurons

(80). Pink1-KO mice have normal responses to mechanical
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stimuli, but develop less mechanical allodynia after

monosodium iodoacetate (MIA)-induced OA or after spinal

nerve ligation (44, 80). Morover, Pink1-KO mice developed

less spontaneous pain in the second inflammatory phase of

formalin-induced pain (202). These data suggest that PINK1/

Parkin-mediated mitophagy is required for development of

inflammatory, osteoarthritis and neuropathic pain. But why

does reducing mitophagy alleviate pain? One could expect

that diminished mitophagy would increase the pool of

damaged mitochondria, increase mtROS production and

enhance neuronal excitability (145). However, in chronic pain

states, if the rate of mitophagy is increased whilst not being in

balance with the rate of biogenesis, there is an overall

depletion of mitochondria. In Pink1-KO mice this balance

may be restored due to diminished mitophagy (201). Indeed,

in conditions such as ischemic stroke, diabetes or autosomal

dominant optic atrophy, insufficient biogenesis and excessive

mitophagy diminished the number of mitochondria in

neurons leading to cell death (203–205). Similarly, decreased

mitochondrial biogenesis reduced the total pool of

mitochondria in brain neurons in Parkinson’s and

Alzheimer’s disease leading to neuro-inflammation and

-degeneration (55, 206, 207).

Some indirect evidence suggests mitochondrial biogenesis is

impaired in several pain conditions, because AMPK activation,

an essential driver for mitochondrial biogenesis, has an

analgesic effect. Local or systemic AMPK activation with

various pharmacological compounds reduced formalin,

zymosan (208), and CFA-induced inflammatory pain in mice

(198, 208). Intrathecal AMPK activation reduced oxaliplatin-

induced neuropathy (209), cancer-induced bone pain (210),

and painful diabetic neuropathy (211). In addition, systemic

AMPK activation using metformin or resveratrol attenuated

spinal nerve ligation induced pain (212), post-surgical pain

(213, 214), paclitaxel-induced neuropathy (215, 216), and

plantar incision-induced hyperalgesic priming (214–216).

Notably, AMPK activation reduced the excitability of sensory

neurons (209, 212, 217). Unfortunately, effects on

mitochondria were not assessed in these studies. Thus, further

research is required to confirm that mitochondrial biogenesis

is at the root of the analgesic properties of AMPK activation.

Fusion and fission
Adjacent mitochondria can merge, a process called fusion,

permitting mixture of mitochondrial content. Conversely,

fission is when mitochondria constrict and segment. The

GTPases mitofusins1 and 2 (MFN1, MFN2) and optic

atrophy 1 (OPA1) induce intermembrane fusion, whilst

dynamin-related protein (DRP1) drives mitochondrial fission

(84, 218). The fission/fusion ratio controls mitochondria’s

morphology, size and number (219). Damaged mitochondria

can undergo fusion, to create a more interconnected and

complementary mitochondrial network to reduce cellular
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stress. Fission is required for mitochondrial biogenesis and

promotes mitophagy in case of cellular stress (220). These

dynamics are essential for local mitochondrial quality control,

which is particularly important in neurons due to their long

axons. Excessive fission results in fragmented mitochondria,

impaired energy production, and disrupted mitochondrial

homeostasis. Fusion, on the other hand, promotes a more

efficient and interconnected mitochondrial network (219,

220). Most evidence for a role of these dynamics in neuronal

functioning comes from studies in brain neurons. Increased

fission diminishes dendritic and axonal branching and

contributes to neurodegeneration in an ischemic stroke model

(124, 221). Accordingly, inhibition of DRP1 prevents

mitochondrial dysfunction, improves neuronal survival and

axonal integrity (55, 145, 221, 222). Finally, depletion of

DRP1 reduces neurotoxic Aβ oligomers-induced fission and

improves mitochondrial health and synaptic activity in

cortical neurons, in a mouse model of Alzheimer disease (39,

223). Altogether, excessive fission appears detrimental for

neuronal functioning, whilst reducing fission is neuroprotective.

To what extent the balance between fission and fusion

controls sensory neuron function has not been extensively

explored. Silencing DRP1 or pharmacologically blocking its

activity in the spinal cord and in the DRG decreased HIV/

AIDS- and chemotherapy-induced neuropathic pain (224).

Likewise, intrathecal administration of 2-bromopalmitate, an

inhibitor of protein palmitoylation, decreased DRP1 and

increased OPA1 expression in spinal cord astrocytes,

inhibiting fission and promoting fusion, respectively.

Restoring the balance in fission/fusion reduced CFA-induced

inflammatory pain and cancer-induced bone pain (83, 84,

225, 226). Intrathecal administration of SRT1720, a SIRT1

agonist, increases SIRT1-mediated mitochondrial biogenesis

and decreased spinal cord DRP1 expression, which was

associated with a reduction in cancer-induced bone pain and

chronic construction injury-induced neuropathic pain (218,

227). The reduction in mitochondrial Ca2+ influx in diabetic

mice, with a nociceptor-specific deletion of MCU, prevented

mitochondrial fragmentation due to excessive fission in DRG

neurons, nerve degeneration, and pain (79). Additionally,

intrathecal injection of resveratrol to reduce spinal cord

oxidative stress, decreased spinal DRP1 activity and reversed

cancer-induced bone pain in rats (159). These data clearly

show that mitochondrial dynamics are linked to various other

mitochondrial functions and to sensory processing.

Inflammation disturbs OxPhos, promotes oxidative stress and

Ca2+ influx into the mitochondria via MCU. All these

processes can induce mitochondrial fission (127, 128, 182,

228). As such, inflammation is more likely to induce

mitochondrial fission rather than fusion (229), but future

research is needed to fully understand how fission and fusion

contribute to pain in rheumatic disease.
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Mitochondrial transport

Mitochondrial biogenesis occurs close to the nucleus, since

the majority of mitochondrial proteins are encoded by the

nuclear genome. In neurons, mitochondria are mainly made

in the soma, therefore mitochondria have to be transported to

the dendrites and axonal terminals (230). Some studies

identified that mitochondrial biogenesis also occurs to some

extent in the axons, but the mechanisms are not completely

clear (200). Motor proteins from the kinesin family mediate

anterograde transport of new mitochondria from the soma to

the axons, whilst motor proteins that form a dynein-dynactin

complex mediate retrograde transport towards the soma (199,

230). Motor proteins interact with the microtubule network

and mitochondrial Rho GTPases (MIROs) to regulate

mitochondrial motility for both anterograde and retrograde

transport (231).

Neuron-specific knockdown of Miro1 in mice depletes

mitochondria in dendrites and diminishes neuron survival,

highlighting the importance of mitochondrial motility for

neuronal homeostasis (232). Impairing mitochondrial

transport by decreasing the activity of motor proteins in

cervical ganglion neurons diminished the number of axonal

and dendritic mitochondria, which was associated with

synaptic dysfunction that limited neurotransmission and

neuroplasticity (231). Restoring the diminished local ATP

pool that was affected by the impaired transport, reestablished

these parameters, indicating that mitochondrial transport is

essential to maintain sufficient ATP levels throughout neurons

(233). Enhancing mitochondrial transport in adult murine

DRG or cortical neurons by knockdown of syntaphilin, an

anchoring protein that keeps mitochondria static, improved

axonal regrowth and normalized cellular ATP/ADP ratio after

axotomy (233, 234). Inflammation in the peripheral nervous

system, induced by experimental autoimmune neuritis,

reduced retro- and anterograde transport of mitochondria in

nerves (126), indicating that inflammation reduces

mitochondrial transport. Similarly, exposure of murine brain

slices to lipopolysacharide (LPS) reduced retrograde transport

(235). Thus, efficient mitochondrial transport is a requirement

for effective energy production and synaptic transmission in

neurons. Inflammation can reduce this mitochondrial

transport through axons, thereby affecting the local ATP pool.

Histone deacetylase 6 (HDAC6) deacetylates the

cytoskeletal protein α-tubulin, limiting mitochondrial

transport and distribution in neurons. Systemic administration

of HDAC6 inhibitors decreased inflammation-induced

mechanical hypersensitivity in CFA- and collagen-induced

arthritis models (236, 237), and neuropathic pain models

(236, 238). Pharmacological inhibition of HDAC6 also

decreased LPS-induced neuronal loss and pro-inflammatory

cytokines production in the brain, demonstrating a
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neuroprotective effect of improving mitochondrial transport

(239, 240). Cognitive impairment and neuro-inflammation

(microgliosis, production of TNF and IL-1β) in the spinal

cord/brain in neuropathic pain models are reversed by

HDAC6 inhibition (236, 238). In line with the previous

results, oral administration of HDAC6 inhibitors, Hdac6

knockout, or cell-specific deletion of Hdac6 in advillin-

positive sensory neurons, promoted mitochondrial transport

in sensory neurons, attenuated mechanical hyperalgesia, and

spontaneous pain in chemotherapy-induced neuropathy (85,

86). HDAC6 inhibition reestablished OCR in lumbar DRG

neurons and the tibial nerve of cisplatin-treated mice to the

values of control animals (85, 86), indicating mitochondrial

transport in neurons is essential to ensure sufficient OxPhos

when damaged by neurotoxic agents. Currently, oral

administration of ACY-1215 (Ricolinostat, HDAC6 inhibitor)

is being assessed in patients suffering from painful diabetic

peripheral neuropathy (clinical trial NCT03176472). A

selective HDAC6 inhibitor reduced the inflammatory

phenotype of immune cells from RA patients in vitro and

pre-clinical studies show an analgesic effect of this approach

in RA models (236, 237, 241). Thus facilitating mitochondrial

transport through HDAC6 inhibitors may be a promising

approach to relieve rheumatic pain.
Non-neuronal mitochondrial
alterations as cause of pain in
rheumatic diseases

Mitochondrial defects in non-neuronal cells may also

contribute to changes in sensory processing. Neuro-

inflammation contributes to inflammatory and neuropathic

pain (65, 92, 95, 210, 238, 242, 243). Mitochondrial

dysfunction is a driver of neuro-inflammation and neuronal

damage in neurodegenerative diseases (34, 229). Impaired

mitochondrial function, such as disturbed Ca2+ buffering or

increased oxidative stress, in neurons may result in the

intracellular release of mitochondrial components, such as

mitochondrial DNA, mtROS or Cytochrome C. When

extracellular, these components act as damage-associated

molecular patterns (DAMPs) that can trigger an inflammatory

response and engage spinal microglia or DRG macrophages

(34). On the other hand, inflammatory mediators released by

the immune cells can contribute to mitochondrial

dysfunction, further promoting neuro-inflammation (34, 229).

Tissue damage and inflammatory processes in rheumatic

joints induce mitochondrial alterations in cells of the joint,

such as chondrocytes and synoviocytes. These mitochondrial

defects may promote the release of inflammatory mediators

that regulate neuronal activity and pain.
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Mitochondrial respiration, oxidative stress
and senescence

In several models of rheumatic diseases and in rheumatic

patients, mitochondrial respiration is reduced in cells of the

joint. As an example, chondrocytes of rabbits and guinea

pigs with experimental OA, have an impaired mitochondrial

respiration, reduced intracellular ATP levels, and a rise in

the lactate/pyruvate ratio (67, 68). These differences

worsened during the progression of cartilage damage (68).

Similarly, chondrocytes collected from OA patients have

decreased activity of mETC complexes and reduced ATP

levels compared to control patients, which correlated with

an increase in the number of apoptotic chondrocytes (101–

103). Apoptotic chondrocytes release substances that can

activate receptors on sensory neurons and elicit pain (244).

Increased formation of oxidative metabolites (e.g., H2O2)

and decreased expression of endogenous antioxidant

molecules (e.g., SOD2, peroxidase) are found in the knee

(synovium and cartilage) in pre-clinical rheumatic disease

models (112, 245), and in humans with OA (112–116), RA

(51, 115, 117) and PsA (118). In RA, an imbalance between

oxidants and antioxidants leads to mitochondrial oxidative

stress in synoviocytes, which triggers activation of

transcription factor NF-κB and subsequent release of

inflammatory mediators, such as IL-8 or PGE2 (246), that

can activate receptors on sensory neurons to induce pain

(247, 248). MtROS is important in this process, because

mitoTEMPOL, a mitochondrial specific ROS scavenger,

reduced the release of inflammatory mediators by human

synoviocytes (246).

Oxidative stress can also induce apoptosis of chondrocytes via

reduction in the expression of FOXO3, a transcription factor

upstream of various antioxidant genes, such as SOD2 (248,

249). Intra-articular or oral treatment with antioxidants, such as

amobarbital, N-acetylcysteine (NAC), resveratrol or methylene

blue have analgesic effects in different species (mice, rat,

porcine) with OA (250, 251) and CFA-induced joint

inflammation (160). Similarly, a specific mitochondrial targeted-

antioxidant, plastoquinonyl-decyl-triphenylphosphonium

bromide (SkQ1), reduced bone destruction and cartilage

damage in OA mice (252). Chondrocytes damage may lead to

the release of neurotrophin NGF by immune cells, which

activates its high-affinity receptor TrkA on neurons and induces

expression of a variety of ion channels (e.g., TRPV1, voltage

gated sodium channels) and pain (253, 254).

Increased ROS production is a feature of senescence cells, i.e.,

cells that have entered a non-proliferative state. Cellular

senescence is accompanied by a distinct secretory phenotype,

senescence-associated secretory phenotype (SASP), which

includes a variety of secreted proteins, cytokines and

chemokines that can drive chronic inflammation (255, 256).
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Recently, cellular senescence has been identified in nervous tissue

in mice with long-lasting (>4 months) neuropathic pain.

Intriguingly, p53-mediated senescence drove neuropathic pain

specifically in male, but not female mice. Moreover, a

mutation in the P53 gene is associated with chronic pain in

men (256). In mice with experimental OA, the number of

senescent cells in the cartilage is increased. Selective

elimination of these cells, either genetically or

pharmacologically by intra-articular administration of a

senolytic, reduced pain-associated behavior and enhanced

cartilage reconstruction (257). Similarly, blocking p53-

mediated senescence or removing senescent cells reversed

neuropathic pain, by reducing the expression of SASP

effectors (e.g., p53, IL-1β, IL-6) (256, 258). These results

indicate a potential role of mitochondria-driven cellular

senescence in pain.
Mitochondrial mediated NLRP3
inflammasome activation

NLRP3 inflammasome activation has been linked to

amplified inflammatory cytokine signaling in senescent cells

(259, 260). The expression of NLRP3 inflammasome related

molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18) is increased

in the synovial tissue of collagen-induced arthritis (CIA) mice

(88, 192, 261) and MIA-induced OA rats (89, 90).

Intraperitoneal administration of the specific NLRP3 inhibitor

MCC950, or blocking IL-18, diminished synovial

inflammation and cartilage damage in RA. Moreover,

pharmacological inhibition of the inflammasome products IL-

1β or IL-18 attenuates RA or neuropathic pain (262, 263).

Additionally, administration of NLRP3 inflammasome

inhibitors reversed NLRP3 activation in FLSs and relieved

OA-induced pain (89, 90). Moreover, indirect regulation of

the inflammasome, by downregulating microRNA miR-30b-5p

in the joint, attenuated the increase in NLRP3, ASC, and

cleaved caspase-1 in joints, and decreased cartilage damage

and pain in OA rats (91). In the joint tissue of OA patients,

miR-30b-5p is elevated compared to healthy controls and its

expression correlates with disease severity and levels of IL-1β

in the synovial fluid (91), suggesting a putative role of

inflammasome activation in OA patients. However, it remains

unclear if inflammasome activation also mediates pain in this

rheumatic disease in humans, as pain-associated outcomes

were not investigated in this study.

Interestingly, the expression of translocator protein (TSPO),

found in the outer mitochondrial membrane, is increased in the

synovial membrane of OA patients and its expression levels

correlated with lower pain intensity (104). Although TSPO

has been commonly used as a target for PET imaging to
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assess neuro-inflammation and microglia/macrophage

activation (264), it is a mitochondrial protein that has also

been linked to mitochondrial bioenergetics. Knockout of

TSPO in human microglia cell lines reduced OxPhos and

ATP production. In addition, TSPO ligands in in vivo models

prevented mitochondrial membrane depolarization, mPTP

formation and NLRP3 inflammasome activation (265, 266),

suggesting TSPO activity may indirectly affect some

mitochondrial functions. Thus, the TSPO correlation with

lower pain intensity may potentially link to overall better

mitochondrial performance.
Quality control mechanisms

Mitochondrial quality control mechanisms are essential to

maintain cellular homeostasis and prevent the production of

inflammatory cytokines. Intra-articular MIA administration,

to induce experimental OA in rats, increased the expression

of PINK1 and Parkin in knee cartilage. Likewise, treatment

of human chondrocytes with MIA increases PINK1

expression in these cells. In OA patients, PINK1 expression

in chondrocytes in damaged parts of joint cartilage is higher

compared to healthy cartilage (44). These data point to

exacerbated PINK-1-mediated mitophagy in chondrocytes,

which may result in cartilage damage and pain. Several

studies also described possible disturbances in mitochondrial

biogenesis in chondrocytes of rodents or OA patients, since

AMPK activity, SIRT-1, PGC-1α, TFAM, and NRF-2

expression are reduced compared to controls (81, 82). In

CIA-induced arthritis, intraperitoneal administration of

mitochondrial fission inhibitor mdivi-1 reduced arthritis

scores and paw thickness in mice (120). Moreover, DRP1, a

protein that promotes fission, is increased in synovial tissues

and FLSs from RA patients and in primary human

chondrocytes following MIA treatment (120). In RA, DRP1

expression correlates with disease severity (44). Finally,

neurotrophins, such as NGF or BDNF, are released in the

synovial fluid of RA, OA and AS patients and can induce

mitochondrial fission in neurons (267–269). These data

suggest that mitochondrial fission is enhanced in various

rheumatic diseases and that inhibiting fission reduces

arthritis. Whether changes in fission also contribute to pain

remains to be explored.

In conclusion, several mitochondrial functions are clearly

affected in the local tissue in rheumatic diseases. It is not fully

understood how these mitochondrial alterations contribute to

rheumatic pain. We propose that changes in mitochondrial

functions in the site of injury may promote the release of

inflammatory mediators that sensitize or activate the nervous

system, contributing to pain.
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Systemic and genetic links to
mitochondrial alterations in
rheumatic diseases

Collection of human joint tissue is relatively common in

rheumatic conditions, because it can be obtained during total

knee or hip replacement surgeries. On the other hand, DRG,

nerves and spinal cord are not easily accessible tissues, which

explains the lack of human data regarding mitochondrial

functions in the nervous system in rheumatic disease. In

contrast, blood is very easily accessible and there is a

correlation between mitochondrial dysfunction in blood cells

and several other tissues (270, 271). Moreover, studies suggest

that mitochondrial alterations in blood cells could be used as a

peripheral marker for diseases affecting the nervous system

(272, 273). For these reasons, there are several studies that have

explored changes in mitochondrial functions in blood

components and cells from patients with rheumatic diseases,

which could shed some light into how mitochondrial

alterations may be associated with rheumatic conditions. An

overview of the findings in human patients is depicted in Table 2.

Compared to healthy controls, peripheral blood

mononuclear cells (PBMCs) from RA and fibromyalgia

patients express less mETC complexes at the protein level,

have reduced cellular ATP levels, and have a diminished

mitochondrial membrane potential (105–107). Similarly,

genes associated with OxPhos are downregulated in

peripheral leukocytes of JIA patients in comparison with

healthy children. In SLE patients, ATP levels are reduced in

T lymphocytes (109, 110). PBMCs and skin fibroblasts from

patients suffering from SLE (119) and fibromyalgia (108),

respectively, have elevated mtROS levels, similar to what was

observed in blood monocytes from PsA patients (118). Given

that all these rheumatic diseases have an inflammatory

nature, and that inflammatory mediators affect

mitochondrial functions and cellular metabolism in immune

cells (274, 275), it is highly possible that these changes are

caused by inflammation. Conceivably, similar changes are

induced in sensory neurons and affect their function.

In fibromyalgia patients with pain, complex III activity,

the expression of multiple mitochondrial biogenesis related

genes (PGC-1α, TFAM, NRF1), and the expression of

coenzyme Q10 are decreased in PBMCs and skin

fibroblasts. In contrast, mtROS production is increased

compared to controls without pain (105). These data

suggest that mitochondrial dysfunction in PBMCs is linked

to pain in fibromyalgia. Moreover, inflammasome related

molecules (e.g., IL-1β, IL-18) were significantly increased in

serum of fibromyalgia patients and correlated with pain

VAS scores (108). In RA, mutations in mitochondrial

related genes are detected in MT-ND1, which encodes a

complex I subunit, as well as in NLRP3 and CARD8, which
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recruits caspase to form NLRP3 complex (276).

Additionally, a mutation in the genomic region encoding

ATPSc-KMT, a mitochondrial localized protein, is linked to

chronic widespread pain and increased pressure pain

sensitivity in OA (104, 132).

In conclusion, these data suggest that markers of

mitochondrial dysfunction and mitochondrial related genetic

modifications are present in rheumatic patients. In some cases,

these mitochondrial alterations are associated with the

magnitude of pain. Future research has to show whether these

cause pain, or are rather a consequence of the pathology that is

causing pain.
Targeting mitochondrial function: a
promising approach for chronic pain
treatment?

Over the recent years, the possibility to target mitochondria

for the treatment of several pathologies, like primary

mitochondrial diseases, neurodegenerative diseases, heart

failure, chronic kidney disease, and stroke-like episodes has

gained attention (277, 278). Even though most evidence for

efficacy comes from pre-clinical work, some compounds that

target mitochondria are already being assessed for safety in

humans. Improving mitochondrial bioenergetics by targeting

deficits in mitochondria is still at an early development stage.

We will discuss various compounds that are being developed

and could be of interest for treating painful (rheumatic) diseases.
Mitochondrial respiration

Given that inflammation reduces mitochondrial respiration

in sensory neurons and diminished OxPhos is associated with

prolonged pain, boosting mitochondrial respiration may resolve

pain. DCA boosts the TCA cycle and OxPhos. DCA reduced

pain-associated behaviors in pre-clinical inflammatory pain

models and showed a safe profile when tested in humans (65,

130, 279). DCA reduced lactate levels in endometriosis cells,

and is currently being tested as treatment for endometriosis-

associated pain (clinical trial NCT04046081) (279).

Altered mitochondrial respiration can lead to unfavorable

cellular redox balance, e.g., NAD/NADH ratio. NAD+ is an

essential cofactor in the regulation of mitochondrial health. A

decline in NAD+ in various tissues and cells, including neurons,

is associated with pathologies, such as neurodegenerative

diseases, diabetic-induced and chemotherapy-induced

neuropathic pain (280–283). Recently, preliminary data showed

that peripheral inflammation reduces NAD+ levels in DRG of

mice. Systemic or intrathecal administration of nicotinamide

riboside, a precursor of NAD+, reversed CFA-induced

inflammatory pain (64). Importantly, NAD+ supplementation
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with NAD+ precursors, such as nicotinamide riboside, mitigates

oxidative stress and improves mitochondrial functions. More

than 70 years ago, studies already showed that NAD+

supplementation reduces pain in RA patients (284, 285). More

recently, oral NAD+ supplementation reversed diabetic and

chemotherapy-induced neuropathic pain in pre-clinical models

(281, 283). Other recent studies also showed that NAD+

supplementation has favorable outcomes on RA and SLE, but

pain was not assessed in these studies (286). NAD+

supplementation also improved the global impact of OA,

possibly through the increase of NAD+ in the synovial fluid and

cartilage matrix, ensuring proper energy levels for cartilage

repair. However, in this study NAD+ supplementation did not

affect pain (287). Recent clinical trials in larger cohorts and

with more extensive assessment exams have confirmed that oral

supplementation with NAD+ precursors (including nicotinamide

riboside) are safe and well-tolerated (288, 289). Future larger

studies will have to show whether NAD+ supplementation may

hold promise for treatment of inflammation and pain in

patients with rheumatic disease.
Oxidative stress

Antioxidants are promising in reversing oxidative stress in

diseases of the nervous system (290, 291). The antioxidant

resveratrol is effective in managing rheumatoid arthritis by

decreasing plasma inflammatory markers and joint swelling,

when given in combination with common anti-rheumatic drugs

(117). Similarly, resveratrol administered as adjuvant with the

anti-rheumatic drug meloxicam decreased serum levels of

inflammatory mediators (TNF, IL-1β, IL-6) and reduced pain by

∼70%, compared to OA patients that received meloxicam

together with placebo (292, 293). Oral resveratrol also attenuated

chronic musculoskeletal pain by 20% in postmenopausal women

(294), indicating a potential analgesic effect of resveratrol in

several pain conditions. Currently studies are further exploring

resveratrol’s analgesic effect in knee OA patients as combined

(anti-inflammatory drugs and/or analgesics) and as mono-

therapy (clinical trial NCT02905799) (295).
NLRP3 inflammasome

Pre-clinical studies show that targeting inflammasome-

related proteins has analgesic effects (92–98). In a clinical

trial, oral treatment with Dapansutrile, a specific NLRP3

inflammasome inhibitor, reduced joint pain 56%–68% and

reduced joint and systemic inflammation in gout flare patients

(296). Other drugs that target the inflammasome pathway,

such as the caspase-1 inhibitor Pralnacasan, the anti-IL18

monoclonal antibody GSK1070806, and compounds targeting

IL-1β or its receptor (e.g., anakinra and canakinumab), are
Frontiers in Pain Research 15
being clinically evaluated or already approved to treat

inflammatory diseases, including rheumatic disease. Anakinra

and canakinumab reduce pain in RA and JIA, but they still

need to be assessed in other rheumatic conditions. The ability

of GSK1070806 to reduce pain has not been studied (clinical

trial NCT03681067) (297–300).
Mitochondrial transfer/transplantation

Mitochondria are transferred between cells via extracellular

vesicles, tunneling nanotubes, gap junctions or free

mitochondrial ejection (42, 301–308). Intercellular transfer of

healthy mitochondria can improve the energy production

status of recipient cells and restore their viability. The release

of damaged mitochondria might function as a help request to

surrounding cells, triggering signaling pathways to restore

homeostasis in the cell releasing damaged mitochondria (42,

301–304). Mitochondrial transfer has been observed in a

growing list of pathologies that include brain injury (42, 309),

neurodegenerative diseases (306, 310), cancer (303, 311, 312),

and cardiomyopathy (304). Mitochondria can be transferred

from human synovial mesenchymal stem cells (sMSCs) to

Th17 cells, which reduces the production of the pro-

inflammatory cytokine IL-17. Mitochondrial transfer between

sMSCs and Th17 is impaired in RA patients (313). Likewise,

sMSCs donate mitochondria to stressed articular chondrocytes

and failure of this transfer has been hypothesized to impair

healing of orthopedic tissues (314). Importantly, transfer of

mitochondria from macrophages to DRG neurons is required

to resolve inflammatory pain (25). These findings highlight

that intercellular mitochondrial transfer may be an approach

to reduce inflammatory pain.

Some research groups have explored the delivery of entire

functional mitochondria into damaged cells, a technique called

mitochondrial transplantation (315, 316). Pre-clinical studies

show mitochondrial transplantation is neuroprotective (317,

318). Additionally, a small clinical trial with 5 patients showed

that autologous mitochondrial transplantation (i.e.,

mitochondria from non-ischemic skeletal muscle of each

patient were injected in the myocardium) improved myocardial

function in patients with ischemia-reperfusion injury, without

inducing short-term complications (319). In all these studies,

“naked”/free mitochondria were directly injected in the tissue

of interest. Classically, some free mitochondria components are

thought to act as DAMPs, thus triggering an inflammatory

response (317). However, “naked” mitochondria are found in

the human blood, suggesting that healthy free mitochondria are

not necessarily inflammatory (320). Nevertheless, to prevent

any adverse effect of free mitochondria, packaging

mitochondria into vesicles would prevent them from acting as

DAMPs, whilst it would allow specific targeting strategies by

adjusting lipid composition. Synaptosomes are lipidic
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membranous particles released at nerve terminals. Synaptosomes

can be obtained by homogenization and gradient centrifugation

of nervous tissue (synaptic terminals), and contain several

synaptic vesicles and mitochondria. Synaptosomes are

specifically taken up by neuronal cells, making them an ideal

delivery system to target neurons (316).

In summary, targeting mitochondria shows some beneficial

effects in multiple pathologies and could be a novel approach to

treat chronic pain. The challenge is to develop a strategy to

deliver a drug to mitochondria in specific cell types. Possibly,

encapsulation of drugs/mitochondria into nanolipidic carriers

may overcome these challenges (321–324) and allow the use

of mitochondria/mitochondria targeting drugs to treat pain.

As an example, in a pre-clinical study, extracellular vesicle

containing mitochondria resolved persistent inflammatory

pain, albeit transiently (25).
Conclusion and future perspectives

The contribution of mitochondrial dysfunction for

chemotherapy, diabetes and HIV-induced neuropathic pain is

clear and has been extensively reviewed elsewhere (45).

Currently available data point to changes in mitochondria in

various cells/tissues in rheumatic diseases (Figure 2; Tables 1,

2). In rheumatic diseases, peripheral inflammation at the joint

level may affect mitochondrial function, and mitochondrial

dysfunction can further promote inflammation. These

inflammatory mediators may affect mitochondria function in

sensory neurons, impacting their excitability. Pain development

has been associated with altered OxPhos, disturbed Ca2+

buffering, increased mtROS production, NLRP3 inflammasome

activation and defective mitochondrial quality control

mechanisms in the nervous system, but also surrounding cells,

such as astrocytes, microglia or other immune cells. Various

mitochondrial functions in sensory neurons have been linked

to changes in sensory processing, but it is important to note

that mitochondrial functions are tightly connected. Therefore,

it remains difficult to know if a specific function controls pain/

sensory processing. Finally, given the intertwined role of

damage and inflammation in mitochondrial function and vice

versa, it remains difficult to conclude if mitochondrial

dysfunction is a cause or a consequence of rheumatic diseases.

A striking observation is that many of the pre-clinical

studies investigating mitochondria in pain used only male

animals. Given that RA, OA, SLE or fibromyalgia are more

prevalent in females than males (325–328) and various studies

show that pain mechanisms are sex-dependent (256, 329–

332), sex differences should be taken into account in the

contribution of mitochondria to sensory processing. Especially

since mitochondrial biogenesis and mitochondrial-mediated

cell death signaling after oxygen and glucose withdrawal are

sex dependent (333, 334).
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Various alterations in mitochondrial functions, such as

respiration, oxidative stress, biogenesis and NLRP3

inflammasome activation appear to occur both in human and

mice in the context of rheumatic disease. Other studies have

also shown similarities between rodents and humans, e.g.,

they have a similar distribution of synaptic and non-synaptic

mitochondria in the brain (335). Moreover, mitochondrial

response to aging is conserved between different species

(humans, monkey, mice, rats) in terms of changes in mETC,

OxPhos, oxidative stress and mitophagy at the pathway level

(336, 337). Nevertheless, there are examples of species

differences. For example human and mouse astrocytes have

different OxPhos rates in vitro, with human astrocytes being

more susceptible to oxidative stress (338). Regardless, to gain

an accurate understanding of the putative role of

mitochondria in pain, more research should include humans

material, as findings in rodents, the most commonly used

animals in pain research, are not always translatable to

humans (339). A limitation of the rodent models is that

behavioral assays used often do not assess actual pain, but

rather pain-associated behavior such as hyperalgesia. As such,

most existing data only shows a relation with the development

of hypersensivity to noxious stimuli and not per se

spontaneous pain (340). At the molecular level, species

difference may also exist. Even though the overall signature of

DRG-enriched genes is conserved between mice and human

(341), various ion channels or cholinergic receptors are

differentially expressed in neuronal subpopulations between

mouse versus human DRG (342). Finally. aging is a risk

factor for rheumatic diseases and patients experience pain

during years (340, 343). However, for ethical and financial

reasons, pain and putative underlying mechanisms are rarely

followed for more than a few months in animal models. More

studies should be performed in aged mice and at later time

points after the model is established (256, 340), because

potentially relevant aspects are missed. As example, targeting

senescence, which is closely linked to mitochondrial function,

in the spinal cord decreased neuropathic pain when it was

established for 9 months, but not when it was only

established for 2 weeks after spared nerve injury (199, 256).

These rodent models are still valuable, because some

compounds that had an analgesic effect in pre-clinical studies

(e.g., NAD+ supplementation, resveratrol, NLRP3

inflammasome inhibitors) also relieved pain in clinical trials

(64, 97, 98, 160, 161, 281, 283, 285, 292, 293, 298, 299).

Until now, human data on mitochondria function in the

nervous system is scarce. Skin biopsies and, occasionally,

DRG can be collected from live human donors, but central

nervous tissues are usually obtained only post mortem (339).

Interestingly, recent imaging techniques may allow to obtain

this information to a certain extent. Imaging techniques

(e.g., magnetic resonance spectroscopy, infrared spectroscopy

or positron emission tomography) can be used to measure
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FIGURE 2

Mitochondrial dysfunction in rheumatic pain conditions. (A) Oxidative stress, NLRP3 inflammasome activation and mitophagy are increased in the
joint in various rheumatic conditions. Mitochondrial dysfunction is not limited to the damaged joint tissue; it is also present in the nervous
system. Decreased mitochondrial respiration and increased inflammasome activation have been detected in RA animal models. Indirect evidence
points to decreased mitochondrial biogenesis and excessive mitophagy in the nervous system, but it is not clear in which cells. (B) Evidence from
clinical and pre-clinical studies points to impaired mitochondrial functions in chondrocytes and fibroblast-like synoviocytes (FLSs), which could
contribute to the inflammatory milieu observed in the joint and may activate resident immune cells like macrophages. Mutations in mtDNA may
contribute to impaired mitochondrial function. Peripheral inflammation and damage activate and induce long-lasting changes in sensory
neurons, and increase their excitability. (C) Sensory neuron activation increases mitochondrial Ca2+ levels that promote OxPhos, but also mtROS
production. Continuous mtROS production may impair mitochondrial respiration or cause mtDNA mutations. Inflammation and oxidative stress
reduce mitochondrial transport and impair quality control mechanisms (mitophagy, mitochondrial biogenesis, fusion and fission). Disturbed
mitochondrial Ca2+ buffering and mtROS trigger NLRP3 inflammasome activation in neurons. (D) Prolonged activation of nociceptors in the
periphery affects the spinal cord/brain axis of pain processing and can induce permanent central changes in neuroplasticity and mitochondrial
dysfunction in neurons and supporting cells like astrocytes. (E) Changes in mitochondrial functions in blood components and cells appear to be
present in patients with various rheumatic diseases. Even if these alterations were not directly linked to pain, they could shed some light on how
mitochondria are affected in rheumatic disease. A question mark is used when there is indirect evidence or there are contradictory findings.
Dashed arrows were used to represent hypothetical connections or consequences that have not been directly linked to rheumatic pain. DRG,
dorsal root ganglia; PBMC, peripheral blood cells; RBC, red blood cell. Figure created with BioRender.com.
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mitochondrial oxygen consumption, mitochondrial membrane

potential, ATP and metabolite levels in the brain or spinal

cord (278, 344). For example, TSPO-PET, which has been

commonly used to measure immune cell activation in the

nervous system, may also be useful to assess mitochondrial

respiration and function, according to some recent pre-clinical

studies (265, 266, 345). Therefore, these non-invasive

techniques could potentially be applied to collect information

about mitochondrial dysfunction not only in the brain, but

also DRG, spinal cord and nerves in rheumatic pain patients.

In conclusion, impaired mitochondrial health at the peripheral

and central level may contribute to rheumatic pain. Considering

the central role of mitochondria in cellular function after

inflammation and their emerging role in sensory processing,

modulation of mitochondrial functions may be a promising

approach to attenuate or eliminate pain in rheumatic diseases.
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