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Treating pain in patients suffering from small fiber neuropathies still represents a

therapeutic challenge for health care providers and drug developers worldwide.

Unfortunately, none of the currently available treatments can completely reverse

symptoms of either gain or loss of peripheral nerve sensation. Therefore, there is a clear

need for novel mechanism-based therapies for peripheral diabetic neuropathy (PDN)

that would improve treatment of this serious condition. In this review, we summarize

the current knowledge on the mechanisms and causes of peripheral sensory neurons

damage in diabetes. In particular, we focused on the subsets of voltage-gated sodium

channels, TRP family of ion channels and a CaV3.2 isoform of T-type voltage-gated

calcium channels. However, even though their potential is well-validated inmultiple rodent

models of painful PDN, clinical trials with specific pharmacological blockers of these

channels have failed to exhibit therapeutic efficacy. We argue that understanding the

development of diabetes and causal relationship between hyperglycemia, glycosylation,

and other post-translational modifications may lead to the development of novel

therapeutics that would efficiently alleviate painful PDN by targeting disease-specific

mechanisms rather than individual nociceptive ion channels.
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INTRODUCTION

According to the International Diabetes Federation, more than 400 million people suffer from
diabetes worldwide, and by 2045 this number will increase to 700 million (1). This places diabetes
on the list of the great epidemics of the 21st century. In the US alone, more than 30 million people
are diagnosed and treated for diabetes, while at the same time more than 90 million have been
diagnosed with prediabetic condition (2).

Diabetes mellitus is a chronic condition accompanied by numerous complications, with
neuropathies and diabetic foot (due to hyperglycemia induced damage to foot nerves and blood
vessels) occurring in more than 50% of the patients (3). Neuropathic pain represents a type
of a painful state commonly caused by lesions or chronic disease affecting the somatosensory
nervous system. The most prevalent neuropathic complication of diabetes is distal symmetric
polyneuropathy (peripheral diabetic neuropathy) manifested as a loss of distal sensory function
of the lower extremities. Patients exhibiting peripheral diabetic neuropathy (PDN) often
experience increased incidence of falling due to affected proprioception and painful sensations
such as tingling, burning sensation on the feet (spontaneous stimulus-independent pain),
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or hyperalgesia to heat and touch (evoked, stimulus-dependent
pain). Some patients might even experience paroxysmal sharp
deep pain, while in some patients over time the painful sensations
subside and become replaced by the absence of pain and
sensations perception. In some patients, an increased sensitivity
to a typically non-painful stimulus can also occur (brush
allodynia). This diversity of different symptoms of altered pain
perception are a good indicator of the complexity of the PDN and
challenges for its treatment. Finally, regardless of the symptoms,
either presence of painful sensitivity or pathological loss of
peripheral nerve sensitivity represent serious sequalae leading to
a reduced quality of life.

The treatment options clinically used to alleviate the
symptoms of painful PDN are very limited in their efficacy
and often accompanied with numerous side effects. Most used
therapeutics in the clinical setting are gabapentionoids, such as
pregabalin and gabapentin, both considered to reduce pain by
targeting regulatory subunit α2δ of CaV2.2 (N-type) isoform of
voltage-gated calcium channels. However, the use of these drugs
is not devoid of side effects, and more than half of patients
treated with gabapentinoids experience various side effects such
as sedation, ataxia and dizziness as well as weight gain (4).
Furthermore, recent reports indicate that misuse and drug abuse
of gabapentinoids is on the rise (5, 6).

THE MECHANISMS OF THE

DEVELOPMENT OF PERIPHERAL

DIABETIC NEUROPATHY

Peripheral diabetic neuropathy is a neurodegenerative disorder
of the peripheral nervous system affecting predominantly sensory
as well as autonomic nerves, and to a lesser extent motor nerves
(7). Patients suffering from diabetes type II are twice as likely to
experience symptoms of painful PDN than patients with diabetes
type I (4). The exact mechanisms of the onset of PDN are still
not clear, and factors such as hyperglycemia, hyperlipidemia,
microvascular changes of the blood supply to peripheral nerves as
well as impaired insulin signaling could contribute to peripheral
nerve damage. Development of type I diabetes in rodents leads to
the changes in the expression of neurofilament thus affecting the
integrity of peripheral axons and neuronal somas (8) within the
dorsal root ganglia (DRG), which could in turn induce changes
in peripheral sensory painful neuronal transmission. Also,
chronic hyperglycemia contributes to the Schwan cell damage,
which could in turn lead to demyelination (9, 10) and axonal
alterations, such as dysregulation of cytoskeletal properties (11)
and axonal transport (12). Both in vivo and in vitro rodent
models have demonstrated that hyperglycemia leads to the
functional alterations in numerous proteins expressed in the
DRGs [such as neuromodulin, β-tubulin, as well as heat-shock
proteins and poly(ADP-ribose) polymerase PARP] that play an
important role in protein processing (13), oxidative stress and
mitochondrial function (14, 15), which could affect central pain
processing leading to peripheral nerve dysfunction. Furthermore,
enzymatic post-translational modification of various proteins
via glycosylation is known to regulate protein conformation
and stability in cell membranes, trafficking and secretion

thus affecting its functional properties (16). Of particular
importance is asparagine (N)-linked glycosylation involving
extracellular asparagine residues. It was previously shown that in
embryonic DRG neurons, neuraminidase (NEU), an enzyme that
deglycosylates proteins by removing sialic acid residues, affected
steady-state inactivation of voltage-gated sodium channels (17).
The glycosylation of transient receptor potential (TRP) channels
such as TRPV1 and TRPM8 is also known to modulate their
function, thus potentially altering the cellular excitability of DRG
sensory neurons (18, 19).

The Ion Channels and Their Role in

Neuronal Hyperexcitability in Painful PDN
The specific and crucial peripheral positioning of the primary
sensory afferents as distal sites of the generation of action
potential has led to the extensive research of the underlying
mechanisms of neuronal hyperexcitability and changes in
baseline thresholds in various pain disorders. The key
contributors to the neuronal transduction and transmission
are nociceptive ion channels, and the alterations in their
expression and trafficking, or their functional changes driven
by phosphorylation or glycosylation can significantly affect the
neuronal excitability and contribute to the pathophysiology of
neuropathic painful states.

As part of the pursuit for novel analgesics, voltage-gated
sodium channels have been extensively investigated for their
important role in pathophysiology of pain. Among nine different
NaV channel subtypes, NaV1.7, NaV1.8 as well as NaV1.9 have
been recognized as essential for excitability of sensory neurons,
especially since their expression is enriched in nociceptors.
Among them, Nav1.7 and Nav1.9 are important for determining
the action potential threshold, thus being responsible for the
excitability of the primary afferent neurons and sensory signal
amplification, whilst Nav1.8 channels are essential for the
upstroke of the action potential in nociceptors (20).

One of the pivotal findings was the discovery that patients with
inherent inability to sense pain possess non-functional Nav1.7
channels expressed in the DRGs due to the existence of different
mutations of the SCN9A gene encoding these channels (21).
Therefore, the inability of primary sensory neurons to generate
and maintain action potentials leads to the absence of pain
sensitivity. On the other hand, gain-of- function variants in
SCN9A (encoding Nav1.7) are present in a few pain disorders,
such as erythromelalgia and small-fiber neuropathy (21).

Primary sensory neurons in painful PDN can become
hyperexcitable and spontaneously active, leading to the central
sensitization and pathological activation of the pain pathways.
Rare variants in SCN9A (NaV1.7 channels) were discovered in
patients with painful PDN, however whether these variants are
specific for this condition only is yet to be understood (22).
A clinical trial with a small-molecule selective Nav1.7 blocker
developed as a treatment for painful PDN yielded negative
results (23). Perhaps, investigating further the contribution of
SCN9A variants in PDN would provide better understanding of
the role of these channels in the development of painful PDN,
and appropriate approach of developing novel NaV1.7 inhibitors
efficient for treating painful PDN.
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In rodent models of painful PDN, reported increase of the
expression of NaV1.8 channels in C fibers facilitated impulse
conduction and central sensitization, collectively creating the
environment for the neuropathic pain development (24).
Furthermore, methylglyoxal, reactive metabolite enriched in
diabetes (25), post-translationally modifies Nav1.8 channels,
resulting in Nav1.8 gain of function that facilitates increased
sensory neuronal firing, contributing to hyperalgesia in rodent
models of diabetic neuropathy. The effects of methylglyoxal
are not selective only for sodium channels. Transient receptor
potential (TRP) channels, involved in signal transduction,
can also be affected by methylglyoxal. Andersson et al. (26)
have recently shown that methylglyoxal represents a potent
intracellular TRPA1 channel agonist, and locally applied exerts
pain like behavior in rodents. Furthermore, local injections
of methylglyoxal induced pain in humans through C-fiber
sensitization mostly by activating TRPA1 channels (27). TRPA1
channels are present in the peripheral nerve terminals, central
synapse and on non-neuronal cells [for detailed review refer to
(28)] therefore pharmacological or genetic attenuation of TRPA1
signaling reduced mechanical hyperalgesia (29) and cutaneous
blood flow (30, 31). Intrathecal application of TRPA1 antagonist
required lower dose of the compound to achieve antihyperalgesic
effect than systemic or intraplantar application (29). TRPA1
antagonist GRC 17356 developed by Glenmark Pharmaceuticals
S.A. has been investigated in phase II clinical trial in patients with
diabetic peripheral neuropathy, however, thus far the results of
this trial are not known (ClinicalTrials.gov).

Similarly, the dysregulation of capsaicin-gated TRPV1
channels, a typical representative of the vanilloid family of
ligand-gated channels, contributes to pathological sensory
signaling and pain in rodent models of diabetes (32). Previous
studies have discovered an increase of the membrane expression
of TRPV1 channels in myelinated A fibers only (33), while
Pabbidi et al. (34) detected increased both expression of TRPV1
and whole-cell currents in small DRG cells in both STZ-induced
and transgene-mediated type 1 painful PDN in mice. Facer et
al. (35), however, discovered a reduction of TRPV1 channels,
possibly due to overall loss of TRPV1 rich fibers and general
downregulation of TRPV1 in diabetic patients.

The Role of T-Channels in Pain
Low voltage-activated calcium channels (LVA or T-Type
Ca2+ channels) have been previously investigated in neuronal
excitability and nociceptive transmission. They were first
discovered in acutely dissociated sensory neurons (36)
of small size (cell soma < 31µm). The channel’s unique
biophysical characteristics, such as activation by small
membrane depolarization, relatively fast, and voltage-dependent
inactivation kinetics, as well as slow deactivation kinetics
upon channel closing following maximal activation, assigns
a very important role in controlling cellular excitability of
sensory neurons. These properties have been confirmed in a
subpopulation of acutely dissociated rat DRG cells of medium
size (cell soma 32–45µm) where T-channels controlled sub-
threshold excitability of DRG cells by lowering the threshold for
action potential generation (37).

Nelson et al. (38) showed the majority of capsaicin-
sensitive (TRPV1 rich) small DRG neurons typically considered
nociceptive neurons also express T-currents. Particularly, a
subtype of T-channels, CaV3.2, has been critical for regulating
cellular excitability of capsaicin-sensitive, TTX-r NaV1.8 and
NaV1.9 and isolectin B4 (IB4) positive nociceptive DRG neurons
termed “T-rich” cells (39).

T-channels are also present in a subpopulation of
DRG sensory neurons of medium size, involved in either
nociception (IB4 positive) (40), or touch sensation (D-
hair mechanoreceptors) (41). In addition, it was recently
discovered that Cav3.2 channels play a crucial role in touch/pain
pathophysiology, since they are present in the cutaneous low-
threshold mechanoreceptors (LTMR) Aδ and C, both in the
initial segment of the axon and in the peripheral terminals, as
well as in the nodes of Ranvier of the LTMR-Aδ (42).

At the spinal level, T-channels were first discovered
postsynaptically on the somas of the neurons of the dorsal
horn superficial laminae, possibly regulating the activity-
dependent synaptic strength between pre- and post-synaptic
neurons (43, 44). Furthermore, Jacus et al. (45) discovered the
presynaptic presence of CaV3.2 channels in the central terminals
of both peptidergic and nonpeptidergic fibers, suggesting
the additional regulatory role of T-channels in controlling
glutamate-mediated excitatory spontaneous transmission in
nociceptive neurons in the central synapse. Similarly, they are
found pre- and post-synaptically in dorsal horn laminae II–III of
the spinal cord (42).

Several studies have shown that the expression of CaV3.2
channels is increased in spinal dorsal horn or DRG neurons
in models of chronic nerve injury (46–51), inflammatory
pain models (52–56), acute pain model (57) as well as
in chemically induced neuropathies (58) including diabetic
neuropathy (40, 59).

THE ROLE OF T-CHANNELS IN PAINFUL

PDN

Latham et al. (60), who used genetically altered animals
lacking the functional CaV3.2 T-channel globally, discovered
that these animals upon streptozotocin (STZ) treatment, became
hyperglycemic but did not develop diabetic neuropathy, as
compared to their littermates. These data strongly suggest that
the CaV3.2 isoform of T-channels is necessary for development
of STZ-induced painful PDN. Messinger et al. (59) discovered
that in a STZ-induced diabetes type I in rats, insulin treatment
lead to reversal of upregulation of T-currents in DRG neurons.
Furthermore, diabetic animals treated with insulin exhibited
reduction of pain-like behavior (reversal of thermal and
mechanical hypersensitivity). Selective in vivo knock-down of the
CaV3.2 isoform of T-channels in DRG neurons reduced both
hyperalgesia in vivo, and T-currents in dissociated DRG neurons
of small diameter in vitro, suggesting a correlation between
hyperglycemia and increased T-currents with the appearance of
mechanical and thermal sensitivity in diabetic STZ-treated rats
(59, 61). In vivo application of glycosylation inhibitors, such as
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NEU both peripherally and centrally, ameliorated hyperalgesia
in a model of type I diabetes in rodents, except in CaV3.2
knock-out mice (62). Similarly, recent study by (63) revealed
that NEU exhibits desensitizing effects in terms of spontaneous
activity and stimulated release of CGRP (calcitonin gene related
peptide). Furthermore, the authors show that stimulated CGRP
release in the sciatic nerve is markedly reduced with selective T-
channel blocker TTA-P2 in healthy but not in diabetic wildtype
and CaV3.2 KO mice, suggesting that diabetes abolishes CaV3.2-
mediated activity in peripheral sensory nerves. TTA-P2 reduced
KCl stimulated CGRP release from the hairy skin of wildtype but
not CaV3.2 knock-out mice, suggesting a de novo expression or
re-distribution of these channels of cutaneous nerve endings of
peptidergic nociceptive fibers. It is reasonable to speculate that
this shift of T-channel expression in diabetic animals could in
turn facilitate spontaneous neuronal activity.

In animal model of type 2 diabetes leptin-deficient (ob/ob)
mice, mechanical and thermal hyperalgesia coincided with
hyperglycemia observed early in life of these animals (60),
and was reversible with insulin pretreatment. Additionally,
the biophysical and biochemical alterations of predominantly
CaV3.2 subtype, such as T-current increase and T-channel
mRNA expression, accompanied the development of painful
PDN and hyperglycemia, indicating that metabolic changes
leading to hyperglycemia are affecting DRGT-current in a similar
causative fashion in both type I and II painful PDN, leading to
the hyperexcitability of peripheral sensory neurons underlying
hyperalgesia and allodynia.

Orestes et al. (64) discovered that NEU inhibited native T-
currents in DRG neurons in vitro, and alleviated mechanical
hyperalgesia in vivo in leptin-deficient (ob/ob) morbidly obese
mouse model of type 2 painful PDN. This crucial impact of
the channel glycosylation on its functionality was confirmed by
Weiss et al. (65) that discovered that N-asparagine glycosylation
at asparagine N192 is critical for channel surface expression,
whereas glycosylation at asparagine N1466 controls the activity
of CaV3.2 T-channels. Additionally, noncanonical sites have also
been recently discovered, namely asparagine N345 and N1780
located in the non-canonical N-glycosylation motifs N-X-C
(NVC and NPC, respectively, with C being cysteine) essential
for the expression of the human Cav3.2 channel in the plasma
membrane (66).

These studies have firmly established that the CaV3.2 isoform
of T-channels in DRG cells is required for the development and
maintenance of painful PDN in rats and mouse models of type
1 diabetes.

Dysregulation of the Neuronal

Transmission in the Spinal Cord—Potential

Role of T-Channels
The upregulation of CaV3.2 channels has been discovered
within DRG neurons in various rodent models of chronic pain

(48, 52, 58, 67, 68), therefore, they can be considered as a
novel target to treat pain peripherally. However, ABT-639, a
peripherally restricted T-channel antagonist, failed to alleviate
pain in both clinical trials (37, 69) and rodent studies (70), raising
the possibility that we might need centrally acting T-channel
antagonists to alleviate pain effectively.

Although T-channel antagonists applied intrathecally
reversed pain hypersensitivity in various rodent models of
pain (49, 57, 62, 70), the presence of T-type mediated calcium
currents in a subset of lamina II neurons was discovered only
recently (71, 72). Harding et al. (73) discovered that T-type
channels are available abundantly in lamina I neurons, and are
dominant mediators of action potential-evoked calcium signals
that represent actively backpropagating action potentials (73),
shaping the excitability of neurons and affecting short-term
and long-term plasticity in the spinal cord. Furthermore,
Z944, a selective centrally penetrant T-channel antagonist,
reduced superficial dorsal horn excitability in vitro, and
reversed tactile allodynia in an inflammatory pain model in
rats of both sexes. Perhaps future studies are needed to further
elucidate the role and mechanisms of plasticity of centrally
located T-channels in the development and maintenance of
painful PDN.

DISCUSSION

Several ligand-gated and voltage-gated ion channel targets
have great potential for the development of novel therapeutics
to alleviate painful PDN. Here, we focused on subsets of
voltage-gated sodium channels, TRP family of ion channels
and CaV3.2 isoform of T-type voltage-gated calcium
channels. Although their potential is well-validated in
multiple rodent models of PDN, clinical trials with specific
pharmacological blockers of these channels have failed to
exhibit therapeutic efficacy. Perhaps understanding the
development of diabetes and causal relationship between
hyperglycemia, glycosylation, and other post-translational
modifications may lead to the development of novel therapeutics
that would efficiently alleviate painful PDN by targeting
disease-specific mechanisms rather than individual nociceptive
ion channels.
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