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Neuroablative central lateral
thalamotomy for chronic
neuropathic pain
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Chronic neuropathic pain refractory to medical management can be
debilitating and can seriously affect one’s quality of life. The interest of
ablative surgery for the treatment or palliation of chronic neuropathic pain,
cancer-related or chemotherapy-induced, has grown. Numerous regions
along the nociceptive pathways have been prominent targets including the
various nuclei of the thalamus. Traditional targets include the medial
pulvinar, central median, and posterior complex thalamic nuclei. However,
there has been little research regarding the role of the central lateral
nucleus. In this paper, we aim to summarize the anatomy, pathophysiology,
and patient experiences of the central lateral thalamotomy.
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Introduction

Pain is often considered the 5th vital sign; however, even to this day, our treatment of

chronic pain is still inadequate (1, 2). Chronic pain, defined as intractable pain lasting >3

months, is complex, difficult to treat and continues to affect a significant proportion of

the global populations and remains the leading cause of disability worldwide (3).

Neuropathic pain, a subtype of chronic pain, is often a result of somatosensory nerve

dysfunction and typically is opioid non-responsive (4). Furthermore, a significant

proportion of cancer patients experience chronic neuropathic pain that can become

refractory to medical and surgical management, which greatly reduces their quality of

life. Early surgical attempts at treating chronic pain aimed to disrupt the pathways

that were responsible for the pathogenesis and transmission of pain through ablative

procedures. Many regions of the brain were targeted including the thalamus,

midbrain, and anterior cingulate cortex (5). However, due to numerous neurological

and sensory complications that arose from surgeries at the pontine and mesencephalic

level, stereotactic thalamotomies became the surgery of choice (5, 6). Early

thalamotomies primarily targeted the lateral thalamus due to its role in relaying the

sensory-discriminative aspect of pain; however, these interventions often resulted in

high rates of somatosensory deficits (6–8). Medial thalamic targets had the benefit of

lower rates of somatosensory deficits by instead retarding the affective-emotional

aspect of chronic pain (7, 9–11). In recent years, there has been a resurgence in the
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use of ablative surgery (9, 12–14). However, even as the use of

ablative surgery for chronic neuropathic pain has increased,

there have been very few papers that have focused on the

specific role that the central lateral thalamus plays in chronic

neuropathic pain.
Methods

PubMed was used as the primary database for electronic

article searching. The National Library of Medicine’s PICO

(Patient/Population/Problem, Intervention, Comparison, and

Outcome) guideline was used to guide the literature search

terms. The terms pain, central lateral, centrolateral, medial,

and thalamotomy were used. Only publications in English

were considered. In addition, duplicate articles and articles

with overlapping patient populations were accounted for to

avoid redundancy. When articles with overlapping patient

populations were seen, the study with the larger cohort of

patients was used. This search yielded a total of 36 results

which were then screened through an abstract and title review

to yield a total of 19 papers. These 19 papers then underwent

a full-text review by 2 authors (ML and AA) based upon the

following criteria: (1) the study targeted the central lateral

nucleus of the thalamus specifically, (2) the participants of the

study had been suffering from pain for at least 6 months, (3)

the study included post-treatment data, and (4) the study was

written in English. Four studies that were used in the final

analysis (Figure 1).
Central lateral anatomy and
physiology

It has long been understood that the lateral thalamus relays

vital sensory and motor information from the periphery to

cortical and sub-cortical domains. For example, the ventral

posterior (VP) nucleus in the lateral thalamus receives

information from the body and face through spinothalamic

and trigeminothalamic tracts and relays them to the primary

somatosensory cortex. However, ablative surgery in this region

can result in somatosensory deficits due to the destruction of

these pathways. In contrast, the medial thalamus represents a

higher-order thalamic structure that receives few sensory

inputs but regulates cognition, attention, memory processing,

and reward-based behavior through cortico-thalamo-cortical

pathways (15). As a result of its role in cognition, the medial

thalamus affects the affective-emotional aspect of pain rather

than the sensory-discriminative aspect seen in the lateral

thalamus. In addition, lesions to the medial thalamus result in

little to no somatosensory deficits as it spares the relay of

sensory information to the primary somatosensory cortex.
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Previous targets have included the central median/

parafascicular complex (CM/Pf), the posterior complex

(POC), the central lateral nucleus (CL) and the medial

pulvinar (PuM) (16–20). Within the medial thalamus, the

posterior part of the central lateral thalamus (CLp) regulates

the sensory, cognitive, and affective components of chronic

neuropathic pain as it serves an intermediary role between the

lateral and medial thalamic nuclei (5, 16).

The CLp is a key regulator of the thalamocortical (TC)

network mediating afferent information from the

spinothalamic and spino-reticulo-thalamic tracts and

projecting to large areas of the cortex including the prefrontal

cortex (PFC), posterior parietal cortex (PPC), the premotor

and paralimbic (insula, ACC) areas; however, in the context

of pain, the CLp becomes a dysfunctional regulator,

perpetuating chronic neuropathic pain (16, 21–26). In a

framework termed thalamocortical dysrhythmia, Jeanmonod

proposed the transition of the normal CLp into a

dysfunctional regulator as a result of the following steps (16,

21–25). Lesions either in the peripheral or central nervous

system lead to the deafferentation of excitatory inputs to

thalamic relay cells in the CLp in a process known as bottom-

up deafferentation (16). In addition, deafferentation of

thalamic relay cells can occur either through the top-down

deafferentation from lesions within the cortical or sub-

cortical domains (16). Or, the deafferentation of neighboring

thalamocortical modules, identified as recurrent connections

between the thalamus and higher-order cortical regions, by

way of lesions within the thalamic VP nucleus (16). The loss

of these excitatory inputs causes the hyperpolarization of cell

membrane by activating T-type calcium channels that

generate low threshold calcium spike (LTS) bursts in the

4 Hz range (16, 21, 27–29). These LTS bursts were first

identified by Lenz et al. and Jeanmonod et al. later found

these same LTS bursts to be spread diffusely in and around

the CLp (16, 24, 26, 27, 30) These low threshold bursts, in

the CLp, propagate throughout the thalamocortical module

via the richly connected thalamocortical, thalamoreticular,

corticothalamic, reticulothalamic, and cortico-reticulo-

thalamic projections (21, 22). In turn, the affected

thalamocortical module is also noted to have discharges at

4 Hz (16, 21, 22). The widespread projections result in

neighboring areas to discharge at similar frequencies that

results in continuous and widespread low frequency signals

throughout the thalamocortical network (21, 22, 24).

Furthermore, in cortical regions, reciprocal cortico-cortical

inhibition is mediated by GABAergic interneurons. The

widespread low frequency signals, in turn, limit the

GABAergic inhibition of within these high frequency

cortico-cortical connections (16, 21, 22). It is this increase in

high frequency signals, especially in areas receptive to

nociception, that is felt to produce the sensation of chronic

pain.
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FIGURE 1

Flowchart depicting study selection process for final analysis.
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In addition to the physiological basis of the CLp as a target

for chronic pain, the anatomical positioning of the CLp lends

itself as a surgical target. In terms of anatomical location, the

CLp is located 2 mm posterior to the posterior commissure

(Anterior-Posterior) and 6 mm lateral to the thalamo-

ventricular border (Medial-Lateral) on the AC/PC plane (16,

31). The low interindividual variability of the CLp especially

in the anteroposterior axis makes the CLp an ideal surgical

target. Small variations can be taken into account through

MRI visualization of nearby structures such as the posterior

commissure, the habenula, and the stria medullaris (5, 16,

31). In addition, damage to nearby structures such as the

MD and PuM result in few neurological deficits and even a

partial lesion of the CLp can provide enough de-

amplification of the LTS bursts to provide clinical benefit

(16) (Figure 2).

Furthermore, Jeanmonod reported that less than 1% of

neurons in the CLp responded to sensory or motor

information, indicating that the CLp had lost most of its

regular function in patients with chronic pain (16, 27). This
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was especially true in patients who had chronic pain for over

a year, where the likelihood of the CLp recovering to its

previous level of function are low. However, the majority of

normal CLp function can be taken over by other medial

regulatory areas through thalamocortical plasticity. Therefore,

surgical ablation of the CLp would leave the rest of the

thalamocortical network unharmed, thereby reducing

neurological and somatosensory complications.

Earlier researchers often targeted neighboring nuclei such as

the CM/Pf, POC, and the PuM (13, 19, 32–34). However,

patients who had lesions that encroached upon the CLp often

had better results than those who did not (5, 12, 13, 17, 19).

Stereotactic coordinates indicate that lesions of the more

frequently researched nuclei are likely to encroach on the CLp.

Sano et al. targeted the posterior aspect of the medial

thalamus; Hitchcock, Teixeira, and Young all utilized

relatively large lesions in the posterior aspect of the central

median/parafascicular (CM/Pf) complex, that invariably

involved the CLp (8, 17, 19). This was again demonstrated by

Urgosik and Lisack more recently who reported pain relief in
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FIGURE 2

Thalamic anatomy. (A) External view. (B) Sagittal plane of the thalamus through the CLp. (C) Axial plane of the thalamus through the CLp. AV, anterior
ventral nucleus; CM, centre median nucleus, CeM, central medial nucleus; CL, central lateral nucleus; CLp, posterior central lateral nucleus; Hb,
habenular nucleus; LD, lateral dorsal nucleus; Li, limitans nucleus; LP, lateral posterior nucleus; MD, mediodorsal nucleus; PuL, pulvinar; VA,
ventral anterior nucleus; VM, ventral medial nucleus; VPM, ventral posterior medial nucleus; VPL, ventral posterior lateral nucleus.
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43% of their patients while targeting the posterior aspect of the

CM/Pf complex (13).

Through an abundance of clinical, physiologic, and

anatomical data, there is a strong a priori rationale for

destructive lesioning of the CLp thalamic nucleus for the

management of chronic pain. However, even as the use of

ablative surgery for chronic neuropathic pain has increased,

namely in alternative thalamic nuclei, there remains a dearth

of information regarding the specific use of the CLp, which

this paper intends to address.
Central lateral thalamotomy

Ablative modalities

Thalamic nuclei ablation has been done with a variety of

techniques historically ranging from chemical agents to

mechanical devices. Currently, the three main ablative

techniques include: stereotactic radiosurgery (SRS),

radiofrequency (RF) thermal ablation, and MR-guided focused

ultrasound (MRgFUS) thermal ablation. These modalities are

selected depending on the goal of the surgery, the patient’s

unique characteristics, and available equipment. The following
Frontiers in Pain Research 04
paragraphs discuss specific studies utilizing one of the above

ablative modalities and their respective benefits and

limitations (Table 1).
Stereotactic radiosurgery

SRS delivers a large dose of radiation to the intended target

causing cell death or halted mitosis (9, 35). There are multiple

devices used to perform SRS with the two most common

devices being Gamma Knife radiosurgery (GKRS) or linear

accelerators. GKRS uses a beam of gamma rays created from

the excited nucleus of cobalt, while a linear accelerator uses a

high-energy beam of x-rays. Unlike RF thermal ablation, SRS

can be delivered without operating on the brain, therefore

reducing the risk of surgical complications. In addition,

complex geometric shapes can be targeted using computerized

programs that can deliver the radiation accordingly. However,

unlike other ablative procedures, SRS has a delayed effect on

creating the lesion as cell death takes place hours to days after

the procedure is performed, and the clinical effect can in

some cases take months to manifest. As a result, there is no

intraoperative feedback, and the extent and shape of the

lesion is more variable due to radiation fall-out effects.
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TABLE 1 Studies of neuroablative CLp thalamotomy for chronic neuropathic pain.

Study, year Frazini, 2021 Jeanmonod, 2001 Jeanmonod, 2012 Jeanmonod, 2020

Ablative modality Gamma knife RF thermal ablation MR-guided focused ultrasound MR-guided focused ultrasound

Patients included (included in outcome analysis) 8 96 12 (11) 8

Age of patients (years) Mean (63.5) Mean (56) Range (45–75) Mean (62)

Mean duration of chronic pain (years) 5.25 7.5 8.5 17

Pre-operative VAS score (out of 10) 9.4 8.5 5.95 8

3-Month mean pain relief (VAS Score) 20.2% (7.5) - 42.4% (3.43) 85% (1.2)

1-Year mean pain Relief (VAS Score) 41.5% (5.5) - 40.7% (3.53) 87.5% (1)

2-Year mean pain Relief (VAS Score) 52.1% (4.5) - - -

Longest mean pain relief (VAS Score) 30.9% (6.5) 45.7% (4.62) - 87.5% (1)

Allam et al. 10.3389/fpain.2022.999891
In a study conducted by Franzini et al., 8 patients with

neuropathic pain were treated either by a unilateral central

lateral thalamotomy (CLT) or by a bilateral CLT by Gamma

Knife SRS (maximal dose 130–140 Gy) (5). Four of the patients

were afflicted with trigeminal deafferentation pain, 1 of them

was afflicted with postherpetic neuralgia, another one was

affected with central poststroke neuropathic pain, and the last 2

were affected with neuropathic pain secondary to a brachial

plexus injury. Preoperative and postoperative pain and health

outcomes were measured using four different surveys: Visual

Analog Scale (VAS), McGill Pain Questionnaire (MPQ),

EuroQol-5 dimensions (EQ-5D), and 36-Item Short Health

Survey version 2 (SF-36v2). The mean age of the patients was

63.5 years with the mean duration of chronic pain before the

procedure lasting 5.25 years. All patients had pain reduction

following GKRS with the average time to initial pain reduction

being 5.5 months and the median time to 50% pain reduction

being 17 months. In terms of pain relief, 6 out of the 8 patients

achieved >50% VAS pain score reduction with the average score

dropping from 9.5 to 3.5 within 24 months of the follow-up

period. Even within 1 year, the average VAS score significantly

dropped from 9.4 to 5.5. In addition, there was improvement of

the SF-36v2 quality of life survey with a mean increase of

48.16% and the EQ-5D survey with a mean increase of 45.16%.

During the last follow-up, 5 out of the 8 patients reported >50%

VAS reduction. There was also improvement for the MPQ

(mean: −16.05%), the EQ-5D (mean: 35.48%), and SF-36v2

(mean: 35.84%) at the 24 month follow up. There were no

lesion-related adverse effects that were seen in any of the

patients. Pain did recur in one of the patients at the 6-month

follow-up and in another patient at the 24-month follow up.
Radiofrequency ablation

Radiofrequency thermal ablation creates a lesion via heat

that is generated by an oscillating electrical field in the region

of interest (36, 37). Intracranial electrodes are coupled to a RF

generator that sends alternating electrical currents (at a
Frontiers in Pain Research 05
frequency of 500,000 Hz for most modern machines) (9, 37).

As a result, the ions in the nearby region oscillate as well

producing friction and heat. Generally, RF thermal ablation

results in distinct lesion borders that can be monitored

intraoperatively; however, the size and shape of the lesions

can be variable and there is a risk of surgical complications as

the electrode is passed through the brain.

Jeanmonod et al. have published several studies on the

treatment of chronic pain targeting the CL thalamus (16, 38).

In the largest, they performed RF thermal ablation on 96

patients who had chronic neuropathic pain. The patients

suffered from a variety of conditions with 58% having lesions

in the primary afferents, 21% having a pure central lesion,

and the remaining 21% having a mixed central plus

peripheral lesion. It is important to keep in mind 5 patients

in this study suffered from neuropathic pain secondary to

cancer. The mean age of the patients was 56 years and mean

time between pain onset and CLT was 7.5 ± 8 years. Pre- and

post-operative pain assessments were measured using pain

type, pain quality, VAS, and drug intake. Pain was further

categorized into three different types: continuous (C),

intermittent (I), and allodynic. The mean maximum pre-

operative VAS was 85/100 ± 10. Overall pain relief resulted in

a VAS 45.7 ± 39.6% with 53% of the patients estimating

greater than 50% pain reduction, while 18% of the patients

experienced complete pain relief. Further analysis of the data

showed that intermittent pain was reduced to a greater extent

and in more people than continuous pain perhaps indicating

higher resistance of continuous pain to CLT. The mean pain

relief estimated by patients with continuous pain alone or in

combination with intermittent pain was 20.4 ± 25.8% in

contrast to the mean pain relief of 66 ± 39.2% in patients with

intermittent pain alone. In addition, thermal and

proprioceptive qualities of allodynic pain were found to be

more resistant to surgery. 31.6% of the patients had lower post-

operative drug usage after the surgery. There were short-term

complications in 10 patients during the first years of the study.

These included intraventricular bleeding (n = 1), thalamic edema

(n = 2), and partial and partially reversible pretectal deficits (n =
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5). This was resolved in later years with no further complications

following the use of different instrumentation, precise localization

of the CLp, and an altered electrode route.
MR-guided focused ultrasound

MRgFUS thermal ablation is a novel technique that creates a

lesion using high intensity ultrasound beams (39). These beams

are absorbed by the tissue in the target region and are converted

to heat, causing tissue destruction (9, 39, 40). The ultrasound

beams are created using a hemispheric phased array of

transducers that are affixed to the skull. This allows the

ultrasound beams to traverse the maximum available skull

area to reach the target so as to avoid overheating and

resultant brain damage. Some advantages of this technique

include intraoperative monitoring, distinct lesion borders, and

immediate results; however, this technique can only be used

in central areas of the brain and the machinery causes

claustrophobia in some patients.

The first use of MRgFUS for centrolateral thalamotomies

was conducted on 12 patients with either central or peripheral

causes for neuropathic pain (40). The patients ranged from 45

to 75 years old and had a mean duration of pain of 8.5 years.

Three patients had inadequate lesions for the procedure, thus

only the nine patients considered to have had the full

treatment were included in the final results. These patients

had lesions of 3–4 mm in diameter with mean peak

temperatures at 53 ± 3.3°C. Thermocoagulative effects were

seen from 50°C onwards with 100% necrosis being achieved

around 55°C–57°C. Pre- and post-operative outcomes were

measured using McGill Pain Questionnaire (MPQ), Visual

Analog Scale (VAS), and global postoperative pain relief. The

mean preoperative VAS score was 59.5/100 with the mean

postoperative VAS score being 34.3/100 at 3 months and 35.3/

100 at 1 year, a 42% and 41% improvement respectively.

These patients experienced a mean pain relief of 49% at the

3-month follow-up and 57% at the 1-year follow-up. In

addition, most of the patients had acute pain relief right after

the surgery with a mean pain relief of 55% right after and

71.1% 2 days after. Six of the patients also had immediate and

long-term somatosensory improvements. During the course of

the study, there was one complication that resulted in

ischemia of the motor thalamus secondary to a hemorrhage.

In light of this incident, a cavitation detector was

implemented, and the lesion temperatures were kept below

60°C for the remaining patients.

Another study conducted by Jeanmonod et al. focused on

the use of MRI-guided focused ultrasound CLT albiet more

specifically for trigeminal neuralgia (41). Eight patients with a

mean age of 62 ± 12 years and a mean symptom duration of

17 ± 12 years were treated. Patients were either classified as

idiopathic, classical, or secondary. Five of the patients had
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previous surgical interventions. Pre- and post-operative pain

assessments were measured using McGill Pain Questionnaire

(MPQ), Visual Analog Scale (VAS), and an estimation of pain

relief by the patient. Final lesion temperatures were between

54°C and 58°C. The mean pain relief as stated by patients was

51% at 3 months, 71% at 1 year and 78% at the longest

follow-up. This corresponds to pain reduction in 63% of

patients at 3 months, 88% at 1 year and 100% at the longest

follow-up. The mean preoperative VAS score measuring

paroxysmal pain was 80/100. At the 3-month follow-up the

mean VAS score dropped to 12/100, with the 1-year follow-up

and longest-term follow ups having a mean VAS score of 10/

100. There were no long-lasting adverse effects that were

noted to be caused by MRgFUS of the CL thalamus.
Discussion

This review highlights the physiologic, anatomical, and clinical

basis for the use of various ablative techniques of the CLp thalamic

nucleus and their respective outcomes for the treatment of chronic

neuropathic pain not relieved with alternative medical or surgical

interventions. A significant proportion of patients in the included

studies benefited from CLp thalamotomy. The initial pain relief

produced by the lesions is thought to be the result of the

immediate cessation of low-frequency signals typically produced

by the CLp and increased inhibition of GABAergic interneurons

throughout thalamocortical modules that results in reduced high

frequency signals within various cortical areas responsible for

pain. But it is further known that the thalamocortical module has

a tendency to resist change (21, 42). As the thalamocortical

module slowly returns to normal, external factors like the patient’s

goals, the patient’s attitude, and other social factors may also play

a role in the resumption of normal thalamocortical activity (16).

In many of the included studies there were technical and

procedural complications that could be attributed to operator

technique and lack of experience within the respective ablative

modality rather than unintended treatment effect. The

complications seen in Jeanmonod et al. ablation using RFA

were resolved in the later years of the study as a more precise

localization of the CLp was uncovered along with the use of

different instrumentation and electrode routes. Similarly, in

his ablation of the CLp using MRgFUS, following the

implementation of a cavitation detector and lower lesion

temperatures, no further complications were seen.

Additionally, it is important to note that in none of the

studies were there any long-term adverse effects that could be

attributed to the lesion itself. There are likely two main

reasons: first, that the CLT plays the role of a dysfunctional

regulator in the setting of chronic pain and therefore it does

not serve its normal role anymore. Many of the sensory and

motor inputs from the spinothalamic and spino-reticulo-

thalamic tracts no longer function in the context of chronic
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pain. Therefore, lesions to this area produce little to no

somatosensory deficits. In addition, compared to other medial

thalamic targets, the CLp is farther away from the lateral

thalamus and particularly the ventral posterior region, thereby

reducing the chance of iatrogenic injury and expected

morbidity associated with these regions.

In many of the instances, patients achieved relatively long-

term pain relief, with some achieving greater than 50%

reduction in their pain even 2 years after the procedure.

Comparing different surgical modalities for CLT, Gamma

Knife has the longest onset until pain relief—an average of 5.5

months for initial pain relief and 17 months to achieve a 50%

pain reduction. In cases when immediate pain relief is needed,

other therapeutic options for CLTs are recommended.

Furthermore, MR-Guided Focused Ultrasound provided

similar or greater pain relief than the other modalities with

fewer complications. SRS and MRgFUS, unlike RF ablation,

can target the region of interest without disrupting neural

structures along the planned trajectory.

It is important to recognize that three out of the four papers

presented were published by the same author. Preliminary

attempts resulted in more than desired complication rates. It

is safe to say that the experience with the ablative target, CLp,

and with the respective ablative modality is crucial for

achieving maximum safety and clinical success and the above

results should be considered appropriately.

Additionally, a prominent subset of patients who suffer from

chronic neuropathic pain include cancer patients in which the

prevalence is estimated to be as high as 40%. This pain can either

arise from the disease burden itself, or as a result of various

chemotherapeutic and radiosurgical treatments. Within this

population, the pain can become opioid-resistant. This leaves

patient with few remaining options for adequate pain control. In

a review of patients who underwent SRS medial thalamotomies,

42% of whom had cancer-related pain, the majority of patient

had meaningful pain reduction; and more posteriorly placed

lesions were associated with better outcomes (7).

Within the above referenced trials, there was only a small

number of patients who were underwent thalamotomy for

cancer-related neuropathic pain. However, despite the lack of

strong evidence in the form of randomized control trials and

large sample sizes, the reader should remain optimistic that

the presented results may translate to wider populations with

continued investigation.
Conclusion

There are multiple ablative modalities that target the central

lateral thalamus for the treatment of chronic neuropathic pain.

Current physiologic, anatomical, and clinical evidence consists of

only a few small patient cohorts, many of which do not exclusively

investigate cancer-related, or treatment-induced causes of pain.
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But it is our opinion that these provide reassuring support for

continued investigation. Central lateral thalamotomies offers an

effective, long-lasting pain target for ablative treatment of chronic

neuropathic pain without the resultant neurological and

somatosensory deficits commonly seen with other ablative targets.

MR-Guided Focused Ultrasound may prove to be an invaluable

tool in the neuro-ablative armamentarium for the treatment of

refractory chronic neuropathic pain.

Given that each technique has its own strengths and criteria

for use, it is ideal that we have numerous treatment options

available. It is important to identify which treatment parameters

and/or techniques, and in which patient populations, a CLT

may provide patients with good long-term pain control.

However, as this technique remains investigational, its use

should continued to be monitored under the purview of an

institutional review board. Additional, larger, randomized,

adequately controlled trials focused on specifically cancer-

related and chemotherapy induced causes for the management

of refractory chronic neuropathic pain are necessary prior to

any further more widespread therapeutic adoption.
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