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Non-invasive neuromodulation of
the cervical vagus nerve in rare
primary headaches
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Primary headache disorders can be remarkably disabling and the therapeutic
options available are usually limited to medication with a high rate of adverse
events. Here, we discuss the mechanism of action of non-invasive vagal nerve
stimulation, as well as the findings of the main studies involving patients with
primary headaches other than migraine or cluster headache, such as hemicrania
continua, paroxysmal hemicrania, cough headache, or short-lasting neuralgiform
headache attacks (SUNCT/SUNA), in a narrative analysis. A bibliographical search
of low-prevalence disorders such as rare primary headaches retrieves a moderate
number of studies, usually underpowered. Headache intensity, severity, and
duration showed a clinically significant reduction in the majority, especially those
involving indomethacin-responsive headaches. The lack of response of some
patients with a similar diagnosis could be due to a different stimulation pattern,
technique, or total dose. The use of non-invasive vagal nerve stimulation for the
treatment of primary headache disorders represents an excellent option for
patients with these debilitating and otherwise refractory conditions, or that
cannot tolerate several lines of preventive medication, and should always be
considered before contemplating invasive, non-reversible stimulation techniques.
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Introduction

Migraine and cluster headache apart, the International Classification of Headache

Disorders, 3rd edition (ICHD-3), contains other disabling primary headaches; among

these are trigeminal-autonomic cephalalgias, including hemicrania continua and chronic

paroxysmal hemicrania, or the short-lasting unilateral neuralgiform headache attacks, and

more than a dozen primary headaches classified as “other,” such as cough headache,

hypnic headache, or exertional headache (Table 1) (1).

A majority of these headaches have a low prevalence rate, and the therapeutic

armamentarium is usually limited to pharmacological options with a wide range of side

effects, such as indomethacin or antiepileptic medications (2).

Vagal nerve stimulation (VNS) was first investigated in 1990 for the treatment of

intractable epilepsy (3, 4). In this review, we will cover findings related to non-invasive,

transcutaneous cervical (nVNS). The United States Food and Drugs Administration

approved gammaCore (Figure 1) for the acute and preventive treatment of migraine

headache in adults and adolescents, adjunctive preventive in adults with cluster headache,

and acute treatment in episodic cluster headache, and recently, also for adults with

hemicrania continua and paroxysmal hemicrania (5).
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TABLE 1 Main features of the primary headaches treated with nVNS, modified from the ICHD-3, International Classification of Headache Disorders, 3rd
edition.

Hemicrania
continua

Paroxysmal hemicrania SUNA Primary cough headache

Frequency Persistent >5 attacks/24 h >1 attack/24 h Unspecified

Chrono-biology
of headache

Present for >3 months At least 20 attacks
Episodic: At least two bouts lasting from
7 days to 1 year (when untreated) and
separated by pain-free remission periods
of >3 months
Chronic: Occurring without a remission
period or with remissions lasting <3
months, for at least 1 year

Unspecified number
Episodic: At least two bouts lasting from 7
days to 1 year (when untreated) and separated
by pain-free remission periods of >3 months
Chronic: Occurring without a remission
period or with remissions lasting <3 months,
for at least 1 year

2 attacks

Duration Constant 2–30 min 1–600 s 1 s–2 h

Description Strictly unilateral, with
exacerbations of moderate
or greater intensity

Severe unilateral orbital supraorbital
and/or temporal pain

Moderate or severe unilateral head pain, with
orbital, supraorbital, temporal, and/or other
trigeminal distribution and occurring as single
stabs, series of stabs, or in a saw-tooth pattern

Sudden onset. Induced by and
occurring only in association
with coughing, straining, and/or
Valsalva manoeuvre

Indomethacin
response

Responds fully to therapeutic doses of indomethacin NA NA

Cranial-
autonomic
symptoms

At least one of the following, ipsilateral to the pain
(a)conjunctival injection/lacrimation
(b)nasal congestion and/or rhinorrhoea
(c)eyelid oedema
(d)forehead and facial sweating
(e)miosis and/or ptosis

If cranial-autonomic symptoms are absent, a sense of restlessness or agitation, or aggravation of the pain by movement
is experienced.

NA

Not better accounted for by another ICHD-3

nVNS, non-invasive vagus nerve stimulation; NA, not applicable.

FIGURE 1

Schematic representation of the electrical parameters of the gammaCore device: 5 kHz sine wave burst lasting for 1 ms (five sine waves, each lasting
200 μs), repeated once every 40 ms (25 Hz), generating an output of 60 mA at 30 V. LI, load impedance; MO, maximum output.
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Literature review strategy

We performed a narrative review of the literature using PubMed,

EMBASE, and Web of Science on September 2022. Keywords

included primary headaches 3.2–4.10 from the ICHD-3 (1) AND

“gammacore” OR “vagus nerve stimulation” and “pathophysiology”

AND “gammacore” OR “vagus nerve stimulation.” Articles
Frontiers in Pain Research 02
addressing the mechanism of action and translational research that

help comprehending the pathophysiology of vagus nerve

stimulation were included. The search included publications in

English and Spanish. Individual case reports were included.

Additional information was obtained from abstracts presented in

international conferences. There were no exclusion criteria, given

the low number of studies in this specific topic.
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Mechanism of action

The first time that electrical VNS was used in research was in

an animal model in 1952, to demonstrate that the effects observed

following carotid compression, spontaneous movements, were due

to the neurogenic component and not to blood pressure change (6).

Consistent with the neurovascular pathophysiology of primary

headache disorders (7), the efficacy of VNS does not seem to

involve vascular changes, as mentioned in a 2015 abstract of a

pilot study (8).

The mechanism of action of VNS in primary headache disorders

has not been fully elucidated. Its effects are multiple and have been

collated into four areas, namely, nociceptive modulation,

neurotransmitter regulation, cortical spreading depression, and

autonomic effects (9). The anatomical basis of the therapeutic effect

of nVNS is likely to be the connection between the vagus nerve

with relevant central nervous system structures (Figure 2). Among

them, the key intersection in the medulla with the nucleus tractus

solitarius (NTS) is important. The NTS is activated by nociceptive

afferents from intracranial structures innervated by the trigeminal

nerve (10) and projects in a topographic fashion to several higher

structures, including medullary structures, such as the reticular

formation or the periaqueductal grey. NTS also projects ipsilaterally

to the parvicellular part of the ventral posteromedial thalamic

nucleus (11) and connects with the caudal parts of the spinal

trigeminal nucleus and thus the trigeminocervical complex (12).

The spinal part of the trigeminal nucleus and the other three

vagal nuclei, the NTS, nucleus ambiguous, and dorsal motor
FIGURE 2

Structures and neurotransmitters involved in the mechanism of action of vag
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nucleus, are highly interconnected (13, 14). The antinocifensive

effect of VNS in rats can be inhibited by the administration of

gamma aminobutyric acid A and serotonin receptor antagonists in

the upper spinal cord, causing an effect similar to that of

sumatriptan (15). The mechanism of action of VNS also involves

other neurotransmitters, and among these is the opioidergic system

(16), especially through the activation of delta opioid receptors (17).

Electrical stimulation of vagal afferents is capable of directly

altering the response of trigeminal and trigeminothalamic

neurons that have been stimulated with noxious inputs in the

orofacial region of cats. These were wide-dynamic-range neurons

that responded both to tactile stimuli and to painful heat stimuli.

Continuous stimulation at 5 Hz, 3 ms, 2 mA inhibited a majority

of the heat-induced neuronal responses, whereas one-third either

remained unaffected or were facilitated. Intermittent stimulation

before the test stimulus was assessed in Aδ and C-fibres,

delivering seven pulses at 333 Hz, 5 mA, in 200 ms, with similar

results of inhibition or inactivity (18). In rats, the application of

VNS for 24 h at 2 mA intensity, 20 Hz frequency, 0.5 ms pulse

width, and a duty cycle of 20/18 s in ON/OFF, respectively,

reduced the responses to formalin injected in trigeminal areas, as

compared with sham stimulation (19). In another study,

continuous VNS at 10 Hz suppressed trigeminal responses

evoked by dural electrical stimulation in 48% of neurons;

however, there was a 29.5% of neuron activity facilitated by VNS,

and 22.5% was unresponsive to stimulation. This difference was

first hypothesised to be due to the recruitment threshold of the

different types of neurons, with rapidly conductive pathways
al nerve stimulation. Stars indicate changes in regional brain flow.

frontiersin.org

https://doi.org/10.3389/fpain.2023.1062892
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Villar-Martinez and Goadsby 10.3389/fpain.2023.1062892
needing a lower intensity of stimulation, and high intensity stimuli

would activate slowly conducting pathways and promote an

antinociceptive effect; however, it may be actually affected by

descending pain control mechanisms (20). Indeed, the beneficial

effect might not even be dependent on C-fibres (21, 22). Another

study evaluating single pulses of VNS in dural and superior

salivatory nucleus–evoked trigeminocervical firing found the

beneficial effect to be dose-dependent and side-independent (23).

The central activity is further supported by studies assessing

VNS in processes with higher structures implicated in pain

processing. Activation of the trigeminal-autonomic reflex is

significantly inhibited by nVNS, which involves several central

structures, including the pontine nucleus, hypothalamus, or

parahippocampal gyrus (24, 25).

Associated symptoms involving central sensitisation processes

such as allodynia also respond to VNS stimulation, with a

reduction in extracellular glutamate (26), and a modulation of

the nociceptive withdrawal reflex is also possible following VNS,

with an increase in the threshold to stimuli in animals and

humans’ withdrawal effect on healthy subjects (27).

Electrophysiological studies support a modulation of the pain

matrix at cortical levels (28), and a direct or indirect cortical

effect could also be inferred from animal studies showing a

modulation of cortical spreading depression (29, 30).

Neuroimaging research supports the role of VNS in modulating

the activity of brainstem and supratentorial structures. From studies in

epileptic patients with cortical frontal and bitemporal in H2
15O PET

scan 2 milliamps 30 Hz 60 s, regional cerebral blood flow (rCBF)

was increased in the ipsilateral structures of the left posterior

cerebellum and left putamen and in the contralateral areas of the

right middle temporal gyrus and right thalamus. Larger increases

were seen in the cerebellum and thalamus in the patient with the

best clinical response (ipsilateral cerebellum and contralateral

thalamus) (31). Dorsal medulla and somatosensory cortex

contralateral to the stimulation, hippocampus, and amygdala can

also present alterations in rCBF in participants with different VNS

stimulation patterns (32). More recent studies assessing

transcutaneous VNS on healthy subjects using functional MRI

found significantly activated primary vagal projections, remarkably,

an activation of the NTS and deactivation of the spinal trigeminal

nucleus, among others (33). At 15 V, cervical VNS is capable of

eliciting a vagal response in more than 80% of participants (34).

An inflammatory component involving cytokines has been

suggested to be part of the pathophysiology, outside the central

nervous system, of other primary headaches (35, 36). Assuming a

possible regulation of inflammatory mediators through a

cholinergic pathway (37), one study found changes in cytokine

levels in migraineurs following treatment with nVNS (38) that

were, however, not significantly different in comparison with

those of controls in previous studies (35, 36).
Efficacy in headache

Several studies have demonstrated an excellent safety profile

(39–42) and preliminary efficacy (39–41) in episodic and chronic
Frontiers in Pain Research 04
migraine, with a reduction in headache intensity, severity, and

duration of migraine attacks in three open label trials, two of

them using the stimulation acutely. Participants with menstrual

and menstrually related migraine (43) and migraine in

adolescents (44) showed a reduction in the number of migraine

days and analgesic consumption and successfully aborted attack,

respectively, when treated with nVNS. Three randomised

controlled studies included participants with cluster headache,

who also presented a good tolerability to the device, with

especially good efficacy in patients with the episodic form. The

Prevention and Acute Treatment of Chronic Cluster Headache

(PREVA), against standard of care, showed a significantly greater

reduction in the number of attacks per week vs. controls (−5.9
vs. −2.1, respectively), ACT1 demonstrated response rates of

34.2% vs. sham 10.6% (P = 0.008) and ACT2 showed similar

results, both in patients with the episodic form, with an efficacy

of 48% vs. 6% in the sham group (P < 0.01) (45–49). nVNS has

proved cost-effective in other trigeminal-autonomic cephalalgias,

with a lower cost in combination with the standard of care acute

treatment approach, higher benefits in terms of quality-adjusted

life years, and potentially reduced visits to clinics and emergency

departments (50).
Efficacy of nVNS in indomethacin-sensitive
headache disorders

Apart from cluster headache and migraine, nVNS has

been reported to be effective in other primary headaches,

especially indomethacin-sensitive headaches. However, given the

rarity of these disorders, the quality of the study is usually

power-limited, with a small number of participants given the

challenging task to organise a randomised, placebo-controlled

study in headache types with low prevalence (51). Indomethacin-

sensitive headache disorders can be difficult to treat when the

subject does not tolerate them or has a contraindication for

indomethacin (2).

Hemicrania continua
The first study reporting the efficacy of nVNS in other

headaches described the effect on participants with hemicrania

continua. In 2013, Nesbitt et al. published the test results of two

patients who were previously responsive to stimulation of the

occipital nerve. Both patients reported an improvement in the

background pain and in painful autonomic exacerbations and

would recommend the device to other patients (52). The

subsequent case reporting a beneficial effect in indomethacin-

responsive headaches was a 58-year-old patient with a long

history of hemicrania continua. The patient noticed an

immediate beneficial effect in daily headache severity, with a

significant reduction from 8/10 to 5/10 in a numeric score,

following the first stimulation. A reduction in painkiller

consumption and an improvement in quality of life and anxiety

and depression scores were also significant. The patient used a

total daily dose of 540 s of stimulation, plus the possibility of

360 s more during acute attacks. This patient used the maximum
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intensity of stimulation permitted by the device (Table 2) (53).

Unfortunately, this is the only study mentioning the intensity of

VNS stimulation achieved during treatments.

Tso et al. described the efficacy of VNS in a retrospective

description of 14 patients, 8 with hemicrania continua and 6 with

chronic paroxysmal hemicrania (51). Seven of the participants

with hemicrania continua had a reduced severity of the

continuous pain, and two of them reported reduced severity and

duration of the exacerbations with acute treatment. One of the

patients with paroxysmal hemicrania became free from attacks,

and the other three patients reported a reduction in attack

severity, two a reduction in frequency and one in duration. The

patients received daily 480–1,080 seconds of treatment and were

followed up between a period of 3 months and 5 years.

Four patients with hemicrania continua receiving acute pulses

summated to 540 s of preventive stimulation per day were assessed

by Trimboli et al. Continued treatment for 3 months was beneficial

to two patients. One of them presented a 72.7% reduction in

headache exacerbations and 1.8/10 in headache severity.

However, exacerbations reduced of only 27.3% after 11 months.

The second participant had a reduction from 10 to 1 day of

exacerbations per month on the third month, which persisted at

two monthly exacerbations after 10 months. Headache intensity

reduced from 5.9/10 to 2.5/10 on the third month and persisted

at 2.9/10 at the end of follow-up (49).
TABLE 2 Participant’s characteristics and stimulation parameters of studies a

Author
(reference)

Year Diagnosis (N) Type of
study

Female
%

Age
(SD)

Nesbitt et al (52) 2013 HC (2) Open Label 50% 56–61

Eren et al (53) 2016 HC (1) Open Label 0% 58

Tso et al (51) 2017 HC (9), PH (6) Retrospective 73.30% 42.9

Trimboli et al
(49)

2018 RTT CM (23), CCH
(12), HC (4), SUNA

(2)

Open Label 54% 44
(median

Kamourieh et al
(54)

2019 CPH (8) Retrospective 37.50% 48

Moreno-Ajona
et al (55)

2021 PCH (1) Open Label 0% 53

Author
(reference)

Acute Use Preventive
use

Pulses
per dose

Seconds
stimulatio

Nesbitt et al (52) Yes NR NR NR

Eren et al (53) Three pulses
acutely

Morning and
evening

3 90

Tso et al (51) NR Yes 2–4 120

Trimboli et al
(49)

Three
consecutive

doses

Three times a
day

2 90

Kamourieh et al
(54)

No Three times a
day

2 120

Moreno-Ajona
et al (55)

No Three times a
day

2 120

Aa, amplitude adjustment; CCH, chronic cluster headache; CM, chronic migraine; CPH

muscle contraction; NA, not applicable; NR, not reported; PCH, primary cough heada

Frontiers in Pain Research 05
A more recent study by Kamourieh et al. found nVNS to be

effective at 720 s per day, in reducing headache frequency in

eight patients with chronic paroxysmal hemicrania, who had

responded initially to indomethacin, but could not tolerate it,

and had failed to respond to an average of three preventive

medications. At 3 months of treatment, the mean monthly

headache frequency had dropped 68%, and it had further

dropped to 75% at the end of the follow-up (both P < 0.05). A

50% improvement in headache frequency was reached between 3

and 6 months of daily treatment. Headache severity also dropped

50%, 2/10 points in a verbal scale, after 3 months, and a further

2/10 points at the end of follow-up (8/10 to 4/10). Similarly,

headache duration halved after 3 months. Anxiety and

depression scores improved significantly (54).

Cough headache
A single patient with cough headache that was responsive to

intramuscular indomethacin was reported to have headache

freedom following preventive treatment with nVNS. After 1

month of treatment up to one stimulation three times a day, the

patient started noticing an improvement in headache frequency,

severity, and duration, from 10 attacks a day at 8/10 that lasted

for 30 min to occasional attacks, rated 4/10 with a 10–20 min of

duration. At two pulses three times a day, the patient became

completely headache-free (55).
ssessing nVNS in rarer primary headaches.

Duration of
stimulation

Stimulation parameters Stimulation
details

24–32 weeks NR NR

4 weeks

Maximum 24 V and 60 mA DC
sine wave series of 5kHz for 1 ms,
repeated every 40 ms (25 Hz)

AA: patient reached
maximum level 40/40

3 months to 5
years

NR

)
> 3 months AA. Training provided

3–19 months AA, MC, Training
provided and technique

reviewed

>3 months AA, MC, Training
provided and technique

reviewed

of
n

Stimulation
intervals

Stimulation
frequency

Total
seconds

Location

NR NR NR NR

NR 2 540/24 h +
acute

Left

NR 2–3 (twice if 4
stimulations)

480–1,080/
24 h

Ipsilateral to
headache

Consecutive 3 540/24 +
acute

Either one side
or bilateral

Consecutive 3 720/24 h Ipsilateral to
headache

Consecutive 3 720/24 h Bilateral

, chronic paroxysmal hemicrania; DC, direct current; HC, hemicrania continua; MC,

che; RTT, refractory to treatment
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Efficacy of nVNS in SUNA

Only the study of Trimboli et al. assessed nVNS in two patients

with a diagnosis of SUNA, with the same stimulation parameters

and doses described previously. These patients had between 10

and 600 attacks per day, rated 7–8/10 in severity. None of them

reported any beneficial effect after 3 months on nVNS (49).
Discussion

Most papers mentioned here have reported some kind of

benefit in patients with long-lasting, debilitating primary

headache disorders that were unresponsive to several lines of

preventive treatments. For therapeutic studies, this corresponds

with the level of evidence 4, which can be difficult to improve in

disabling conditions with low prevalence. The reason why a

cohort of patients responded better to stimulation than others

with the same diagnosis is unknown. Device parameters, dose, or

duration could play a key role in treatment efficacy, and given

the clinical heterogeneity of these primary headaches, a careful

tailoring of the treatment, personalised for every individual

clinical presentation, could be considered.

In general, there has been incongruence regarding the different

methodological designs of studies, as seen in the diverse range of

electrical parameters reported in the pre-clinical models

discussed herein. Likewise, human studies assessing VNS for

heart failure presented a contrasting frequency and dose of

stimulation (56). Similarly, these methods are heterogeneous in

headache studies (Table 1). It has been proposed previously that

individually adjusted doses could have influenced the treatment

outcome (48).

One of the benefits of cervically applied nVNS is the

possibility to regulate the intensity of the stimulation by the

patient. Unfortunately, pain threshold has an inter-individual

variability. Even though pain threshold can increase in a

majority of patients following nVNS stimulation (57, 58), in

more than one-third of them, it can diminish (58). This

variability could be especially relevant in patients with a

migrainous background (59), meaning that what a subject

considers a tolerable intensity of stimulation could be

unbearable for another. In view of the fact that a majority of

people experience a headache throughout the course of their

lives (60) and the high prevalence of migraine (61), a

migrainous background, especially allodynic symptoms, should

be considered when assessing tolerability to nVNS.

Among the proposed checklist of stimulation parameters to be

reported in VNS, current (intensity) should be specified. When the

option of selecting a dose is available, and there is titration to

sensation or muscle response (such as lip pulling), the actual

dose selected should be reported (62). Most studies described in

this article included stimulation amplitude adjustments available

in their methods, but the data regarding mA of output current

have not been presented. Differences in efficacy among

neuromodulation techniques in other primary headaches such as
Frontiers in Pain Research 06
migraine (63) could be due to unstandardised settings and a lack

of knowledge about the total doses of devices other than

gammaCore. The therapeutic dose needed could also vary inter-

individually and be age-dependent: younger patients may need

higher output currents (64).

Another explanation for the disparity of results could be the

treatment duration, which was also an important factor in epilepsy

studies (65–67). Descending pain inhibition is not an immediate

effect of nVNS (68). Studies on cluster headache assessed efficacy

after 3 months of treatment (69). The results presented above

represent an example that the latency of response to preventive

treatment in primary headaches (70), also with neurostimulation,

could be demonstrated after 3 months or above.

Also, patients with hemicrania who responded to treatment

may need a significantly longer treatment schedule, as compared

with those who did not respond in a retrospective cohort, and a

higher number of total daily seconds (Villar-Martinez and

Goadsby, unpublished results).

Adherence could also represent a main issue when assessing

nVNS efficacy, as seen in migraine studies (71). Adherence

should be considered in other primary headaches when assessing

responsiveness.

A smaller and discrete device that uses transcutaneous

auricular vagus nerve stimulation has been studied in migraine.

The cutaneous distribution of the auricular branch of the vagal

nerve is heterogeneous in cadaveric studies (72). However, the

mechanism of action of auricular nerve stimulation also seems to

target central pathways and structures involved in pain

modulation. A significant modulation of activity in several

brainstem areas was seen in functional MRI, including a

decreased activity of the NTS, but also the noradrenergic locus

coeruleus, serotonergic nuclei raphe, or parabrachial nuclei, and

an increased connectivity with higher structures involved in the

pain matrix, including cortical areas such as the temporoparietal

junction or the somatosensory cortex (73). A randomised,

double-blind monocentric clinical trial comparing low and high

frequency of stimulation, showed promising results (74). At the

time of the writing of this article, we could not find any

literature referring to transcutaneous auricular vagus nerve

stimulation for other primary headaches.
Conclusion

Treatment with nVNS is well tolerated and efficacious in patients

with other primary headache disorders, especially indomethacin-

responsive headaches such as cough headache, hemicrania continua,

and paroxysmal hemicrania. As with any preventive treatment,

nVNS should be trialled for at least 3 months to consider any lack of

efficacy, and assessment of adherence and correctness of the

technique of stimulation should be granted before withdrawal.

Training should be offered and the technique assessed in

unresponsive patients. Tolerability could be inversely related to

sensitisation in patients with a concomitant migrainous background.

A more standardised way of reporting stimulation parameters is

desirable for future studies.
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