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Neuropathic pain; what we know
and what we should do about it
Peter A. Smith*

Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta,
Edmonton, AB, Canada

Neuropathic pain can result from injury to, or disease of the nervous system. It is
notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell
activation and invasion of immunocompetent cells into the site of injury, spinal
cord and higher sensory structures such as thalamus and cingulate and sensory
cortices. Various cytokines, chemokines, growth factors, monoamines and
neuropeptides effect two-way signalling between neurons, glia and immune
cells. This promotes sustained hyperexcitability and spontaneous activity in
primary afferents that is crucial for onset and persistence of pain as well as
misprocessing of sensory information in the spinal cord and supraspinal
structures. Much of the current understanding of pain aetiology and
identification of drug targets derives from studies of the consequences of
peripheral nerve injury in rodent models. Although a vast amount of information
has been forthcoming, the translation of this information into the clinical arena
has been minimal. Few, if any, major therapeutic approaches have appeared
since the mid 1990’s. This may reflect failure to recognise differences in pain
processing in males vs. females, differences in cellular responses to different
types of injury and differences in pain processing in humans vs. animals. Basic
science and clinical approaches which seek to bridge this knowledge gap
include better assessment of pain in animal models, use of pain models which
better emulate human disease, and stratification of human pain phenotypes
according to quantitative assessment of signs and symptoms of disease. This
can lead to more personalized and effective treatments for individual patients.
Significance statement: There is an urgent need to find new treatments for
neuropathic pain. Although classical animal models have revealed essential
features of pain aetiology such as peripheral and central sensitization and some
of the molecular and cellular mechanisms involved, they do not adequately
model the multiplicity of disease states or injuries that may bring forth
neuropathic pain in the clinic. This review seeks to integrate information from
the multiplicity of disciplines that seek to understand neuropathic pain; including
immunology, cell biology, electrophysiology and biophysics, anatomy, cell
biology, neurology, molecular biology, pharmacology and behavioral science.
Beyond this, it underlines ongoing refinements in basic science and clinical
practice that will engender improved approaches to pain management.
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Introduction

Diseases or lesions that affect the somatosensory system often elicit long lasting

neuropathic pain. The signs and symptoms in each individual depend strongly on the

nature of the injury as well as their sex, age, ethnicity, genetic predisposition, intestinal

microbiome, possible exposure to prior neonatal injury, personality and cultural and
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environmental factors (1–11). The predominant signs and

symptoms include bouts of spontaneous “electric shock-like”

pain, the generation of pain by non-noxious touch or cold

(mechanical or thermal allodynia) as well as hyperalgesia and

sensory disturbances. The latter may present as paresthesias,

described as a crawling or pricking sensation or tingling (12).

Some patients experience anesthesia dolorosa where the site of

injury is painful yet insensitive to touch (13). Others experience

the persistent burning pain of causalgia (14). Neuropathic pain is

often intractable (15), insensitive to the actions of NSAID’s and

resistant to the actions of opioids (16, 17). Unlike nociceptive

pain, which alerts and protects an individual from actual or

potential tissue injury, neuropathic pain persists long after

damaged tissue has healed and recovered (18, 19). Since it

appears to serve no obvious biological purpose, neuropathic pain

has long been assumed to be maladaptive (20–23).

Maladaptive or not, neuropathic pain afflicts 5%–10% of the

world’s population (15, 24, 25) and frequently presents with co-

morbidities such as anxiety, depression, irritability and sleep

disorders (12, 26).

Such high prevalence reflects the association of neuropathic

pain with a broad range of injuries and/or maladies (12, 14, 27).

These not only include peripheral nerve trauma (13, 23, 28, 29),

amputation (30), brain trauma (14, 20) or spinal cord injury

(31, 32). Neuropathic pain may also occur as a result of multiple

sclerosis (33, 34), stroke (14, 35), fibromyalgia (36, 37), small

fiber neuropathy (38), post herpetic or trigeminal neuralgia

(14, 39), migraine (40), osteoarthritis (41, 42), complex regional

pain syndromes I and II (43, 44), rheumatoid arthritis (45),

painful diabetic neuropathy (46, 47), autoimmune disease (48),

viral infections such as HIV (49–51) or COVID 19 (52) and

neuropathies associated with cancer per se (47) and/or

chemotherapy (53–55). Neuropathic pain is also prevalent in

individuals afflicted with posttraumatic stress disorder (56) and is

a positive sign of rare yet debilitating Na+ channelopathies

(57–59). In view of the prevalence of this frequently intractable

condition, there is a clear and increasingly urgent need to

develop new therapeutic approaches (14, 17, 22).

Despite the heterogeneity of the patient population and the

association of neuropathic pain with multiple clinical conditions

(27), much of the present understanding derives from studies

using peripheral nerve injury models in rodents (47, 60, 61).

Frequently used models include chronic constriction injury of the

sciatic nerve (CCI), spared nerve injury (SNI) of sciatic nerve

branches, spinal nerve ligation (SNL), chronic constriction of

dorsal root ganglia (CCDRG) and partial nerve ligation or the

Seltzer model (PNL) (60–63). This multidisciplinary review will

present a synopsis of these findings showing how they have led

to a very general understanding of pain aetiology and to the

identification of numerous potential drug targets. Despite this,

translation between the laboratory and clinic has met with very

limited success (10, 25, 64). The extent of the misalignment

between preclinical pain research and the clinical population is

becoming increasingly clear (25, 65). In view of this, clinical and

basic science strategies that seek to bridge this knowledge gap

will be presented.
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Peripheral nerve injury and the
generation and release of primary
inflammatory mediators

Peripheral nerve injury capable of causing neuropathic pain

does not usually kill peripheral neurons (66). It does however

promote Wallerian degeneration of severed axons. This is driven

by activation of Schwann cells, fibroblasts, mast cells,

keratinocytes, epithelial cells at the site of injury as well as

neutrophil, macrophage and T- lymphocyte invasion. This is

accompanied by activation of satellite glial cells and resident

macrophages within the dorsal root ganglia (DRG) (18, 67–72).

Once activated, each of these immunocompetent cell types

generate and release an assortment of pro-inflammatory primary

mediators (Table 1 and Figure 1). These include interleukins

1α, 1β, 6, 8, 15, 17 and 18 (IL-1α, IL-1β, IL-6, IL-8, IL-15, IL-17

and IL-18) (73–84), tumor necrosis factor α (TNF-α) (81, 85,

86), leukemia inhibitory factor (LIF) (87), oncostatin M (OSM)

(88), nerve growth factor (NGF) (18, 89, 90), serotonin,

histamine, and substance P (91–94), the secreted glycoproteins

Wnt3a and Wnt5a (wingless-type mammary tumor virus

integration site family, members 3A and 5A) (95, 96) and the

chemokines CCL-2 (97–99), CXCL-1 (70, 100), CXCL-4 (101)

and CXCL-12 (102–104) (Table 1). Generation of primary

mediators is accompanied by the production of reactive oxygen

and nitrogen species (ROS and NOS) such as peroxynitrite and

hydrogen peroxide (105–107). These damage mitochondria

causing them to leak ROS and components of damage associated

molecular patterns (DAMPs) (27, 108). Mitochondrial

dysfunction is emerging as a key process in pain etiology (55, 109).

Whilst some primary mediators have predominantly localized

actions, others are released into the systemic circulation (38, 82).
Generation, release and processing of IL-1β
and TNF-α in damaged peripheral nerves

Schwanncell derived IL-1α andTNF-α serve as very earlymediators

in the response of axons to injury. They recruit macrophages and

initiate molecular and cellular events in Wallarian degeneration

such as the production of additional cytokines and NGF (81).

Generation of IL-1β is brought about by activation of the Nod-like

receptor family pyrin domain containing 3 (NLRP3) inflammasone

(33, 154–156). NLRP3 is activated following the release of DAMPs

and their interaction with pattern recognition receptors (PRRs)

(157), such as Toll-like receptors (TLRs) (158, 159) and with

purinergic P2X7 receptors (159). IL-1β is released as a pro-protein

and processed into its mature bioactive form by caspase-1 (160) or

by metalloproteases 2 and 9 (MMP2 and MMP9) (161). Release of

IL-1β from macrophages, dendritic cells and neutrophils, may be

brought about via the formation of gasdermin D pores in the cell

membrane (160, 162, 163). Alternatively IL-1β release may involve

its exocytosis via panexin channels (164).

Metalloproteases also cleave themembrane bound formof TNF-α

into themature 17-kDa form (165). This and their ability to also cleave
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TABLE 1 List of primary, secondary and tertiary mediators involved in the onset and maintenance of neuropathic pain in response to peripheral nerve injury.

Primary Mediators Secondary Mediators Tertiary Mediators Receptor

Released from peripheral
immunocompetent cells following
injury and acting on DRG neurons

Released in the spinal cord and
affecting the properties of
microglia and astrocytes

Released from microglia and
astrocytes and acting upon
dorsal horn neurons

CSF-1
(68, 110–113)

CSF-1r

CCL-21
(114–116)

CXCR-3

BDNF
(117–123)

TrkB

Wnt5a
(124)

Human frizzled-5 (hFz5)

FKN (CX3CL-1)
(125–127)

CX3CR-1

CCL-2 (MCP-1)
(97, 128, 129)

CCR-2, CCR-4

CXCL-1
(70, 100)

CKCR-2

CXCL-12
(102–104)

CXCL-12
(102–104)

CXCR-4

CXCL-4
(101, 104, 130)

CXCR-4

Histamine
(92, 93)

H3, H4

IFN–γ
(131)

IFN–γ

(132)
IFN–γ IFN–γ -R

IL-17
(84)

IL-17
(133, 134)

IL-17R

IL-1β
(76, 135–140)

IL-1β
(18, 70, 75, 141–144)

IL-1R

LIF
(145)

LIF-R

NGF
(89)

TrkA

Serotonin
(146, 147)

5-HT4

Oncostatin M (88) Oncostatin M Receptor

Substance P(94, 148) NK1-R

TNF-α (or β)
(85, 149)

TNF-α or β
(68, 85, 150–152)

TNFR-1, TNF-R2

Wnt3a
(95, 153)

Human frizzled-3 (hFz3)?
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IL-1β and to produce pain when administered intrathecally has led to

the suggestion that MMP antagonists may be useful in pain

management (161). There are however no reports of use of

metalloprotease inhibitors in pain management in the clinic. This

may be due, in part, to the observation that activated MMP2 and

MMP9 cleave the mature form of NGF into biologically inactive

products (166). The effect of MMP blockade here would be to

preserve the presence of pro-inflammatory NGF. This possible

proinflammatory action of MMP blockers would tend to restrain

any anti-inflammatory/analgesic action.
Neuroinflammation and the actions of
primary mediators on primary afferent
neurons

The overall response of neuronal tissue to inflammatory

mediators is described as “neuroinflammation” (167–170). It is
Frontiers in Pain Research 03
characterized by glial cell proliferation and modulation of their

phenotype as well as increased neuronal activity. Although the

same mediators are responsible for both phenomena,

neuroinflammation should not be confused with classical

inflammation of whole tissues which is associated with redness

(rubor), swelling (tumour), heat (calor) and pain (dolor).

Administration of primary mediators in vivo promotes pain in

uninjured animals (70, 74, 135, 165) and perturbation of their

actions in nerve-injured animals abrogates or attenuates signs of

neuropathic pain (73, 75, 76, 79, 89, 92, 93, 98, 101, 104, 114,

171–173).

Primary mediators such as IL-1β, IL-17, TNF-α, CCL-2,

CXCL-12 or type 1 interferons (IFN-1) (131) interact with their

cognate receptors on primary afferent neurons to promote

extensive changes in genes coding for chemokines, cytokines,

eicosanoids, receptors, neuropeptides, signal transduction

molecules, synaptic vesicle proteins and ion channels (174, 175).

They also affect the expression of long non-coding RNA’s (176)
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FIGURE 1

Scheme to illustrate the roles of primary, secondary and tertiary mediators in the onset and maintenance of neuropathic pain in response to peripheral
nerve injury.

Smith 10.3389/fpain.2023.1220034
and microRNA’s (mIR) (177–185). The latter post-

transcriptionally regulate the protein expression of hundreds

of genes in a sequence-specific manner (186–188) to

orchestrate both immune and neuronal processes (189). The

observation that extracellular release of mIRs from rodent

DRG is increased after CCI (190) is consistent with their

suggested role in pain etiology.
Frontiers in Pain Research 04
It should be noted that the actions of primary mediators are

not restricted to peripheral nociceptors (136–138). Tactile

information from fast conducting Aβ fibres is processed

exclusively within the deep dorsal horn. After peripheral

inflammation however, inhibitory spinal circuits are

compromised so that innocuous tactile information finds its way

to pain processing neurons in the substantia gelatinosa (191). In
frontiersin.org

https://doi.org/10.3389/fpain.2023.1220034
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Smith 10.3389/fpain.2023.1220034
other words, types of afferent that do not convey pain under

normal circumstances start to signal information that is

interpreted as pain after nerve injury. This likely contributes to

the phenomenon of allodynia. Actions of primary mediators on

any type of sensory neuron may therefore have relevance to the

onset of pain.

Primary mediators that enter the blood stream promote plasma

extravasation and increased permeability of the blood-brain barrier

(192) and the blood-nerve barrier in the periphery (193). This and

the chemoattractant properties of mediators such as TNF-α (81)

facilitate the continuing recruitment of immunocompetent

macrophages, leucocytes and lymphocytes to the site of nerve

injury as well as to the spinal cord, DRG and supra-spinal

structures (70, 77, 78, 194, 195).

Although these findings point to numerous drug targets,

clinical trials that involve the perturbation of the action of

chemokines, cytokines and other primary mediators have

failed to bring forth new and effective therapeutic entities (17,

141, 196).
Importance of primary afferent hyper-
excitability and actions of primary
mediators on ion channels in peripheral
neurons

Peripheral nerve injury, via the actions of primary mediators,

leads to ectopic spontaneous activity in primary afferents that is

crucial for the onset and persistence of neuropathic pain in

humans and signs of such pain in rodent models (19, 30, 35,

197–206). Thus, suppression of aberrant peripheral nerve activity

in animal models in vivo by either optogenetic or

pharmacological methodologies (205, 207) leads to attenuation of

hyperalgesia and abatement of injury-induced allodynia.

In general, peripheral nerve injury, by the action of primary

mediators, decreases K+ channel function and increases that of

voltage-gated Na+ and Ca2+ channels, TRP channels and HCN

channels in DRG neurons (208–213). Injury-induced

changes in ion channels can also provoke bursting activity in

sensory neurons (214) that may relate to release of ATP

and its interaction with P2X3 receptors at the site of injury

and the initiation synchronous oscillations in primary

afferents (206). In addition, altered excitability may be a

consequence of mitochondrial dysfunction and chronic energy

deficit (215).

Peripheral activity after injury may affect the whole

somatosensory system. It may provoke enduring low frequency

cortical oscillations and synaptic remodeling in S1 somatosensory

cortex as well as for inducing animals’ pain-like behaviors (206).

This is supported by the observation that enhancing the

synchrony of DRG neuronal activity causes synaptic changes in

S1 and pain-like behaviors similar to those seen after spared

nerve injury (SNI).

An overview of the actions of IL-1β, TNF-α, Wnt ligands,

chemokines and other primary mediators on peripheral neurons

is presented in the succeeding sections.
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Effects of IL-1β on ion channels in
peripheral neurons

Acute application of IL-1β increases the excitability of DRG

neurons by relieving slow inactivation of tetrodotoxin (TTX)-

resistant voltage-gated sodium channels (135). IL-1β levels peak at

1 d after injury and remain elevated for ∼7 d (139) and

investigations of its longer term actions following 5 d–6 d exposure

reveal different effects on different neuronal subpopulations (136).

These are observed at remarkably low concentrations (216).

The long term effects of IL-1β on small IB4 -positive neurons

(most of which are non-peptidergic, low threshold

mechanoceptors) include a reversible increase in action potential

(AP) amplitude as a result of increased tetrodotoxin (TTX)-

sensitive Na+ current and an irreversible increase in AP duration

as result of decreased Ca2+- sensitive K+ conductance (138).

The effects of IL-1β on medium sized neurons, which are the

cell bodies of Aδ fibres, are dominated by decreases in K+

currents (137). Although the precise ionic mechanisms differ,

IL-1β increases the excitability of both small-diameter IB4-

positive neurons and medium-diameter neurons. By contrast,

large neurons which are the cell bodies of fast conducting Aβ

fibres and IB4-negative neurons, which are predominantly

peptidergic nociceptors, are little affected (136).
Effects of TNF-α on ion channels in
peripheral neurons

Macrophage and Schwann cell derived TNF-α is upregulated at

the site of injury following CCI (85) and its peripheral application

promotes ectopic activity in nociceptors in vivo (217). This effect

is enhanced after SNL injury (173). Microinjection of TNF-α

lowers mechanical pain threshold in nerve-injured animals in a

similar fashion to IL-1β. Most actions of TNF-α in DRG involve

modifications of Na+ channel function (218) rather than effects on

K+ channels (210). For example, TNF-α upregulates Nav1.7 (219)

as well as slow persistent TTX-resistant Na+ channel currents (149).
Effects of Wnt ligands on excitability of
peripheral neurons

Intraplantar injection of Wnt3a promotes mechanical

hypersensitivity and thermal hyperalgesia in uninjured animals. It

also upregulates the ionotropic ATP receptor P2X3 as well as

TRPA1 receptor channels. P2X3 receptors may be activated by the

passive release of ATP from damaged cells leading to increased

sensory neuron excitability (153). Wnt3a also stimulates

production of TNF-α and IL-18, thereby augmenting the overall

inflammatory response
Effects of chemokines on peripheral neuron
excitability

Several chemokines excite DRG neurons (97, 220).
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CCL-2 signals through CCR-2 to increase nociceptor

excitability (97, 128, 221, 222). Its effectiveness is increased after

DRG compression (CCDRG) (223). CCL-2 is expressed by DRG

neurons where it is packaged into large dense-core

vesicles. Release of vesicles can be induced by depolarization in a

Ca2+-dependent manner (224). This autocrine function could

thereby amplify injury-induced excitatory processes evoked in

DRG.

CXCL-12 signalling through its cognate receptor, CXCR-4

increases excitability of Nav1.8-positive DRG neurons and this

plays a role in the generation of mechanical allodynia as well as

small-fiber degeneration in a mouse model of peripheral diabetic

neuropathy (101). CXCL-12 and CXCR-4 are upregulated after

CCDRG. In addition, intrathecal injection of a CXCL-12

antagonist or a CXCL-12 neutralizing antibody reverse allodynia

after SNI or CCDRG (103, 104, 130). These findings suggest that

peripheral CXCL-12/CXCR-4 signaling contributes to pain after

damage to the DRG per se (104).
Effects of prostaglandins, histamine and
serotonin on ion channels in peripheral
neurons

In addition to secreted proteins, chemokines, cytokines and

growth factors, several small molecules produced at the site of

injury act as primary mediators. These include prostaglandin E2,

bradykinin, serotonin (146) and histamine (92); all of which

increase the excitability of DRG neurons (131, 147). Actions of

both serotonin and PGE2 involve augmentation of TTX-resistant

INa in nociceptors (225).
Peripheral neuron ion channels as
therapeutic targets

As already mentioned, manipulation of the actions of

cytokines, chemokines or other primary mediators has so far

failed to bring forth any promising therapeutic approaches. On

the other hand, the crucial role of primary afferent

hyperexcitability and spontaneous activity in pain etiology

(30, 199, 202, 205) draws attention to the potential use of ion

channels as therapeutic targets (59, 208–210, 226).
Voltage-gated K+ channels

DRG neurons express a variety of K+ channel subtypes

including delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3,

3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and

7.5), ATP-sensitive K+ channels (KIR6.2), Ca2+-activated K+

channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+ -activated K+

channels (KCa4.1and 4.2) and two pore domain leak channels

(K2p; TWIK related channels). These channel subtypes are

preferentially and differentially expressed in various neuronal

subpopulations and attempts to restore K+ channel function have
Frontiers in Pain Research 06
involved the use of channel activators (210). Although Kv7

activators are quite effective in rodent models (227, 228),, the

anticonvulsant, retigabine failed to reach its efficacy endpoint in

a trial for post herpetic neuralgia (17).. Nevertheless, as will be

outlined below, better phenotypical stratification of patents into

clusters on the basis of quantitative measurements of their

pathophysiology may reveal clinical efficacy of drugs that failed

to demonstrate effectiveness in large groups of patients (8). In

the case of K+ channel activators, over 200 new molecules are

currently under investigation (227).

Mechanisms that control K+ channel expression and function

may present additional therapeutic targets. For example, the

expression of Kv7.2, Kv1.4 and KCa1.1 is controlled by the

histone methyltranferase G9a (229). Pharmacological inhibition

of G9a attenuates neuropathic pain in rodent models (230, 231).

Although there is considerable interest in developing histone

methyltransferase inhibitors in cancer treatment (232), none have

been examined for treatment of neuropathic pain.
Voltage-gated Na+ channels

A variety of Na+ channel blockers show promise as therapeutic

agents; inhibition of Nav1.7, 1.8 or 1.9 seems particularly effective

(208, 233, 234). Because it is not found to any great extent in non-

neuronal vital tissue such as heart or skeletal muscle, Nav1.7

represents an especially attractive target for therapeutic

manipulation (59, 208). Indeed, some level of success has been

realized in phase II clinical trials for trigeminal and diabetic

neuralgia with the Nav1.7 blocker, vixotrigine (235, 236) but

phase III trials remain at the planning stage (235).

Expression of Nav1.8 in DRG neurons is controlled by NGF

(237) and the NGF binding antibody tanezumab is effective in

various human pain states (238). Small molecule, peripherally-

acting TrkA inhibitors have also been identified (239–241).
High voltage-activated Ca2+ channels

DRG neurons express high voltage-activated (HVA) Ca2+

channels; Cav2.2 (N-type) as Cav2.1 (P/Q-type) and Cav1.2

(L-type) (242). Low voltage-activated (LVA) channels (T-type)

are also present, notably Cav3.2 and 3.3 (243–245).

Because Cav2.1 (P/Q type) and Cav2.2 (N-type) Ca2+ channels

contain a synaptic protein interaction site (246) they are closely

associated with the synaptic vesicles that govern neurotransmitter

release. In view of this, the role of Ca2+ channels in controlling

neuronal excitability and reports of upregulation of both HVA

and LVA Ca2+ channels by injury (247–249), Ca2+ channels

emerge as an important therapeutic target for pain management

(208, 209, 226, 250–252). This potential has been realized by the

use of the of N-type Ca2+ channel blocker ziconotide as a last

resort for pain that is refractory to all other treatments (253).

The drawback is that ziconotide needs to be delivered directly to

the spinal cord via the intrathecal route (254). In view of this,

there is strong interest in developing orally effective N-channel
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blockers (209, 226, 251, 253) and although several promising

agents have appeared in the last five years, the ubiquitous

distribution of N-type channels throughout the nervous system

means that side effects of such agents may present a serious

barrier to drug development.

The function of N-type Ca2+ channels is modulated by Gi/o

coupled agonists (255, 256) but the clinical efficacy of the α2-

adrenoceptor agonist, clonidine is limited to subsets of patients

within the postherpetic neuralgia, complex regional pain syndrome

or diabetic neuropathy cohorts (257). Nevertheless, this documented

efficacy of clonidine has led to an extensive in silico modelling study.

Compounds with nanomolar affinities for the α2a-adrenoceptors

and limited ability to recruit arrestin β have been identified and

tested in animal models where they behave as non-sedating, orally

effective agents that attenuate signs of neuropathic, inflammatory

and acute pain (258). The potent α2-adrenoceptor agonist, xylazine

has been available for over 30 years, but its use has been restricted to

pain management in veterinary medicine as it promotes severe

hypotension and dangerous bradycardia in humans (259). It also

has documented abuse potential (260).

In addition, the therapeutically important gabapentinoids

(16, 261) modulate HVA Ca2+ channel function by binding to

their α2δ–1 regulatory subunits (262). Gabapentinoids may

antagonise the actions of the endogenous ligand thrombospondin

(263). This means that perturbation of thrombospondin

expression and/or function may present a novel therapeutic route

to pain management. The α2δ–1 subunit plays a major role in

Ca2+ channel trafficking, expression and function (22, 248, 264,

265) and deletion of the α2δ–1 gene delays development of

mechanical hypersensitivity that follows peripheral nerve damage

(262). α2δ–1 is also implicated in controlling the expression of

Ca2+ permeable AMPA channels (266) and NMDA receptor

channels (267). It is likely therefore that the therapeutic benefits

of gabapentinoids involve interactions with several channel types.
Low voltage-activated Ca2+ channels

LVA T-channels control nociceptor excitability (226, 268–270)

and are involved in transmitter release from primary afferent

terminals (271, 272). In some patients, gain of function mutations

of Cav3.1 contribute to trigeminal neuralgia (273). Peripheral

nerve injury (CCI or diabetic neuropathy model) increases

function of Cav3.2, in rodent DRG neurons (249, 269) and specific

knockdown of Cav3.2 induces marked analgesia in vivo (270).

Although several small molecule Cav3.2 blockers have shown

promise in preclinical studies (274, 275) most have failed to exert a

significant effects in cohorts of pain patients (208, 276). On the

other hand, the high-affinity T-type channel blocker Z944 is

especially effective in murine pain models and this may reflect

selective blockade of Cav3.1, Cav3.2, and Cav3.3 (277) in peripheral,

spinal and thalamic neurons (278, 279). Preliminary results of phase

1 and phase 2 trials with Z944 also appear promising (280).

Some neuropathic pain patients respond favorably to

cannabinoids (281) and this may be ascribed to inhibition of

Cav3.1 and/or Cav3.2 Ca2+ channels (282, 283) as well as
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inhibition of N-type Ca2+ channels (284), augmentation of BK

type K+ channel currents (285) and stabilization of an inactivated

state of Nav1.8 channels (286). There has been considerable

interest in NMP-7 and Compound 9 which affect Cav3.2

channels by interactions CB1 and/or CB2 receptors. Although

these compounds seem highly effective in animal models, they

do not appear to have been tested in the clinic (287–289).

Rather than direct channel block or inhibition by the action of

Gi/o coupled agonists, there is considerable interest in modulating

Cav3 channel activity by targeting the molecular mechanisms

that regulate them.

For example, upregulation of the deubiquitinase, USP5 by IL-1β

impairs Cav3.2 ubiquitination thereby protecting it from proteasomal

degradation and prolonging its surface expression (140, 272, 290,

291). USP5 knockdown thus increases Cav3.2 ubiquitination, reduces

its surface expression leading to reduction of Cav3.2 whole-cell

currents. This in turn, leads to attenuation of mechanical

hypersensitivity in murine models of both inflammatory and

neuropathic pain. As shown in Figure 2A, Cav3.2/USP5 interactions

are interrupted by a novel bioactive rhodanine compound (292), by

the antiparasitic agent, suramin, and by a TAT-cUBP1-USP5 peptide.

Each of these substances attenuate surface expression of Cav3.2 and

show analgesic activity in neuropathic and inflammatory pain models

(292–294). These observations may lead to the development of new

therapeutic approaches (292).
HCN channels in primary afferent neurons

Nerve injury or long-term exposure to IL-1β increases HCN

channel function in DRG (137, 295). This increase drives

spontaneous activity (296, 297) and increases the release of

neurotransmitter from primary afferents terminals (298, 299).

HCN channel blockers thus supress signs of neuropathic pain in

rodent models (300, 301) and selective deletion of HCN2 in

nociceptive neurons prevents the development of neuropathic

and inflammatory pain (296). Because the HCN2 channel

subtype is mainly expressed in neurons as opposed to other

excitable tissues (302), HCN2 blockers abrogate DRG

hyperexcitability without affecting the HCN1 channels that

control cardiac rhythmicity (303). In the clinic, the non-selective

HCN blocker, ivabradine which is approved for treatment of

heart failure, has a beneficial effect in painful diabetic neuropathy

but only a weak effect in other forms of neuropathic pain (304).
TRPV1 channels in peripheral neurons

TRPV1 receptor channels in nociceptors are upregulated

following SNL injury (305) and sensitized by the action of

inflammatory mediators (211). Unfortunately, the clinical

effectiveness of TRPV1 blockers is limited by the presence of

undesirable side effects (306). By contrast, transdermal patches

containing a high concentration of the TRPV1 agonist, capsaicin

have a role pain management (16). They are applied for 60 min

in combination with regional anesthesia. This high level of
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FIGURE 2

(A) Scheme to illustrate control of Cav3.2 expression by ubiquitin and the deubiquitinase USP5 (B) scheme to illustrate role of cathespin and FKN in
neuropathic pain.
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capsaicin destroys the terminals of TRPV1 expressing nociceptors.

This may include those that have sprouted into areas previously

occupied by low threshold mechanoceptors (29).

In animal models, combining local anesthetics with capsaicin is

especially effective in attenuating signs of pain. Molecules such as

lidocaine pass freely through the pore of activated TRPV1

channels and thereby gain access to their intracellular binding

site on the Na+ channel. The local anesthetic thus directly and

selectively targets TRPV1 expressing nociceptors (307).
Neuropeptides and their role in
neuron-immune cell interactions

Injury-induced changes in neuropeptide
expression in primary afferent neurons

In addition to generation and release of inflammatory primary

mediators, peripheral nerve injury alters expression of

neuropeptides and their cognate receptors in primary afferent

neurons (308–311). Neuronal activity promotes the release of

neuropeptides such as CGRP and substance P from peripheral
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nerve endings, DRG cell bodies (312, 313) and primary afferent

terminals (314, 315). They modulate sensory neuron activity by

excitatory actions in DRG (148, 316, 317) and by their

participation in axon reflexes at peripheral nerve endings

(318, 319). Although increased effect of CGRP and substance P

thus likely contributes to increased excitability and spontaneous

activity of peripheral nerve, substance P antagonists are not

effective in pain management in the clinical setting (320).

Erenumab, a monoclonal antibody raised against CGRP is

available for the management of migraine (321) and recent

evidence support the use of CGRP antagonists in the

management of trigeminal neuralgia (321, 322). CGRP

antagonism, both in the clinic and in animal models is less

effective in males than in females (323, 324).
Neuropeptides and other mediators of
neurogenic neuroinflammation

Neuronal activity produces enduring changes in immune and

glial cell function (18, 27, 68, 125, 325–327). This process has

been termed neurogenic neuroinflammation (328, 329).
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Injury-induced upregulation and release of neuropeptides is

one of several mechanisms that effects transmission from

neurons to glia and immune cells. For example, CGRP, substance

P and vasoactive intestinal peptide (VIP) act on their cognate

receptors on immune cells and vasculature to promote

inflammation (318). CGRP regulates spinal microglial activation

in a rodent model of neuropathic pain (330) and substance P

regulates expression of IL-1β in keratinocytes (331).

Neuron-immune cell interactions can also be brought about by

the synthesis and release of cytokines (110) and chemokines (224)

from neurons per se.
The immune reflex and control of neuro-
immune interactions

By contrast with neurogenic neuroinflammation which is a

consequence of injury, essentially the reverse effect; suppression

of immune system activity by neuronal activity, characterises a

well-defined immune reflex. This contributes to the resolution of

inflammation following injury (327). The best characterized part

of this reflex involves the vagal release of acetylcholine which

acts on the nicotinic acetylcholine receptor subunit α7

(α7nAChR) on innate immune cells to supress cytokine

generation and release (327). Activation of β2 adrenoceptors is

also immunosuppressant and this is thought to involve

downregulation of the TNF-α signaling pathway within the DRG.

This may contribute to the efficacy of serotonin - noradrenaline

re uptake inhibitors (SNRI’s) in neuropathic pain (332). This is

because invading sympathetic fibres following nerve injury (44)

provide a source of noradrenaline to active immunosuppressant

β2 adrenoceptors and noradrenaline abundance is increased by

the action of the SNRI, duloxetine. It has also been reported that

activation of β2 adrenoceptors on microglia attenuates signs of

neuropathic pain in a mouse model (333).
Injury-induced structural changes in
peripheral nerves

In addition to altered neuronal signalling, neuroinflammation,

hyperexcitability, modulation of glial phenotypes and altered

expression and function of numerous proteins, neuropathic pain is

often associated with enduring structural changes in the peripheral,

central and autonomic nervous systems (29, 44, 64, 334, 335).
Reorganization of nociceptors

Neuropathic pain generated by peripheral nerve injury may

involve sprouting of nociceptors into denervated territories such

as skeletal muscle and skin. Here they replace the initial map

and configuration of low threshold sensory axons that do not

regenerate. Genetic ablation of nociceptors fully abrogates this

type of re-innervation allodynia. These results reveal the

emergence of a component of neuropathic pain that is driven by
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structural plasticity of peripheral sensory nerves, abnormal

terminal connectivity and malfunction of nociceptors during

reinnervation (29).
Reorganization of peripheral sympathetic
nerves

Peripheral nerve injury provokes sprouting of perivascular

sympathetic axons and appearance of ectopic excitatory

α-adrenoceptors on the cell bodies of primary afferent neurons

and on their terminals at the site of injury (44, 255). This

sprouting may be driven by the neurotrophic action of LIF or

NGF (145, 336, 337) and/or may be a consequence of

spontaneous afferent activity (338). This is yet another means by

which nerve injury increases primary afferent excitability

(44, 255, 339–341), leading to signs of neuropathic pain in

animal models (342) and to the development of complex

regional pain syndromes in humans (343).
Failure to resolve chronic
neuroinflammation

The chronic nature neuropathic pain (14, 18) contrasts with

nociceptive pain and inflammation that are usually short-lasting or

acute. This is because identified “off signals” actively supress the

classical signs of inflammation that follow injury to non-neuronal

tissue (344, 345). It is not yet understood why these signals fail to

activate in neuropathic pain. “Off signals” include lipid-derived

specialized pro-resolving mediators (SPMs) and anti-inflammatory

cytokines such as IL-10 (346–348) and perhaps IL-6 (349, 350).

Subtypes of immune cells such as antinociceptive (M2)

macrophages, pain-resolving microglia and regulatory T-cells and

modulators of the gut microbiota-immune system are also

involved (11).

As emphasised above, spontaneous and ectopic activity in

primary afferent fibres is crucial for the maintenance and

persistence of signs of neuropathic pain (19, 30, 35, 197–205).

Excessive neuronal activity as seen in neurogenic inflammation

alters the phenotype of glia and immune cells to provoke the

generation of inflammatory mediators (329). It is possible that

incessant neurogenic neuroinflammation overcomes the resolution

processes that normally terminate inflammation thereby

contributing to the indefinite persistence of neuropathic pain.

In addition, the injury-induced structural changes in peripheral

afferent (29) and sympathetic nerves (44) and in higher brain

structures may be irreversible (64, 335). These enduring changes

also contribute to the chronic nature of neuropathic pain (170).
Spinal release of secondary mediators
and their actions on spinal microglia
and astrocytes

As mentioned already, nerve injury, via the action of primary

mediators, upregulates mRNA for a variety of proteins and their
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receptors in primary afferent neurons (68, 351, 352). These include

the secreted proteins CSF-1 (72, 110, 111, 353), CCL-2 (224, 354–

356), TNF-α (357), IL-1β and IL-10 (354, 358), CXCL-12 (103,

104), CCL-21 (175, 352), Wnt5a (124) as well as neuropeptides

such as CGRP (315) and NPY (351). These act as secondary

mediators (68) that alert spinal microglia and astrocytes to the

presence of peripheral nerve injury (Table 1 and Figure 1).
Secondary mediators and sex-dependence
of central sensitization

The best characterized secondary mediators include the

cytokine CSF-1, the chemokines CCL-21 and CXCL-12 as well as

Wnt5 and CGRP. Secondary mediators affect the properties of

spinal microglia and astrocytes which in turn release tertiary

mediators (68) (Table 1 and Figure 1). As will be described

below, glial-derived tertiary mediators such as IL-1β and BDNF

(117) act on neurons to bring about misprocessing of sensory

information and increased activity and excitability leading to

central sensitisation (359) (Table 1 and Figure 1).

Although microglia play a predominant role in central

sensitization in males, invading macrophages and T-

lymphocytes are predominant in females (360–362). Spinal

signalling mechanisms invoked in males are therefore very

different from those invoked in females (10, 352, 361). Lines of

investigation initiated over 20 years ago have been directed

towards understanding the numerous cellular and molecular

processes that underlie this difference (68, 360, 362–369) and

relevant and important differences will be outlined in the

succeeding sections.
Injury-induced signaling between primary
afferent neurons and spinal microglia and/
or astrocytes

Secondary mediator role of colony stimulating
factor (CSF-1)

Injury-induced release of inflammatory primary mediators

such as interleukin 1β from macrophages and satellite glial cells

in DRG promote de novo synthesis of CSF-1 in primary afferent

neurons (68, 71, 72, 353, 370) (Table 1 and Figures 1, 3).

CSF-1 induces phenotypic modulation of spinal microglia and

stmulates their proliferation and renewal. Intrathecal injection of

this cytokine promotes mechanical allodynia in naïve male

rodents but not in females (110, 112, 371, 372). Selective

depletion of the Csf1 gene from sensory neurons abrogates nerve

injury-induced mechanical hypersensitivity and attenuates

proliferation and phenotypic modulation of spinal microglial

(71). Nerve-injury also increases mRNA for the CSF-1 receptor

in microglia (112, 373) of male rodents. This activation persists

for more than 6 weeks after injury (353).

As a corollary of this, it has been shown that alleviation of

neuropathic pain by spinal cord stimulation involves a reduction

in CSF-1 levels in DRG and spinal cord (373). Other work
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showed that following injury, the spinal invasion of regulatory

T-lymphocytes (suppressor T-cells) attenuate modulation of

microglial phenotype in females only. This is supported by the

observation that female mice engineered to lack regulatory

T-lymphocytes show increased injury induced CSF1-induced

microglial modulation and pain hypersensitivity similar to that

seen in males (374) (Figure 3B).

In male mice, a major consequence of the release of CSF-1

from primary afferent terminals is promotion of the expression

of the ionotropic ATP receptor, P2X4 in spinal microglia

(110, 112, 113). ATP-derived from dorsal horn neurons activates

these receptors, promoting Ca2+ influx and release of the tertiary

mediator BDNF (Figure 3A) (22, 118–120, 375–379). This

mechanism is crucial to microglial signalling and the

development of central sensitization in males (376, 380) but not

in females (362, 381).

Taken together with the observation that exposure of dorsal

horn neurons to CSF-1 increases their excitability via a BDNF-

dependent process (113), these data strongly support the role of

CSF-1 as a secondary mediator signalling between injured

primary afferents and microglia (68) (Figure 3A).

Secondary mediator role for CXCL-12
In addition to CSF-1, several lines of evidence support the

role of CXCL-12 (C-X-C motif chemokine 12) in signalling

between injured sensory neurons and astrocytes (102, 104).

CXCL-12 and its cognate receptor, CXCR-4 are constitutively

expressed in spinal astrocytes and microglia of male rodents

(102, 382).

Peripheral nerve injury upregulates CXCL-12 in DRG and

CXCR-4 in spinal cord astrocytes (103, 104, 382–384) as a

possible consequence of miR-130a-5p downregulation

(385) and/or the action of TNF-α (103). As already

mentioned, intrathecal administration of CXCL-12 induces

hypersensitivity in naive male mice (382). In addition, CXCL-

12 antagonists transiently reverse allodynia after DRG crush in

male mice (104).

CXCL-12 is thus involved in signaling from injured primary

afferents to astrocytes (385). In addition, by virtue of the

presence CXCR-4 on microglia, it is also involved in signalling

between astrocytes and microglia (382). The CXCL-12/CXCR4

system may also be involved in hyperalgesic priming (386).

Hyperalgesic priming describes enhancement of responses to

potentially painful stimuli following repetitive stimulation (369,

387, 388). CXCL-12 thus functions as both a secondary mediator

between primary afferents and spinal glial cells as a primary

mediator between activated immune cells and primary afferents

(see Figure 1, Table 1 and above).

Secondary mediator role for CCL-21
Intrathecal administration of CCL-21 (chemokine C-C motif

ligand 21) produces pain-like behaviour in naive male mice and

CCL-21 neutralizing antibodies or blockade of its cognate CXCR-

3 receptor attenuates nerve injury-induced pain (114). The failure

of CCL-21 deficient male mice to display tactile allodynia

following nerve injury (389) is attributed to failure of microglia
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FIGURE 3

(A) Scheme to illustrate the sensory neuron – CSF-1 – microglia – BDNF pathway characterized in male rodents. Lightly coloured microglia represent
those in the resting state and the purple colour represents their transformation to the P2X4 expressing phenotype (B) Scheme to illustrate train of
events leading to injury-induced increased dorsal horn excitability in females.
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to upregulate the purinergic P2X4 receptor (115, 175). CCL-21 is

upregulated in DRG following nerve injury, vesicles containing

CCL-21 are preferentially transported into axons (390), and it

can be released from terminals of injured neurons (116, 391).

These findings identify CCL-21 as a third, pro-inflammatory

secondary mediator between injured primary afferents and

microglia in male mice (68, 175, 383).

CCL-21 also signals to astrocytes where it triggers

intracellular Ca2+ transients (385, 392). Despite these findings

which were made in male rodents, RNA profiling of the DRGs

of humans with neuropathic pain suggests, that CCL-21 may

only be involved in female patients (352). These findings

underline the importance of both sex and species dependencies

of pain etiology.
Secondary mediator role for CGRP
Stimulation of primary afferents with capsaicin promotes

CGRP release in the spinal dorsal horn and this release is

increased following nerve injury (315). Since CGRP also affects

microglia function (330) it, like other secondary messengers,

alerts microglia to the presence of peripheral injury.

In the spared nerve injury (SNI) model, there is a transient

effect of CGRP antagonists on mechanical hypersensitivity in

female mice only. Consistent with these findings, intrathecally

administered CGRP causes a long-lasting, mechanical
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hypersensitivity in female mice but more transient effects in

males. In addition, hyperalgesic priming in female, but not in

male rodents is blocked and reversed by intrathecal injection of

CGRP antagonists. Systemic administration of a CGRP antibody,

blocks hyperalgesic priming specifically in female rodents yet

fails to reverse it once it is established. As will be mentioned

below, part of the action of CGRP may involve direct modulation

of spinal neurons without the intervention of microglia or

astrocytes (323).
What is the role of IL-6 in spinal
hyperactivity?

Unilateral CCI (chronic constriction injury) increases IL-6

mRNA and protein bilaterally in both neurons and satellite

glial cells of the DRG (83). IL-6 promotes hyperalgesic

priming in rodents (323) and conditional knockout of its

cognate gp130 receptor in nociceptors abrogates pain in

inflammatory and tumor-induced pain models (393). Although

these results are consistent with a secondary mediator role for

IL-6, other work suggests that it may have an anti-nociceptive

action both in the periphery and at the spinal level

following SNI (spared nerve injury) in rodents (349, 350) and

may be capable of inducing a desensitized microglial

phenotype (394).
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What is the role of interferon gamma in
spinal hyperexcitability?

IFN-γ alters spinal microglial function and induces tactile

allodynia. Genetic ablation of the interferon receptor (IFN-γR)

impairs nerve injury-evoked allodynia and prevents phenotypic

modulation of spinal microglia (395). The P2X4 receptor is

upregulated in IFN-γ stimulated - microglia and, as mentioned

already, these purinergic receptors play a crucial role in the onset

of neuropathic pain in males (118, 120, 375, 377, 378). IFN-γ also

increases dorsal horn excitability (396, 397) and facilitates synaptic

transmission between C-fibres and Lamina 1 neurons via a

microglial-dependent mechanism (132). Although IFN-γ is found

in DRG neurons (398) and the level of IFN-γ is increased in

spinal cord following peripheral nerve injury (399) this may

originate from invading T-lymphocytes. However, given the role of

T-lymphocytes in females (361, 362), IFN-γ may be important in

pain aetiology in women.
What is the role of cathepsin and fractalkine
(FKN; CX3CL-1) in spinal hyperexcitability?

The lysosomal cysteine protease, cathepsin S is released from

microglia by a P2X7-dependent mechanism (400). Cathepsin S,

as well as the metalloproteinase ADAM10 and TNF-α converting

enzyme liberate the soluble form of the chemokine, fractalkine

(FKN; CX3CL-1) from dorsal horn neurons (125, 126, 401)

(Figure 2B).

The transmembrane form of FKN and its cognate receptor

(CX3CR-1) are expressed constitutively in spinal cord neurons

(402, 403). CX3CR-1 which is strongly expressed in dorsal horn

microglia (125, 403, 404), is upregulated after nerve injury. In

naïve animals, intrathecal injection of FKN produces mechanical

allodynia and thermal hyperalgesia whereas injection of an

antibody raised against CX3CR-1 attenuates signs of neuropathic

pain in animal models (404). This is consistent with the

observation that peripheral nerve injury fails to provoke allodynia

in mice lacking CX3CR-1 (405).

Spinal nerve ligation (SNL) also increases the level of the soluble

form of FKN in cerebrospinal fluid (401) and such release appears to

be obligatory for the expression of neuropathic pain (127, 383, 406).

Soluble FKN modulates microglial phenotype leading to the

generation of tertiary mediators such as TNF and IL-1β (404, 407).

Antibodies raised against CX3CR-1 reduce nociceptive

responses when administered as long as 5–7 days after CCI

suggesting that the prolonged release of FKN contributes to the

maintenance as opposed to the onset of neuropathic pain. This

may also relate to the observation that SNL provokes de novo

expression of FKN in dorsal horn astrocytes (403).
Modulatory role of glutamate

In addition to producing synaptic potentials in almost all CNS

neurons, glutamate affects astrocytes, T-cells, endothelial cells,
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microglia and vascular cells by interaction with mGluRs (329,

408, 409). These actions are predominantly anti-inflammatory

(410). For example, mGluR5 activation in spinal microglia

inhibits the release of inflammatory mediators both in vitro (410)

and in vivo (411). Also, activation of group I mGluRs in

astrocytes leads to increased glutamate and potassium uptake

(412). These actions may thus be associated with offset of

neuroinflammation rather than its onset.
Release of tertiary mediators from
astrocytes and microglia

Release of BDNF in the spinal dorsal horn

The secondary mediator CSF-1 interacts with CSF-1R on spinal

microglia (353). This leads to increased expression of the tertiary

mediator BDNF as a result of up regulation of the Bndf gene

(413). As illustrated in Figure 3, the release of BDNF plays an

indispensable role in the onset and maintenance of neuropathic

pain in male but not in female rodents (22, 68, 113, 117, 119,

121–123, 414–420). BDNF acts primarily via TrkB to increase

dorsal horn excitability (113).

Exposure of dorsal horn neurons to CSF-1 also increases the

frequency and amplitude of sEPSC’s (spontaneous excitatory

postsynaptic currents) and this effect is abrogated by the BDNF

binding protein TrkB-fc (113). These findings underline the

importance of the sensory neuron- CSF-1 -microglia - BDNF

signalling process in the aetiology of neuropathic pain (14, 22,

68, 110, 183, 421) (Figure 3A).
Role of ATP in BDNF release from microglia

ATP activation of microglial P2X4 receptors leading to the

release of BDNF is involved in the aetiology of neuropathic pain

in males, but not in females. This is congruent with the absence

of functional P2X receptors on microglia of female rodents (364).

There is also evidence for a role of microglial metabotropic

P2Y6, 11, 12, 13 and 14 receptors in the onset of neuropathic

pain (68, 422–427). Primary afferent neurons are not the primary

source of ATP following peripheral nerve injury. It may rather

derive from neurons in the superficial dorsal horn itself (428) as

well as from microglia themselves (429). BDNF release from

neurons is vesicular and dependent on extracellular Ca2+ (118,

119, 375, 377, 378).
Wnt signalling and release of BDNF from
microglia

The action of ATP on microglia is not the sole mechanism for

promoting BDNF release. Wnt proteins that are upregulated in the

spinal cord in various pain models (50, 124, 429–431) activate

“frizzled” receptors (432) on microglia to increase expression of

BDNF and promote its release (420, 433). This phenomenon has
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been examined in models of HIV pain which involve exposure of

sensory neurons to toxic viral coat proteins such as Vpr1 (49) or

gp120 (433, 434). The latter promotes allodynia and increases

glutamatergic neuronal activity leading to NMDA receptor

activation and increases the level of intraneuronal Ca2+. This, in

turn promotes Wnt protein synthesis and release (435, 436).
Time course of BDNF release in the
dorsal horn

Phenotypic modulation of microglial function in rodent dorsal

horn persists for more than 3 months after injury (437). Thus

sequestration of BDNF with TrkBFc (438) or selective depletion

of spinal microglia with the targeted immunotoxin Mac1-saporin

almost completely reverses mechanical and thermal allodynia up

to 3 months after injury. By contrast, intrathecal injection of a

cocktail of antibodies against IL-1β, TNF-α, and IL-6

significantly attenuates tactile and cold allodynia at 2 weeks but

not at 3 months after injury. These findings suggest that different

mediators should be targeted in the short vs. long term

management of neuropathic pain (437).
Release of IL-β in the spinal dorsal horn

The tertiary mediator, IL-1β is produced and released from

macrophages, astrocytes and microglia (18, 439, 440). Release of

IL-1β from microglia is a consequence of activation of P2X7

receptors (164, 380, 441, 442) and may be provoked by the action

of FKN (407). In agreement with this, it has been reported that

the Cav1 channel blocker, cilnidipine which also blocks microglial

P2X7 receptors, impairs IL-1β release and reverses SNL-induced

mechanical hypersensitivity (142). It has also been suggested that

P2X4 receptors interact intracellularly with P2X7 receptors to

augment P2X7 receptor-mediated IL-1β release (442).
Role of exosomes

In addition to the extracellular actions of BDNF and IL-1β,

cell-to-cell transport of material via exosomes or extracellular

vesicles is now believed to contribute to the development of

central sensitisation (183, 443–449). Extracellular vesicles are

released from both microglia (450) and astrocytes (451) and are

taken up by neurons (447). They may serve as a conduit for the

transfer of microRNA’s between cell types (452). For example,

Nav1.7 protein may be transported from primary afferents to the

dendrites of lamina II neurons; a process which may be effected

by transfer of exosomes (449).
Actions of BDNF in the dorsal horn

The cellular mechanisms that are involved in actions of

microglial-derived BDNF include enhancement of excitatory
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processes and attenuation of inhibition (22, 170). In addition to

actions on neurons, BDNF also activates astrocytes (453) which

release additional mediators such as FKN (403) and IL-1β (18).
Increased excitatory drive to excitatory
neurons and decreased drive to inhibitory
neurons

Exposure of rat substantia gelatinosa neurons to BDNF

increases excitatory synaptic drive to excitatory neurons and

decreases excitatory drive to inhibitory neurons (122, 414). In

mice, effects of BDNF are dominated by increased excitatory

drive to excitatory neurons (113). Whilst resting potential,

rheobase, input resistance and excitability are little affected in rat

neurons (113, 122, 414), the altered synaptic activity increases

spontaneous AP discharge in excitatory neurons whilst reducing

it in inhibitory neurons (414).

Several observations show that these actions of BDNF are

relevant to injury-CSF-1-microglia-BDNF evoked central

sensitization (Figure 3A). Firstly BDNF-induced changes in

synaptic transmission and its lack of effect on the intrinsic

excitability the cell bodies of lamina II neurons very much

parallel those invoked by peripheral nerve injury (122, 454–456).

Secondly, Ca2+ responses evoked by neuronal depolarization are

enhanced by BDNF and by conditioned medium from

lipopolysaccharide-activated microglia. The effect of this

conditioned medium is attenuated by sequestering BDNF with

TrkBd5 (122). Thirdly, the secondary mediator CSF-1 increases

synaptic excitation of excitatory lamina II neurons in mice and

this effect is abrogated by sequestering BDNF with TrkBfc (113).

It should be noted however that mitochondrial dysfunction

following peripheral nerve injury and the resultant high levels of

superoxide may also contribute to increased excitatory synaptic

strength in dorsal horn neurons and neuropathic mechanical

hypersensitivity (457).
BDNF disinhibition by perturbation of
chloride gradients

CCI of the sciatic nerve reduces expression of the potassium-

chloride exporter (KCC2) in lamina 1 neurons of the dorsal

horn (458, 459). The resulting intracellular accumulation of

Cl− reverses the Cl− concentration gradient such that normally

outward, inhibitory GABAergic synaptic currents mediated by Cl−

influx become inward excitatory currents mediated by Cl− efflux

(458–460). Knockdown of KCC2 in uninjured rats reduces pain

thresholds and induces neuropathic pain-like behaviors. By contrast,

rescue of KCC2 expression abrogates signs of neuropathic pain in

nerve injured animals (461, 462). Taken together and as illustrated

in Figure 4, these findings strongly implicate perturbation of the

Cl− gradient and the phenomenon of disinhibition in the

pathophysiology of central sensitization (121, 458).

BDNF is responsible for downregulation of KCC2 protein

levels in male rats (121, 419). Thus, administration of ATP-
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FIGURE 4

Scheme to illustrate connection between KCC2 downregulation and GluN2B phosphorylation and its sex dependence.

Smith 10.3389/fpain.2023.1220034
activated microglia reproduces the shift in anion gradient seen after

nerve injury in the same way as BDNF. Also, blocking TrkB or using

interfering RNA against BDNF reverses both injury-induced pain

behaviors and the shift in Cl− gradient (121). Changes in KCC2

expression in deep dorsal horn neurons are confined to

nociceptive neurons that project via the spinothalamic tract

whereas wide dynamic range (WDR) neurons that are activated by

a variety of sensory modalities are unaffected (461). It has also

been shown that neurons in lamina I are more susceptible to

changes in Cl− gradient than those in lamina II (459) and

biophysical and modelling analysis shows this loss is especially

effective in promoting increased neuronal firing (463). These are

important observations as lamina I and deep dorsal horn

nociceptive neurons are the primary site for relay of nociceptive

information to the brain (464–466). Loss of GABAergic inhibition

enables non-noxious Aβ fiber-mediated excitatory transmission to

access and excite the pain transmitting neurons of the superficial

spinal dorsal horn. Thus, as already mentioned, tactile activation

of Aβ fibres is perceived as pain and this process plays a role in

the establishment of mechanical allodynia (467–469).

Descending serotonergic inhibition of nociceptive processing

from the nucleus raphe magnus becomes excitatory and

proalgesic in rats subject to spared nerve injury (SNI). This

change is also dependent on collapse of the Cl− gradient

following KCC2 hypofunction in the dorsal horn as the KCC2

enhancer CLP290 restores both 5-HT–mediated descending

inhibition and analgesia (470).
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KCC2 downregulation also contributes to pain hypersensitivity

in females (363). Whereas this is mediated by release of BDNF

from microglia in males, it involves activation and invasion of

adaptive immune cells such as T-lymphocytes in females

(362, 381) (Figure 3) as well as downregulation of KCC2

expression by CGRP (323).
BDNF and function of spinal NMDA
receptors

BDNF enhances excitatory responses to NMDA in rat spinal

cord in vitro (471). In male rodents, this potentiation is

dependent on BDNF-mediated GABA disinhibition. By

processes yet to be discovered, KCC2-dependent disinhibition

promotes downregulation of the tyrosine phosphatase STEP61.

Loss of function of STEP61 phosphatase then clears the

way for phosphorylation of GluN2B subunits by the Src

family kinase Fyn (472). As illustrated in Figure 4, synaptic

NMDAR responses are therefore enhanced and neuronal

excitability is increased. Decreased activity of STEP61 is both

necessary and sufficient to affect GluN2B function (473), This

sequence of events is supported by the observation that

blocking of KCC2-mediated disinhibition with acetazolamide

(474) reverses the downregulation of STEP61 and

attenuates behavioural hypersensitivity generated by chronic

inflammation.
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In female rats however BDNF fails to downregulate KCC2 and

STEP61 and to upregulate pFyn, GluN2B and its phosphorylated

form GluN2B. This means that BDNF fails to affect synaptic

NMDAR responses in lamina I neurons of females. Ovariectomy

recapitulates the male pathological pain neuronal phenotype in

female rats, with BDNF driving coupling between disinhibition

and NMDAR potentiation in lamina I neurons following the

elimination of sex hormones (475).

This sex difference in spinal pain processing in rodents is

conserved in humans. Thus ex vivo spinal treatment with BDNF

downregulates KCC2 and STEP61 and upregulates markers of

facilitated excitation in superficial dorsal horn neurons from

male but not female human organ donors (475).

In addition to the postsynaptic effects described above (121,

473, 475), BDNF activation of TrkB increases the function of

presynaptic NMDA receptors on primary afferent terminals

(476). This leads to the potentiation of glutamate release from

primary afferents that is observed after SNL (477) and may

account for the increased frequency of sEPSC’s seen in some

dorsal horn neurons in the presence of BDNF(414). Functional

upregulation of GluN2B subunits of NMDA receptors (478) may

also account for the observation that long term potentiation

(LTP) of synaptic transmission of C-fibre responses is enhanced

by BDNF (479).
Actions of other tertiary mediators in
the dorsal horn

Effects of interleukin 1β in the dorsal horn

The level of IL-1β is elevated in the cerebrospinal fluid (CSF) of

patients with complex regional pain syndrome (480) and in spinal

cords obtained post-mortem from patients with painful HIV

related neuropathy (50). As already mentioned, activation of

P2X7 receptors promotes release of IL-1β from microglia (142,

164, 380, 441) and this is amplified by the action of FKN (407).

Microglial derived IL-1β stimulates astrocytic production of

TNF-α well as IL-1β itself (440, 481) thereby amplifying the

overall IL-1β signal. IL-1β promotes internalization of the

astrocytic glutamate transporter (EAAT2) thereby reducing the

capacity of astrocytes to take up glutamate (482, 483). Loss of

EAAT2 function thus augments excitatory synaptic transmission

and induces hyperalgesia and increased sensitivity of dorsal horn

neurons to primary afferent stimulation (484, 485). Activated

astrocytes also release CSF-1 (187) thereby amplifying signaling

via the CSF-1-microglia-BDNF cascade (Figure 3A). Astrocytes

also release the NMDA receptor co-agonist D-serine (486)

thereby further augmenting overall dorsal horn excitability.
Effects of IL-1β on synaptic transmission in
the spinal dorsal horn

In a similar fashion to BDNF, IL-1β increases glutamate release

from primary afferents and augments excitatory synaptic
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transmission between primary afferent C-fibres and lamina 1

neurons. It also amplifies Ca2+ responses evoked by exposure of

neurons to 20 mM K+ (143, 407, 483).

Like BDNF, IL-1β also does not affect the membrane potential

or rheobase of lamina II neurons, suggesting that most of its effect

on dorsal horn excitability can be ascribed to changes in synaptic

transmission (143, 144). Exposure of rat spinal cord to IL-1β for

6–8 d increases the amplitude of spontaneous EPSC’s (sEPSC) in

putative excitatory ‘delay’ neurons, and decreases the frequency

of spontaneous IPSC’s (sIPSC). These actions are similar but not

identical to those seen with BDNF or peripheral nerve injury

(414, 454, 455). Acute application of IL-1β increases the

amplitude of AMPA and NMDA currents dorsal horn neurons

(487). Its effect on glutamate release can be ascribed to

augmentation of presynaptic NMDA receptor function (483)

where signaling between IL-1r and NMDA involves the

sphingomyelinase/ceramide pathway (477, 483).

Taken together, all of these actions of IL-1β would be expected

to increase dorsal horn excitability and to facilitate the transfer of

nociceptive information.
Effects of tumor necrosis factor-α in the
dorsal horn

TNF-α decreases the excitability of a subset of spinal

GABAergic neurons by suppression of current through HCN

channels (488). These effects diminish with time suggesting

TNF-α may be primarily involved with the induction rather than

the persistence of neuropathic pain (489). As might be expected,

blockade of TNF receptor 1 attenuates signs of neuropathic pain

in the CCI model but this only occurs in males and not in

female rodents (150).

Although FKN action on microglia and potentiation of

synaptic transmission in the dorsal horn involves IL-1β but not

TNF-α (407), it does appear to be inolved in the generation of a

phenomenon named “gliomic LTP” (151, 490). By contrast with

classical LTP which is highly localized, “gliomic LTP” spreads

extensivly throughout the dorsal horn by the action of TNF-α

and of the NMDA co-agonist D-serine (490).
Effects of interleukin-17 in the dorsal horn

IL-17 is expressed in spinal astrocytes and its cognate receptor

is expressed in neurons, especially by those expressing somatostatin

(133). SNI-induced static and dynamic allodynia are prevented by

intrathecal injection of IL-17 neutralizing antibody and attenuated

in IL-17a mutant mice. IL-17 neutralizing antibodies supress LTP

of C-fiber evoked field potentials in spinal cord and intrathecal

injection of IL-17 or its overexpression in astrocytes produces

mechanical allodynia and facilitates spinal LTP (134). IL-17 also

supresses inhibitory transmission and enhances excitatory

transmission in spinal lamina IIo (133). It may thus serve both as

a primary and tertiary mediator (Table 1) but the mechanism of

its release from astrocytes is yet to be determined.
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Role of supra-spinal structures in pain
etiology

Inasmuch as injury-increased peripheral hyperexcitability

leads to enduring changes in the dorsal horn, increased

dorsal excitability contributes to alterations in supraspinal

structures.
Changes in sensory pathways in supra-
spinal brain regions

Several detailed reviews address supra-spinal changes

associated with neuropathic pain (491, 492).

Blood borne inflammatory mediators (38, 493) generated at

the site of injury open tight junctions between capillary

endothelial cells leading to increased permeability of the

blood-brain barrier (192). This allows supra-spinal neurons to

interact with blood cells and respond to the cytokines and

chemokines they produce (195). Following peripheral injury,

afferent information is modulated in various thalamic nuclei

(494), somatosensory cortex (495), insular and anterior

cingulate cortex (491, 496), nucleus accumbens, and amygdala

(497–500). Ascending pathways also interact with the

mesolimbic dopamine system (501),

Peripheral nerve injury changes the properties of microglia in

the contralateral thalamus, sensory cortex and amygdala as might

be expected from the known anatomical arrangement of

ascending sensory fibres. Brain regions not directly involved in

either sensory or affective aspects of pain such as the motor

cortex, do not display altered microglial function (497). This

selective modulation of microglia and immune cells in

nociceptive pathways (497) may be a consequence of localized

neurogenic neuroinflammation as a result of enduring intense

activity (329).

Cortico-cortical or cortico-subcortical interactions

contribute to the co-morbidies seen in some patients. For

example, one form of long-term potentiation (LTP) in the

anterior cingulate cortex (ACC) which is triggered by the

activation of NMDA receptors and expressed by an increase in

AMPA-receptor function, sustains the affective component of

the pain state. Another form of LTP in the ACC, which is

triggered by the activation of kainate receptors and expressed

by an increase in glutamate release, may contribute to pain-

related anxiety (491).

There are several parallels between injury-induced cellular

changes in higher centres and those seen in the periphery or

spinal cord. For example, peripheral neuropathy induces HCN

channel dysfunction in medial prefrontal cortex (502) and

thalamus (503, 504) and Nav1.3 function is altered in thalamic

neurons (505, 506). Both channel types are similarly affected by

peripheral nerve injury (208). These findings are fortuitous in

terms of drug action and identification of therapeutic targets;

drugs developed to act peripherally may also exert beneficial

effects as a result of similar central actions.
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Descending control of nociception

Cortical structures modulate nociception through descending

control of spinal circuitry (507). This occurs by direct

corticospinal projections as well as activation of structures in the

brainstem such as the periaqueductal grey matter, locus coeruleus,

raphe nuclei and rostroventral medulla (492). Descending

inhibition of spinal nociceptive processing is mediated via 5HT7

receptors and α2 adrenoceptors whereas serotonergic activation

of metabotropic 5HT2 receptors and ionotropic 5HT3 receptors

facilitates transmission (508–512). This explains the effectiveness

of noradrenaline-serotonin reuptake inhibitors (SNRI) in pain

management (16) and the limited efficacy of selective serotonin

reuptake inhibitors.

There is normally a balance between descending inhibition and

excitation but after peripheral nerve injury the excitatory processes

gain the upper hand (470, 513). These changes have been

associated with the persistence as opposed to the onset of pain

(514, 515).
Role of mesolimbic reward circuitry in pain
etiology

Peripheral nerve injury impairs dopamine release in the reward

circuitry associated with the mesolimbic system (497, 501). This

may also relate to the changes in affect (anxiety, depression)

experienced by neuropathic pain patients (516). Peripheral nerve

injury selectively increases excitability of the nucleus accumbens

indirect pathway spiny projection neurons and alters their

synaptic connectivity. In addition, tactile allodynia can be

reversed by inhibiting and exacerbated by exciting these neurons.

This suggests that neurons in the nucleus accumbens not only

participate in the central representation of pain, but that they

may gate activity in ascending pathways associated with

expression of pain in higher centres (517).
Why are there no new drugs? What can
we do about it?

Management of neuropathic pain in the clinic involves serotonin-

noradrenaline reuptake inhibitors (SNRI), gabapentinoids, capsaicin

patches, classical tricyclic antidepressants such as amityptyline,

high dose opioids as well as tramadol and botulinum toxin

(12, 14, 16, 22). Although the effectiveness of these drugs is

limited, extensive preclinical research as outlined above has failed

to reveal any effective therapies since the approval of tramadol, a

mild opioid with SNRI properties, in the mid 1990′s. To put this

into perspective, hundreds of drug targets have been identified

over the years; a perfunctory examination of publications

appearing in the first 4 months of 2023, identified about 650

papers that dealt with neuropathic pain. Of these, 28 studies

identified a “magic molecule”, that was implicated pain etiology

in an animal model. Despite this proliferation of potential drug

targets, no new drugs have appeared.
frontiersin.org

https://doi.org/10.3389/fpain.2023.1220034
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Smith 10.3389/fpain.2023.1220034
What can be done? How can the data gap between animal

studies and clinical practice be bridged?
Improved basic science approaches

Addressing different mechanisms evoked by
different types of injury

Classical rodent pain models such as SNI (spared nerve injury),

CCI (chronic constriction injury), SNL (spinal nerve ligation) or

CCDRG (chronic constriction of DRG) have revealed general

principles that help to explain the aetilogy of neuropathic pain.

These include the identification of various chemokines, cytokines,

neuropeptides and growth factors as primary, secondary or

tertiary mediators, the concept of neuroinflammation and

bidirectional signalling between neurons and immune cells,

alterations in synaptic transmission, ion channels and descending

modulation, the roles of microglia and astrocytes, central

sensitization and role of peripheral spontaneous activity (12, 15,

20, 22, 27, 47, 68, 183, 208, 210). These findings fall short of

addressing the multiplicity of chronic pain presentations in the

clinic (8, 47) as even in animal models, different types of nerve

injury provoke distinct behavioral, physiological and cellular

responses.

For example, mechanical allodynia produced by CCI is short-

lived and recovery is seen in about 4 weeks whereas that

produced by SNI persists for 7 weeks or more (61, 72). Similarly,

changes in synaptic transmission in lamina II neurons are more

robust after sciatic CCI than after complete sciatic nerve section

(axotomy) (455). These findings relate to the observation that

CCI promotes stronger and more long lasting upregulation of the

inflammatory mediators IL-1β, TNF-α, IL-10, MCP-1/CCL-2 in

nerve stumps than nerve crush (354), Recent work has also

shown that glycine inputs onto radial neurons in spinal lamina II

are reduced following partial nerve ligation (PNL) of the sciatic

nerve, this finding was not seen in animals subject to CCI (63).

Whilst neuropathic pain associated with multiple sclerosis is

characterized by loss of spinal neurons (371), this is not seen

with CCI (518, 519). Although the NGF binding antibody

tanezumab is effective in some pain patients (238), studies in

animal models suggest that NGF itself may be effective in

management of pain and neuropathy associated with HIV

infection (520).

The nature of peripheral injury also dictates the precise spinal

circuitry involved in the generation of mechanical allodynia (521).

Thus nerve injuries generate allodynia by activation of excitatory

neurons that express protein kinase C gamma (PKCγ) (522)

whereas mechanical allodynia induced by inflammation involves

excitatory neurons that are calretinin positive (523).

Cholecystokinin (CCK) positive neurons are important in both

situations. Punctate allodynia as produced by Von Frey filaments

is distinct from dynamic allodynia that is produced by brushing

a cotton swab across the hindpaw skin (521). A subset of CCK

positive neurons are primarily involved in conveying dynamic

rather than punctate allodynia.
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Work using knockout mice has shown that deficiency of CCL19/

21 attenuates nerve injury evoked pain but not the hyperalgesia

observed in an animal model of multiple sclerosis (116).

This issue of injury-specific mechanisms is starting to be

resolved as basic scientists have increasingly turned their

attention to disease models rather than classical neuropathic pain

models such as CCI and SNI. There are now reliable animal

models for diabetic neuropathy (524), multiple sclerosis (34),

phantom limb pain (30), chemotherapy induced pain (53, 129,

525), spinal cord injury (31) and trigeminal neuralgia (526).

In the situation of inflammatory as opposed to neuropathic

pain, it has recently been reported that nociceptor-neuroimmune

interactomes reveal cell type- and injury-specific pathways in

three different inflammatory models (527). The availability of a

similar database in the neuropathic pain field would be of great

advantage to developing specific treatments.
Objective and non-invasive assessment of
pain in animal models

Another major step forward from the basic science perspective

is the ongoing improvement in pain assessment in animal models.

Regardless of the type of nerve injury used, preclinical effectiveness

of therapeutic interventions has classically been assessed in rodent

models by examining drugs’ ability to attenuate withdrawal

responses to stimuli that would normally be innocuous (47, 60, 61).

This typically involves measurements of mechanical or thermal

withdrawal thresholds to quantify hyperalgesia or allodynia. Such

responses are difficult to quantify as they may be influenced by

the subjective impressions of the investigator as well as the

olfactory signals they emit. For example, male investigators

promote analgesia in female mice (528). In addition, withdrawal

responses to innocuous stimuli in injured animal may simply

reflect activation of spinal reflexes (529, 530) rather than bona

fide manifestations of pain. This may help to explain why

classical rodent models have limited ability to predict clinical

efficacy (17, 47, 529, 531). In view of this, non-invasive models

for objective assessment of chronic pain have been developed.

These involve assessment of hypersonic vocalisation, facial

grimace score, quantification of social interaction, rearing and

nest-building (47, 532–537) and the use of operant models in

which the animal is required to make a decision based on the

cortical processing of a noxious stimulus (538–540).

The use of operant and non-invasive protocols to effect

translation between preclinical observations and development of

effective therapeutic approaches may be further refined by

combining findings from as many as 6 operant protocols (534).
Use of human nerves in the laboratory

Advances in technology now permit the use of human nerves

in the laboratory (475). Because this has identified the cellular

basis for differences in nociceptive processing between humans

and rodents (541), the use of such models may be a way forward
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for identification of more relevant therapeutic targets. Human

nociceptors are more heterogeneous than those in rodents and

there are also differences in ion channel function and

expression leading to differences in cellular excitability (19, 542,

543). Most human DRG neurons exhibit TRPV1 receptor

channels but these are expressed exclusively in peptidergic

nociceptors in rodents (544). A subpopulation of human DRG

neurons display a relatively large constitutive Ca2+ channel

current and although HVA Ca2+ current density is significantly

smaller in human than in rodent DRG, the proportion of

nifedipine-sensitive (Cav1.2) currents is much greater (543).

Although this identifies dihydropyridines as a potential

therapeutic approach to some types of neuropathic pain, their

further development is limited by their propensity to produce

postural hypotension (545).

Contemporary methodologies that allow the collection of data

from human nerves include observation of nociceptor morphology

in skin biopsy samples (546) and use of explant cultures of DRG

neurons from aborted fetuses (49). Human DRG’s have also been

acutely isolated from organ donors or cadavers or from patients

undergoing surgical treatment for spinal reconstruction (475,

543, 547).

The use of human induced pluripotent stem cells (hiPSC)

differentiated into nociceptive sensory neurons may provide a

means to address the limited availability of human DRG neurons

(548–554). The use of hiPSC has the advantage of providing

large numbers of human neurons, glia and immunocompetent

cells (555). This in turn allows the application of high

throughput technologies to screen small molecule therapeutic

agents to modify nociceptor function (556).
Recognition of differences in pain
processing in female versus male rodents

In recent years, considerable attention has been paid to analysis

of molecular mechanisms of pain in male vs. female rodents

(10, 362, 381, 475). As already emphasized, microglia are not

required for mechanical sensitivity to pain in female mice as

they require activation of adaptive immune cells such as

T-lymphocytes (362, 381). The difference may result from a lack

of P2X4 receptors in the microglia of females (364, 376). Despite

this, behavioral responses to nerve injury in female rats are

similar to those seen in males and both involve downregulation

of KCC2 and perturbation of Cl- gradients (363). Because BDNF

is not necessary for the development of allodynia in females

(362), the mediator released from adaptive immune cells remains

to be determined. The possible involvement of IFN-γ has already

been alluded to.

Numerous differences in pain mechanisms in males vs. females

have emerged over recent years (10). For example loss of GABAA

receptors containing the α6 subunit plays a predominant role in

female rodents (557). The relative importance of CGRP in

females (323), the role of macrophage derived IL-23 (368), and

the absence of functional P2X receptors on microglia of female

rodents have already been alluded to (364).
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This realization has obvious implications for the design of

clinical trials (10); potential new therapies must be evaluated in

women and men as separate subgroups of patients.
Clinical approaches

Recognition and appreciation of different pain
aetiologies in the clinic

As mentioned in the introduction, patients with neuropathic

pain are heterogeneous in clinical presentation, pathophysiology,

aetilogy, causative injury, genetics and prior life experience (5).

This is reflected in a large variability in their response to

treatment (8, 25).

One way forward from the clinical perspective is the

quantitative, phenotypical stratification of patent types in order

to delineate responders from non-responders. This statistical

subgrouping of patients can have a role in determining treatment

(12, 25, 558, 559). Several tools are available for patient

stratification.

Firstly, quantitative sensory testing (QST) enables

identification of various subtypes of neuropathic pain by

formalization and quantification of an existing battery of

neurological tests, such as response to von Frey filaments,

vibration, heat, pressure and cold as well as wind-up ratio and

dynamic allodynia (5, 25, 559, 560). By comparing responses

with large datasets that represent normal responses to sensory

tests, neuropathic pain patients can be grouped into clusters

based on their sensory profiles (5). The validity of this type of

approach is supported by the observation that post-hoc

analysis of responders to treatments in clinical trials suggest

that clinical effectiveness may cluster according to pain

phenotype (559).

Secondly, human microneurography techniques can now

distinguish mechanosensitive C-fibres from non-mechanoceptive

fibres in a given patient (542). It can also be used to detect

spontaneous activity in nocceptors (561).

The multidimensional expereince of pain is a result of

spatiotempotral patterns of brain activity wherein afferent

nociceptive information is modulated by cognitive factors and

from which descending modulatory systems control spinal level

processing (25, 508). Analysis of electroencephalographic patterns

(562) and non-invasive neuroimaging techniques such as

paradigm free functional magnetic resonance imaging (fMRI)

therefore offer the opportunity to examine the experience and

chronification of pain in individual patients. Similarly, the use of

positron emission tomography (PET) with radioligands targeting

the 18 kDa translocator protein SPO has recently emerged as a

technique for observing neuroinflammation and glial activation

in patients in vivo (27).

Lastly, examination of expression of miRNAs in epidermis

strongly discriminating pain patients from healthy individuals

(563). In addition to providing a means to stratify patients

prior to treatment, the above techniques also provide

information concerning the effectiveness of therapeutic

intervention.
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Recognition of the importance of sex differences
in human pain processing

The different mechanisms underlying neuropathic pain in

females vs. males his has obvious therapeutic implications; drugs

which are effective in men may be less effective in women and

vice-versa (10, 361, 362, 365, 366, 564–569).

In support of this, recent work using resting-state

magnetoencephalography has identified differential changes in

patterns of brain oscillatory activity in males vs. females (570).

Also a genome wide association study identified 123 single

nucleotide polymorphisms (SNP) at 5 independent loci that are

significantly associated with chronic pain in men. By contrast,

286 SNP’s at 10 independent loci were identified in women

(571). Gene-level analyses revealed sex-specific associations with

chronic pain with 31 genes in females and 37 genes in males. All

37 chronic pain associated genes in men and 30/31 genes in

women were expressed in DRG (571). In an extension of this,

analysis of altered mRNA expression in the DRG of neuropathic

pain patients also revealed profound sex differences in

differentially expressed genes. Thus, message for IL-1β, TNF,

CXCL-14 and OSM (Oncostatin M) were increased in males

whereas CCL-1, CCL-21, PENK (proenkephalin A) and TLR3

(toll-like receptor 3) were increased in females. Cytokine

signalling pathways associated with neuropathic pain in males

included OSM, LIF, and SOCS1 (suppressor of cytokine

signalling 1) whereas CCL-1, CCL-19 and CCL-21 were involved

in females. Moreover,components of the JUN-FOS signalling

pathway were enriched in males whereas genes coding

centromere proteins were enriched in females (352).
Molecular genetic techniques

Given the drawbacks of classical therapeutic approaches; drug

toxicity, off target effects, drug interactions and in some cases

drug dependence, there is a movement in all fields of medicine

towards genetic rather than pharmacological approaches to

disease management. Pain management is no exception to this

trend (572).

By way of demonstration of the principle, CRISPR (clustered

regularly interspaced short palindromic repeats) technology has

been used in a mouse model to prevent expression of Nav1.7 by

editing a regulatory sequence (573). This technology might have
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therapeutic potential in management of persistent pain states.in

the clinic.
Concluding statements

This review underlines the difficulty in translation between

animal studies and the treatment of pain in the clinic.

Although classical animal models have revealed many of the

essential biological mechanisms that underlie neuropathic

pain, such as peripheral and central sensitization and some of

the molecular and cellular mechanisms involved, animal

models do not adequately model the multiplicity of disease

states or injuries that may bring about pain in humans. In

terms of pharmacological management “one size does not fit

all”, perhaps there will never be a panacea for neuropathic

pain in the same way as opioids serve for most forms of

nociceptive pain. Despite this, there is some cause for

optimising treatment for individual patients by careful

evaluation of the pain phenotype and delivering treatment

accordingly.
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