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An iron-containing milk protein named lactoferrin (Lf) has demonstrated

antiparasitic and immunomodulatory properties against a variety of human

parasites. This protein has shown its capability to bind and transport iron

molecules in the vicinity of the host–pathogen environment. The ability of

parasites to sequester the iron molecule and to increase their pathogenicity

and survival depends on the availability of iron sources. Lf protein has suggested a

iron chelating effect on parasites iron and, hence, has shown its antiparasitic

effect. Since the parasites have a complex life cycle and have developed drug

resistance, vaccines and other treatments are a handful. Therefore, therapeutic

research focusing on natural treatment regimens that target the parasite and are

non-toxic to host cells is urgently needed. The antiparasitic efficacy of Lf protein

has been extensively studied over the past 40 years using both in vitro and in vivo

studies. This review article highlighted past important studies on Lf protein that

revealed its potential antiparasitic activity against various intracellular and

extracellular intestinal or blood-borne human parasites. This review article

structures the role of Lf protein in its various forms, such as native, peptide,

and nanoformulation, laying the groundwork for its function as an antiparasitic

agent and its possible known mechanisms of action.
KEYWORDS

parasites, lactoferrin (Lf), bovine lactoferrin (bLf), human lactoferrin (hLf), iron chelation,
Lf peptide, Lf nanoformulation
1 Introduction

Parasites are responsible for many human diseases worldwide. One of the most life-

threatening parasitic infections is malaria, which was responsible for 247 million cases and

more than 600,000 deaths in the year 2022 (WHO, 2022). Some other blood-borne parasitic

infections, such as trypanosomiasis, leishmaniasis, toxoplasmosis, and filariasis, are also
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responsible for millions of cases each year and have a high disease

burden (Drame et al., 2016; Theel and Pritt, 2016). Intestinal

infections such as giardiasis, amoebiasis, cryptosporidiosis, and

helminthic infection are more common in tropical and non-

tropical regions (Suntaravitun and Dokmaikaw, 2018; Chen et al.,

2022; Nath et al., 2022). The incidence rate is high in low income

countries and areas of poor sanitation (Kamau et al., 2012; Hajare

et al., 2021). Parasites cause zoonotic infections that transmit

between vertebrates and invertebrate hosts and involve multiple

life cycle stages. Interruption in transmission in different stages and

hosts may lead to their mortality (Auld and Tinsley, 2015). Multiple

life cycle stages in different hosts leads to treatment failure and drug

resistance, which has been known in many parasites. Plasmodium

has shown drug resistance to conventional drugs such as

chloroquine, mefloquine, and artemisinin (Shibeshi et al., 2020).

Artemisinin combination therapy (ACT) has also shown emerging

resistance since 2008 in South Asian countries, which continues to

spread (Kagoro et al., 2022). Leishmania parasite has also shown

drug resistance towards pentavalent antimonial and pentamidines

(Maltezou, 2010). Amphotericin B has been the second line of

treatment against leishmaniasis and has shown effective results, but

because of its numerous off-target toxicities, its usage is limited

(Laniado-Laborıń and Cabrales-Vargas, 2009). There are multiple

drugs or secondary metabolites used to target human and animal

protozoan and helminthic parasites to control the spread of disease

(Velázquez-Antunez et al., 2023). Many studies have suggested the

role of plant-based therapy against blood-borne parasites, which are

under development and further require in vivo studies (Kaur et al.,

2021; Qureshi, 2021; Kamaraj et al., 2022; Benlarbi et al., 2023;

Wulandari et al., 2023). Apart from drug treatment strategies,

various preventive measures are required to control the spread of

these zoonotic infections worldwide (Molyneux, 2006; Ghodsi et al.,

2019; Luan et al., 2023).

Iron is one of the most important nutrient elements that help

humans and other organisms grow. It is also the most important

element responsible for host–pathogen interaction as it involves

various cellular and metabolic processes. Previous studies have found

an association between parasitic infections and low iron anemia in

children (Osazuwa et al., 2011; Arroyo et al., 2015; Gujo and Kare,

2021; Kaur and Juneja, 2022). Various parasites sequester the iron

present at the cellular level through proteins such as transferrin (Tf),

lactoferrin (Lf), hemoglobin (Hb), and other iron pools (Collins, 2003).

These proteins are the main source of Fe for intracellular pathogens in

macrophages and red blood cells (RBCs), and for extracellular

pathogens, epithelial cells act as an iron source. Upon pathogenic

attack, Fe is released in the form of degraded cell components or

degradation of RBCs, and parasites acquire this iron for their growth

and multiplication. Availability of this iron may be diminished if it can

be sequestered and if it is not available for pathogens for their

multiplication, pathogenesis, or growth (Skaar, 2010).

Lf is a multifunctional glycoprotein, belonging to the family of Tf,

which helps in the binding and transferring of iron (Fe3+) molecules

and acts as an iron sequester. It was first isolated in 1939 and identified
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as a red protein from bovine milk (Sorensen, 1939). The three-

dimensional structure of Lf was identified in 1987, the first from its

family to be identified (Anderson et al., 1987). These proteins are found

in mammals and are involved in providing defense against various

microbial infections and also act as an essential growth factor (Naot

et al., 2005; Siqueiros-Cendón et al., 2014). Lf is predominantly present

in mammary glands, in secretions of exocrine glands, and in specific

granules of neutrophils, reaching a concentration as high as 8 mg/mL.

The major source of Lf present in the blood is derived from neutrophil

degranulation (Lepanto et al., 2019). All of these proteins possess a

common structural pattern, consisting of a single polypeptide chain of

approximately 700 amino acid residues with two homologs, N- and C-

terminal lobes of a similar length (Baker and Baker, 2009). These two

lobes and four domain structures provide the basic functional

understanding of the protein. Each lobe binds reversibly to two iron

(Fe3+) and together with carbonate ions (CO2
3−) (Legrand et al., 2008).

There are three different structural forms of Lf according to its iron

saturation: apo Lf (no iron), mono Lf (one iron), and holo Lf (two iron),

which provide its three different dimensional structures (Baker and

Baker, 2009). Besides Fe3+, Lf protein is also capable of binding

to lipopolysaccharides (LPS), heparin, DNA, and metal ions such as

Al3+, Mn3+, Co3+, Cu2+, and Zn2+, which express its antimicrobial

ability with diverse modes of action (Honarparvar et al., 2019;

Rogowska et al., 2023). Holo Lf gives it the most packed and stable

structure, with two Fe3+ that synergistically bind two CO2
3− ions (Baker

and Baker, 2009). This form of Lf allows unrestricted access for binding

with the neighboring iron molecule and various other metal ions. The

apo Lf is much less stable and less compact and is therefore prone to

heat denaturation and proteolysis (Baker and Baker, 2004). The release

of iron from holo Lf results in its destabilization, which could be

triggered by lowering the pH to 4. Therefore, depending on the presence

of one or two iron molecules or its absence, Lf protein can donate/

deprive or sequester the iron molecule and hence can perform

antitumor, antiparasitic, antibacterial, antifungal, or antiviral activities,

along with immunomodulation (Hao et al., 2019; Ahmed et al., 2021).

There are many review articles that have discussed the antimicrobial

activity of Lf protein, but there are a handful of publications that have

suggested Lf protein as an antiparasitic agent in its different formulation.

This review article highlights the importance of this novel drug

molecule that can be used in its various derivations, like its peptide

form, and can be incorporated in nanoformulations to target

parasitic infections.
2 Effect of Lf protein on
intestinal parasites

This section discusses important studies of human intestinal

parasites such as Entamoeba, Giardia, and Cryptosporidium, which

are known to be vulnerable to the treatment of Lf protein and its

peptides. Different forms of Lf studied against intestinal parasites

with various sources of origin, target stages, and concentrations are

summarized in Table 1.
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2.1 Endocytosis of holo Lf protecting
Entamoeba histolytica trophozoite and apo
Lf depleting its nutrients

Entamoeba histolytica (E. histolytica) is a protozoan parasite and

the causative agent of amoebiasis in humans causing 500 million cases

and approximately 100,000 deaths annually. The disease is transmitted

through parasitic cysts that are ingested through contaminated food

and water, thus increasing the incidence of this disease in areas with

poor sanitation (Nasrallah et al., 2022). Amoeba requires iron for its

growth and obtain it by engulfing bacteria and RBCs that help increase

its iron source through its endocytic pathway. A previous study has

suggested the possible interaction between the amoebic parasite with

bovine Lf (bLf) and human Lf (hLf). It was theorized that parasites

takes up Lf iron through membrane internalization and tubular

invaginations (de JO Batista et al., 2000; Leon-Sicairos et al., 2005;

López-Soto et al., 2009). Further potential evidence suggested the

amoebicidal activity of the apo form of Lf present in human and

bovine milk and tested at the trophozite stage. Effect was seen through

iron sequestration via receptor-mediated binding and depriving its

essential nutrient source (Leon-Sicairos et al., 2006a). This anti-

amoebic activity of Lf was further supported by an in vivo study

where infected C3H/HeJ mice were orally administered with bLf and

post-treatment showed a significantly increased Th1 type of immune

response and reduced swelling in the cecum with no histopathological

damage to the intestinal tissue (León-Sicairos et al., 2012). These

findings were further confirmed using the hamster model of amoebic

liver abscess, and upon treatment, liver abscess was found to heal

completely and showed a high blood cell count and normal liver

function (Ordaz-Pichardo et al., 2012).
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2.2 Anti-amoebic and immunomodulatory
effects of Lf peptides

Different antimicrobial peptides (AMPs) derived from hLf

and bLf have been used against intestinal parasites. Lactoferricin

B (Lfcin B) obtained from calf rennet hydrolysate Lf (4–14) and

Lfcin (17–30) obtained after cleavage with pepsin showed

inhibition towards the trophozoite stage of E. histolytica. Lfcin

showed a synergistic effect with metronidazole against the

amoebic parasite when observed in a time- and dose-

dependent manner (Leon-Sicairos et al., 2006b) (Table 1).

Other potent peptides, namely, Lfampin (265–284) and

Lfchimera, which is composed of Lfcin and Lfamphin with a

lysin link, were also found to be amoebicidal in nature and

showed the highest parasiticidal activity among the tested

compounds (López-Soto et al., 2010). A previous study has

demonstrated the significant effect of Lfamphin peptide on E.

histolytica and has demonstrated its receptor-mediated

internalization in the trophozoite, through the P13K signaling

pathway (Dıáz-Godı ́nez et al., 2019). The internalization of

peptide induced changes in the actin cytoskeleton and its

remodeling resulted in necrosis the parasite. The anti-amoebic

effect of this peptide was later revealed in C3H/HeJ mice, which

showed a complete absence of parasite infection in cecum tissue.

The authors postulate the immunomodulatory effect of the

Lfamphin peptide on mice, which helped their prolonged

survival (Dıáz-Godıńez et al., 2019). These studies suggested

the use of a small peptide sequence of Lf protein to act

specifically in binding and its functional aspects over the

native form of Lf.
TABLE 1 Antiparasitic activity of various Lf forms against intestinal parasites.

Parasite
Stage

Lactoferrin source and concen-
tration used

Percentage
Viability

Lactoferrin Peptide used Percentage
Viability

Entamoeba
Trophozoite

Human
holo Lf

(50µM) Leon-Sicairos et al., 2005) 93% Lfchimera (100µM)(López-Soto et al., 2010) >5-6%

52% Lfamphin (500µM)(Dıáz-Godıńez
et al., 2019)

10%
Human
apo Lf

(1mg/ml) (Leon-Sicairos, Lopez-
Soto et al. 2006)

Bovine
apo Lf

(1mg/ml) (León-Sicairos, López-
Soto et al. 2006)

66%

Giardia
Trophozoite

HLf (2.5.mg/ml)(Turchany et al., 1995) 25% HLfcin (24µg/ml)(Turchany et al., 1995) 25%

BLf (2.0 mg/ml)(Turchany et al., 1995) 20% BLfcin (12 µg/ml)(Turchany et al., 1995) 22%

BLf apo (12.5µM)(Turchany et al., 1995) ~25% Lfcin, Lf chimera, Lf ampin (40 µM)
(Aguilar-Diaz et al., 2017)

42%,25%,45%

Lfcin (2.6 µM)(Frontera et al., 2018) ~50%

Cryptosporidium
Sporozoite

bLf (10µg/ml)(Carryn et al., 2012) 90% Lf hydrolysate(Carryn et al., 2012) 55%,

Lfcin B (10µg/ml)(Carryn et al., 2012) 50%
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2.3 Antigiardial activity of apo Lf protein
against Giardia

Giardia is an intestinal parasite known to cause acute and

chronic diarrhea, especially in children, and causes symptomatic

infection in almost 280 million people annually, out of which 200

million are from Asia, Africa, and Latin America (Feng and Xiao,

2011). The most effective drugs against giardiasis are metronidazole,

ornidazole, and tinidazole, showing a recovery rate of up to 90%

(Escobedo and Cimerman, 2007; Vivancos et al., 2018). Giardia

infection is more prone in iron-deficient children and induces iron

deficiency anemia (IDA) and malabsorption (Gardner and Hill,

2001; Hussein et al., 2016). Because of the immunomodulatory

activity of human breast milk and the presence of Lf protein, its

efficacy was tested against Giardia trophozoites, which showed its

potent antigiardial property and mitigating effect in children. These

findings for the first time highlighted the potential role of human

milk and presence of apo Lf causing the iron chelating effect on the

parasite trophozoite (Breakey et al., 2015).
2.4 Antigiardial activity of Lf peptides on
the trophozoite stage

Peptides derived from the N terminal of hLf (18 to 40) and bLf

(17 to 41) peptides are the most potent AMPs that have

demonstrated antimicrobial effects (Bellamy et al., 1992; Tomita

et al., 1994). The N-terminal peptide derived from bLf has

previously shown antigiardial activity when used at significantly

low concentrations as compared with native form (Table 1). This

peptide showed direct interaction with the trophozoite of the

parasite, resulting in its killing effect (Turchany et al., 1995).

Previous studies described the Lfchimera peptide as superior to

the standard metronidazole drug when used in a dose- and time-

dependent manner (Aguilar-Diaz et al., 2017). Treatment with

Lfchimera led to morphological changes in the trophozoite such

as flagellar disruption and distorted peripheral vacuoles, leading to

apoptosis or programmed cell death (Aguilar-Diaz et al., 2017).

Detailed ultra-structural examination on the Giardia trophozoite

illustrated the direct interaction of native Lf and its peptide on the

surface of the trophozoites, leading to deformation via flagellar

swelling, disruption in plasma membrane, and ultimately, lysis of

the cell (Turchany et al., 1997). Another study further illustrated the

detailed mechanism of action of bLfcin against G. lamblia. Giardia

trophozoites showed internalization of low-density lipoprotein

(LDL) and chylomicrons through receptor-mediated engulfment

(RME), and a similar pathway has been suggested by the authors for

the engulfment of bLf and bLfcin. The authors suggested that this

mechanism is essential for morphometric changes and lysis of the

parasite, which was not known before (Frontera et al., 2018).
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2.5 Antiparasitic effect of Lf and its
peptides against Cryptosporidium

Cryptosporidium parvum (Ferrer et al., 2015; Thipubon et al.,

2015) is responsible for the disease cryptosporidiosis, which causes

intestinal infection in humans and animals, with an incidence rate of

1%–3% in Europe and North America and can also infect extra-

intestinal organs in the case of an immunocompromised host

(Hunter and Nichols, 2002; Semenza and Nichols, 2007; Ghallab

et al., 2022), whereas C. hominis is only known to infect humans, but

due to the lack of laboratory models to propagate C. hominis culture,

most of the in vitro and in vivo studies have been performed with C.

parvum (Gerace et al., 2019). Antibiotics such as nitazoxanide are

used as the first line of treatment against C. parvum, but the results

are not satisfactory and the mode of action of the drug is also not fully

understood (Rossignol et al., 2006). Lf protein and its peptides,

namely, Lfcin B and Lf hydrolysate (LfH), have previously

demonstrated antiparasitic activity against C. parvum sporozoites

with the highest inhibition rate achieved by LfH. This peptide also

showed antiparasitic activity when used in combination with

Cryptosporidium monoclonal antibody (3E2 MAb). The 3E2 MAb

has been raised against the apical complex and surface glycoprotein

ligand (CSL) of the parasite, which helps the parasite attach to the

host cell. The combination of Mab and the Lf peptide helped inhibit

sporozoite viability and infectivity (Carryn et al., 2012). Previous

studies also examined the role of hLf on the excystation efficacy of

Cryptosporidium. The authors showed possible inhibition of

sporozoite viability and infectivity, but no effect was found on the

excystation stage of the oocyst wall. These studies suggested that Lf

protein or its peptides are impermeable to the thick wall of the oocyst

but can inhibit the viability of free forms of this parasite through

internalization via the endocytic pathway (Paredes et al., 2017).
3 Effect of Lf protein on intracellular
blood parasites

Intracellular blood parasites such as Leishmania, Plasmodium,

Toxoplasma, Trypanosoma, and Babesia, which are responsible for

blood-borne infections, have been reported to be susceptible to the

treatment of Lf protein. The apo/mono form of the Lf has been

documented to show significant antiparasitic activity against these

parasites by chelating the iron molecule with the help of the Lf

receptor present on the parasite membrane (Figure 1), whereas holo

Lf has shown support for their multiplication through

internalization via endocytosis and further multiplication. Also

holo Lf may lead to increased oxidative stress and kill the

parasite. Various peptides and nanoformulations of Lf, along with

its native form, have been used in studies and are summarized

in Table 2.
frontiersin.org

https://doi.org/10.3389/fpara.2023.1330398
https://www.frontiersin.org/journals/parasitology
https://www.frontiersin.org


Anand 10.3389/fpara.2023.1330398
3.1 Role of Lf against Leishmania

Leishmaniasis is a disease that is caused by the protozoan

parasite Leishmania and it affects approximately 13 million people

annually (Kevric et al., 2015). The parasite alters between

promastigote (insect host) and amastigote stages (mammalian

host). There are three different forms of leishmaniasis: visceral,

cutaneous, and mucocutaneous. Visceral leishmaniasis is caused

by L. donovani, L. chagasi, and L. infantum. Cutaneous

leishmaniasis is caused by L. brazilensis and L. (L.) amazonensis,

and mucocutaneous leishmaniasis is caused by L. guyanensis and

L. panamensis (Palumbo, 2010; Reimão et al., 2020). The

treatment for the disease is pentavalent antimonial compounds,

but due to the emerging resistance, these drugs are not effective

(Sundar et al., 2000; Maertens et al., 2022). However, the most

recent and effective therapy against leishmaniasis is amphotericin

B and its liposomal nanoformulations, but due to the high cost of

the drug, and toxicity, its usage is limited (Saravolatz et al., 2006;

Maertens et al., 2022). The antileishmanial activity of Lf has been

rarely studied; however, some reports have manifested the

acquisition of radiolabeled iron by the promastigote form of L.

chagasi through in vitro studies describing the role of a common

receptor or convergent pathway. The promastigote form of the

parasite has been known to acquire iron from various sources,
Frontiers in Parasitology 05
which include Lf, Tf, and hemin. This study describes the uptake

of the reduced form of iron (Fe2+) instead of the oxidized form

(Fe3+) derived from Lf protein by the promastigotes (Wilson et al.,

1994). These results suggested that the promastigote form of the

parasite may have a different pathway of internalization, and

based on that, the parasite may show different aspects of

pathogenicity and survival.
3.2 Potent activity of Lf peptides
against Leishmania

Potent Lf AMPs, namely, Lfchimera, Lfcin, and Lfamphin, were

found to be leishmanicidal in nature when evaluated through an in

vitro study (Table 2) (Silva et al., 2012). These peptides showed

internalization and accumulation inside the cell, leading to

impaired ATP production, and loss of ionic gradient, resulting in

parasite death. The activity of Lfchimera has largely surpassed the

other two derivatives as it appears to attach the membrane of the

parasite leading to its destruction. The role of either the Lf native

protein form or its various derivatives has suggested the destruction

of the parasite through imbalance in the gradient ion channel,

which might have changed the electrolyte balance and

osmoregulation (Silva et al., 2012).
FIGURE 1

Action of Lf protein on the surface membrane of the parasites and intracellularly. Lf protein mainly acts on the parasites in two different ways.
(a) Iron-chelating effect on cell membrane: the apo form of Lf chelates the Fe molecule present on the parasite surface membrane and converts it
into the mono or holo Lf form. This way, apo Lf deprives the parasite of its iron source. This mechanism of action can be seen in parasites that
reside/adhere extracellularly on the cell membrane of the host like Giardia, Trichomonas, and Entamoeba. The other part of the mechanism is based
on Lf engulfment or through endocytosis, as seen in panel (b). The Lf gets endocytosed and diffused with early and late endosomes, releasing the
iron molecule into the cytoplasm, which causes free radical ion production in the form of ROS and NO leading to cell death of parasites. This high
ROS or NO killing effect can be seen in parasites like Leishmania, Plasmodium, Toxoplasma, Babesia, and Trypanosoma. Retrieved from https://
app.biorender.com/biorender-templates, December 2023.
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3.3 Lactoferrin nanotherapy used
against Leishmania

There are several natural biological molecules that are used as a

loading drug in nanotherapy. Lf nanoformulation has been studied

against a wide range of diseases such as cancer and parasitic infection

(Kondapi, 2020; Varma et al., 2020). Previously, the antileishmanial

activity of Lf-appended amphotericin B bearing nano reservoirs has

been thoroughly addressed against this parasite using in vitro and in

vivo studies, showing reduced parasite burden (Asthana et al., 2015).

The nanoparticles were taken up more efficiently by the host

macrophages and suggested their targeted delivery. This

nanoformulation induced a high Th1 immune response in mice

that contributed to reduced parasite burden in the visceral organs

with low toxicity (Asthana et al., 2015). Another study showed the

antileishmanial activity of the modified polylactic-co-glycolic acid
Frontiers in Parasitology 06
(PLGA) nanoparticle (NP) incorporated with Lf protein. These

nanoparticles were loaded with betulinic acid (BA), which is a

naturally occurring triterpenoid and has shown promising

antitumor and anti-inflammatory properties (Halder et al., 2018).

The mechanism of action of BA has been found to be through the

destruction of mitochondrial membrane potential and ROS

production (Cichewicz and Kouzi, 2004). However, BA has poor

solubility, but its loading with PLGA nanoformulation has been

found to enhance its targeted delivery. Moreover, author found the

incorporation of Lf protein helped in the receptor-mediated binding

of these NPs and improved its further engulfment inside the cells.

With these modifications, Lf-embedded BANP showed a significant

reduction in intracellular amastigotes through high production of NO

and enhanced Th1 response through elevated levels of IL-12 and

reduced expression of IL-10 in host macrophages (Halder

et al., 2018).
TABLE 2 Antiparasitic activity of various Lf formulations against human blood parasites.

Parasite Source of
Lactoferrin and
concentration

used

Percentage
Viability

Peptide
concentration

used

Percentag
Viability

Lactoferrin
Nanotherapy

Concentration
of Lf used

Leishmania
Promastigotes
and
amastigotes

Bovine Lf peptides 50%(Silva
et al., 2012)

Lfcin (22µM) 50% AmpB PLGA nanoreservoir
Betulinic Acid
PLGA nanoparticles

0.03-0.6% (w/v)
(Asthana et al., 2015)
1.5mg/ml (Halder
et al., 2018)

Lfchimera
(4µM)

50%

Lfampin (31 µM) 50%

Plasmodium
Blood Stage
Merozoites

Human apo, holo Lf (30
µM) (Fritsch, et al., 1987)

Growth arrest in
ring stage only

– – Alginate chitosan calcium
phosphate calcium phosphate
nanoparticles (AEC-CCO-
CP-NC)

1.2% (w/v)
(Anand et al., 2016)

Spoprozoite Bovine Lf (Shakibaei and
Frevert 1996)

89% - – – –

Sporpzoite Human Lf (500µg/ml)
(Sinnis et al., 1996)

74% – – – –

Blood Stage
Merozoites

Human Lf (2mg/ml)
(Kassim et al., 2000)

78%

Lf (50µg/ml) (Parra
et al., 2013)

95%

Toxoplasma
Trophozoite

bLf apo/mono (20µg/ml)
(Anand et al., 2015b)

20%

C peptide and BLf
(1mg/ml)
(Tanaka et al., 1995)

80% Lfcin B (1mg/ml) In
vitro and in vivo
mouse model

0% (Tanaka
et al., 1995)

Alginate chitosan calcium
phosphate bovine
Lactoferrin nanoparticles

1.2% (w/v)(Anand et
al., 2015b)

Lfcin (1mg/ml) 0%

Human Holo (Tanaka
et al., 1997)

55%

Lf (1mg/ml) (Dzitko
et al., 2007)

65%

Trypanosoma
amastigotes

Human apo Lf (10µg/ml)
(Lima and
Kierszenbaum 1987)

54% – – – –

Babesei
merozoites

bLf apo
(2.7mg/ml) (Ikadai
et al., 2005)

50% – – – –
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3.4 Antiparasitic activity of apo Lf
against Plasmodium

Plasmodium is an intracellular protozoan parasite known to

cause malaria, which leads to the mortality of 600,000 people

annually (WHO, 2022). The most deadly form of the disease is

called falciparum malaria, which is caused by, P. falciparum,

responsible for almost 90% of malaria cases alone in Africa (Snow

et al., 2005). The Plasmodium parasite completes its life cycle in two

different hosts, an invertebrate host (mosquito) and a vertebrate

host (human). The sporozoite stage of the parasite is transmitted

through the mosquito bite to the human host and multiplies inside

the liver cells. This sporozoite stage leads to the formation of

merozoite, which transmits into the bloodstream and multiplies

inside the RBCs. To avoid this transmission cycle, various

transmission-blocking vaccines have also been under

development (Buchholz et al., 2011; Nikolaeva et al., 2015). The

current treatment strategy for malaria includes artemisinin therapy.

Artemisinin and its derivates in combination with other drugs have

also shown promising results against malaria (Abumsimir and Al-

Qaisi, 2023). The parasite resides in the RBCs and feeds on the iron-

containing Hb as it develops from the ring to the schizont stage and

utilizes all the Hb iron as its nutrient (Egan et al., 2002). Therefore,

iron chelators have been studied against P. falciparum as

antimalarial agents for several decades (Thuma et al., 1998).

Earliest reports have shown the effect of iron chelators like

desferriferrithiocin (DFT), desferricrocin (DFC), and hLf on the

in vitro growth of P. falciparum. The apo form of hLf showed

growth arrest at the ring form of the parasite and inhibited its

further conversion to the trophozoite stage, whereas no effect was

observed after treatment with iron-saturated hLf (Fritsch et al.,

1987). Pretreatment of Lf with the circumsporozoite (CS) protein of

malarial sporozoites has shown interference in its attachment and

invasion to liver cells, disrupting attachment with heparin sulfate

(HS) and LDL receptor-related protein (LRP) (Shakibaei and

Frevert, 1996; Sinnis et al., 1996). Lf has also shown anti-adherent

properties. Lf-treated infected RBCs showed hindrance in their

attachment to various receptors present on placenta and endothelial

cells, namely, CD36 (Eda et al., 1999), intercellular cell adhesion

molecule (ICAM-1), thrombospondin (TSP) (Roberts et al., 1985;

Berendt et al., 1989), chondroitin sulfate A (CSA) (Robert et al.,

1995; Fried and Duffy, 1996), and vascular cell adhesion molecule-1

(VCAM-1) (Ockenhouse et al., 1992).

Previous clinical studies have suggested the role of Lf protein as

a major component of human milk in providing protection to the

fetus against malaria. Breast milk has been found to be high in IgM

and IgA, and the role of Lf in protecting the mother and the

developing fetus through vertical transmission has been suggested

(Kassim et al., 2000). Another study postulated that BCG

immunization in mice led to increased concentration of Lf

protein in the plasma and helped reduce P. yoelli infection in

mice along with an increased number of CD4 and CD8 cells

(Parra et al., 2013). These results suggest the immunomodulatory

action of Lf protein. Previous studies have explored the role of Lf

protein in reducing the invasion capacity of parasitized erythrocytes

inside the new RBCs. Reduced invasion of RBCs leads to a
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significant reduction in parasite levels, by 71% and 95% at day 14

and 17 post-infection (poi) compared to the untreated group. This

reduction in parasite levels was attributed to the presence of Lf as a

major factor and was found to be independent of antibody

production (Parra et al., 2013). All these studies have pointed out

the role of Lf in inhibiting malarial parasites, but a detailed mode of

action was not fully demonstrated.

The studies performed using Lf as an antimalarial agent did not

fully illustrate its effect on the RBCs; therefore, it is of utmost

importance to understand its cytotoxicity and mode of action

against malarial parasites. A previous extensive study conducted

by our group elaborated on the interaction of RBCs with various

iron-saturated forms of bLf and buffalo Lf (buLf) (Lfs), such as the

apo, mono, and holo form (Anand et al., 2015a). Different

concentrations of these two forms of Lf and different iron

saturation were examined against the human RBCs and effect on

its shape and size. All different forms of Lfs were found to be

nontoxic in nature and did not show any alteration in the size and

shape of RBCs when given in a dose- and time-dependent manner.

RBCs treated with holo Lfs showed high production of ROS as

compared to apo/mono forms of the Lfs (Anand et al., 2015a). After

analyzing the nontoxic nature of various Lfs toward RBCs, we

intended to study its effect on intracellular parasites, and we chose

to work with buLf protein in mouse models, which showed better

effect over bLf.
3.5 Antimalarial activity of Lf in its native
and nanoformulation form

Our group has studied the role of buLf protein in its native form

and nanoformulation against P. berghei-infected mice. Previous

studies from our group have suggested that Lf protein works best

when it is being administered orally (Kanwar et al., 2012). However,

Lf is a cationic protein and can degrade through the gastric pH and

enzymatic activity when incorporated via the oral route of

administration. Therefore, our group has coupled this protein

with biodegradable polymers like alginate and chitosan to make a

nontoxic bioactive drug and studied its activity against colon cancer

and further against the P. bergheimouse model (Kanwar et al., 2012;

Anand et al., 2016). A significant reduction in parasite load was

observed when infected BALB/c mice were treated with the buLf

mono form. However, enhanced antiparasitic activity was seen after

giving its nanoformulation using alginate and chitosan nanocarriers

(buLf NC) through oral administration (Anand et al., 2016). Mice

treated with either native buLf or buLf NC did not show any

pathophysiological alteration and had significantly less peripheral

parasitemia and high ROS production in spleen and liver cells when

compared to the untreated group. Biodistribution of buLf in the

liver and spleen showed its entrapment in liver Kupffer cells and the

red pulp of the spleen. Moreover, the treatment with either native

buLf or buLF NC resulted in maintaining the iron levels and iron

metabolism in mice when compared with control mice, which were

found to be anemic. The expression for miRNAs of iron

metabolism, such as miR-Let7d, miR122, miR-196 miR-200b,
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miR-210, miR-214, miR320, miR-485 and miR-584, was found to

be elevated in mice which showed balanced iron metabolism

(Anand et al., 2016). Therefore, our study suggests the chelating

effect of Lf protein and the targeted delivery of Lf protein inside the

macrophages, which help prevent parasite multiplication and help

maintain iron metabolism.
3.6 The promising antiparasitic activity of
apo/mono Lf and its peptide
against toxoplasmosis

Toxoplasma gondii is an obligate parasite known to cause

toxoplasmosis in humans and immunocompromised patients. It

is generally assumed that approximately 25% to 30% of the world’s

human population is infected by Toxoplasma and approximately

500 million humans have antibodies to this parasite (Ajioka and

Morrissette, 2009). T. gondii mice model has been well studied

before and known to cause enchephalitis. Various reports have

studied the chronic infection of T. gondii in mice previously which

causes the formation of brain cyst. These mice mimic the ideal

pathological conditions as with humans and shows cytokine

response that can be picturalizsed in human in order to study

the pathophysiology of the diseases (Lutshumba et al., 2020; Anand

et al., 2022). Conventional drugs used for the treatment of

toxoplasmosis are sulfadiazine and pyrimethamine, but resistance

against sulfadiazine has been emerging for the last few years

(Doliwa et al., 2013). The efficacy of Lf protein studied against

Toxoplasma dates back to 1995, when bLf and its peptides, namely,

the Lfcin B and C-terminal peptide, were used to assess their

antitoxoplasmal activity. The parasite was incubated with the bLf

and its various peptides and studied for its invasive tendency.

Interestingly, the Lfcin B peptide significantly hindered the

invasive capacity of tachyzoites to infect the cells when

compared to untreated control parasites and the C-terminal

peptide. The authors suggested that although the tachyzoites

were alive after the treatment with Lfcin B, they possibly lost the

capability to invade the cells (Tanaka et al., 1995). This effect was

further studied in a mouse model, wherein all mice treated with

Lfcin B survived until day 30 post-injection as compared to

untreated mice, which died by day 9 post-infection (Tanaka

et al., 1995). These results suggest that the Lf peptide diminishes

the invasion capacity of tachyzoites in in vitro and in vivo models.

The authors further investigated a number of studies to identify the

mode of action of Lf protein. The authors intended to study the

pretreatment effect of Lf on murine somatic host cells and revealed

a reduction in the number of intracellular tachyzoites invading

when seen in comparison to the untreated control group (Tanaka

et al., 1996). Furthermore, the authors tried to subject intracellular

tachyzoites to different iron-saturated forms of Lf, and it was

observed that only apo/mono bLf forms showed the best

inhibitory activity with increased free radical ion production

(Tanaka et al., 1997). Similar results were obtained when the

antiparasitic activity of bLf was observed in mice that were orally

administered with the protein after infection with T. gondii.

Treatment results suggest reduced parasite load through the
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production of intracellular ROS and NO (Tanaka et al., 1997).

These studies suggested iron chelation and ROS production as

potential mechanisms of action of bLf. However, the authors

discovered the possible role of tyrosine kinase phosphorylation

inside the cells to be the mode of action of Lf effect, along with ROS

production (Tanaka et al., 1998).

The effect of the holo form of hLf was observed against

intracellular tachyzoites and monitored; it did show inhibition

when used in a dose- and time-dependent manner, but no

remarkable effect was found on the extracellular stages of the

parasite (Dzitko et al., 2007). This study correlates with the

finding that the iron-saturated form of Lf protein can induce ROS

production and kill the parasite, whereas the apo/mono form can

inhibit the extracellular stages. Another study has documented the

role of parasite rhoptry proteins, namely, ROP2 and ROP4, as

important genes responsible for the invasion and pathogenesis of

the parasite (Carruthers, 1999). However, these proteins have been

reported to acquire iron molecules from hLf, helping the

attachment of tachyzoites with cell surface-promoting parasite

multiplication and enhanced pathogenicity (Dzitko et al., 2007).

To detail the interaction between the parasite and the macrophage

host cells, our group has performed a multiparametric study to

examine the same (Anand et al., 2015a). Our study demonstrated

the effect of various iron saturations of bLf and buLf on morphology,

cytotoxicity, the production of free radical ions, and the phagocytic

property of macrophages using the THP1 cell line. After the treatment

of the holo form of Lf, the macrophages showed increased ROS and

phagocytic properties with no cytotoxicity and morphometric

alterations (Anand et al., 2015a). We studied a similar effect on

macrophages that were infected with tachyzoites of the parasite.

Infected macrophages were incubated with different concentrations

of apo/mono Lf and the treatment showed reduced number of infected

macrophages when compared with holo Lf. However, when the

intracellular parasites were counted per macrophage, again, the apo/

mono form of the bLf showed both a significantly smaller number of

infected macrophages and a smaller number of intracellular tachyzoites

per macrophage (Anand et al., 2015b).
3.7 Lactoferrin nanotherapy used
against Toxoplasma

In our previous study we investigated the role of bLf on acute

stage of the mice. The in vivo activity of mono bLf and its

nanoformulation using alginate chitosan bLf NC were analyzed

by our group (Anand et al., 2015b). The bLf NC showed better

antiparasitic activity in comparison to mono bLf protein in

reducing the parasite load and provided a high Th1 immune

response, resulting in the prolonged survival of mice. We also

found cyst development inside the liver tissue of the mouse which

were treated with bLf and bLf NC. These results showed the

treatment effect of Lf protein on the parasite which lead it to the

cyst formation. Our study proposed that bLf NC treatment induces

increased ROS production in the liver and spleen, followed by high

NO production. With the help of immunohistochemistry, we

observed immunoreactivity of Lf in the spleen and liver,
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suggesting the targeted delivery of Lf in respective visceral organs

with very low toxicity. Also the biodistribution of Lf protein was

found in the liver of the mice. The proposed mechanism of action

from our study suggested that the increased production of ROS and

NO caused intracellular parasite killing. Additionally, Lf caused

potential disruption of iron availability for parasite survival and

maintained iron metabolism, leading to improved protection

against parasitic infections in mouse models (Anand et al., 2015b).
3.8 Antiparasitic activity of Lf
against Trypanosoma

Trypanosoma is a blood-borne parasite that causes sleeping

sickness, also known as African trypanosomiasis or Chagas disease in

humans. The incidence rate of the disease may be as high as 90% in

endemic areas, especially in Africa (Büscher et al., 2017). Conventional

drugs such as suramin, pentamidine, andmelarsoprol are the treatment

of choice (Garcia-Salcedo et al., 2016). The parasite multiplies in the

reticuloendothelial system (RES) of humans as well as inmuscle cells. It

relies on the source of iron for its multiplication and for its conversion

from one form to another (Stijlemans et al., 2015, 2018). Previous

studies have suggested the correlation of iron content in a patient’s

serum with the severity of trypanosomiasis (Murray et al., 1978). Many

studies have investigated the potential of Lf against Trypanosoma

parasite due to its structural similarity with Leishmania parasite. An

earlier study examined the effect of Lf protein on intracellular

amastigotes’ growth using different host cells, namely, mouse

peritoneal macrophages (MPMs) and human blood monocytes

(HBMs) (Lima and Kierszenbaum, 1987). The inhibitory effect of Lf

was found to be more pronounced in MPM cells than in HBM cells.

The rationale for the difference in inhibitory activity was correlated

with the higher number of Lf receptors present on the surface of MPM

cells, which may facilitate the entry of Lf inside the cell and show an

inhibition effect (Lima and Kierszenbaum, 1987). Another study

showed that Lf can serve as a cell surface marker on the amastigote

form of T. cruzi, resulting in opsonization, to inhibit the parasite load in

host cells such as monocytes and macrophages (Lima et al., 1988). A

study conducted by Tanaka et al. suggested that bLf binds to a

particular surface protein of 40 kDa, identified as Glyceraldehyde 3

phosphate (G3Ph) through receptor ligand binding and suggested a

possible correlation with parasite inhibition (Tanaka et al., 2004).
3.9 Antiparasitic effect of native apo Lf
protein against Babesia cabelii

Babesiosis is a disease caused by the protozoon blood-borne

parasite Babesia. It has similar morphology and pathogenicity to

that of the Plasmodium genus; however, the two parasites differ in

their mortality rate (Allred and Al-Khedery, 2004; Pritt, 2015).

Plasmodium is responsible for almost 600,000 deaths annually,

whereas Babesia has a low incidence rate, which has been

reported only in North America, Japan, Korea, Taiwan, and
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India (Vannier and Krause, 2012; Onyiche et al., 2021). In

North America alone, a total of 50,856 cases were found in

2019 (Swanson et al., 2023). Like Plasmodium, Babesia also

feeds on Hb of the RBCs and hunts for iron; few studies have

investigated the role of Lf against this parasite. A previous study

suggested the effect of different iron-saturated forms of bLf such

as apo, holo, and mono Lf, and the peptide LfH against two

species of Babesia such as B. cabelli and B. equi, but only the apo

form had shown inhibition toward B. cabelli and not against B.

equi (Ikadai et al., 2005). The mode of action of Lf against Babesia

was found to be similar to that of Plasmodium, i.e., through iron

chelation, but still, in vivo studies are required to justify the

antiparasitic nature with a detailed mode of action.

The mechanism of action summarized from the above-

mentioned studies on these parasites demonstrated the iron-

chelating effect of apo Lf from the parasite through receptor-

mediated binding, whereas the holo form of Lf has provided

growth and helped enhance the pathogenesis of the parasite

through surface internalization. However, in some intracellular

parasites such as Plasmodium, Toxoplasma, and Leishmania, holo

Lf may act through the production of free radical ions, reactive

oxygen species (ROS), and nitric oxide (NO), which results in the

intracellular killing of the parasite (Figure 1).
4 Effect of Lf protein on
extracellular parasites

Lf protein isolated from bovine or human milk has also shown

inhibition against different extracellular parasites, and the mechanism

of action is fairly similar to that of intracellular parasites.
4.1 Role of Lf against Acanthamoeba

Acanthamoeba is a free-living parasite that can cause opportunistic

infections in humans and has an estimated incidence rate of 1.2 per

million adults. The parasite is known to invade host cells and acquire

iron for its pathogenesis, causing keratitis and corneal infections (Page

and Mathers, 2013; Niederkorn, 2021). Previous research has shown

that A. castellanii proteases play a role in acquiring iron from holo hLf

and holo Tf, which helps in its multiplication and pathogenesis

(Ramıŕez-Rico et al., 2015), whereas the apo bLf has been reported

to show amoebicidal effect against the trophozoite form of A. keratitis

(Tomita et al., 2016). After the apo Lf treatment, the trophozoite shape

was found to be globulus as compared to the normal non-globulus

form of the trophozoites. However, the study did not report any

notable effect on the cystic stage of the parasite, but the treatment with

apo Lf prevented the conversion of trophozoites to cysts. This could

result from the inability of Lf to penetrate the cell wall of the parasite

(Alsam et al., 2008). A recent study by Ramıŕez-Rico et al., (2023)

conducted similar experiments using apo-bLf protein on A. castellanii,

which causes granulomatous amoebic encephalitis and keratitis in

humans. The authors did not see any amoebicidal effect on the
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parasite trophozoite form and showed resistance in a dose- and time-

dependent manner. The cytopathic effect was observed onA. castellanii

when preincubated with apo-bLf. The cytopathic effect was found to be

diminished after the apo-bLf treatment, whereas its absence caused

damage to the parasite. Authors suggested the role of cysteine and

serine proteases in the pathogenesis of the amoeba, which showed a

cytopathic effect (Ramıŕez-Rico et al., 2023).
4.2 Role of Lf against Trichomonas

Trichomonas vaginalis is a parasite that causes sexually

transmitted disease (STD) in men and women, affecting 275

million cases annually, but most of them remain asymptomatic

(Johnston and Mabey, 2008; Kissinger et al., 2022). Parasites reside

in flagellated trophozoites inside the female genital tract and

replicate by binary fission (Yadav, 2023). Metronidazole and

tinidazole are the drugs of choice for the treatment of T. vaginalis

infections (Rigo et al., 2022). Several studies have identified iron as

an essential micronutrient for the virulence and pathogenicity of

Trichomonas (Song, 2016; Rivera-Rivas et al., 2020). The first

interactive study of Trichomonas with Lf described how the

parasite takes up the iron from the iron pool of the plasma

membrane of the cells. The parasite sequesters the iron from hLf

through receptor-mediated binding and its accumulation inside the

trophozoite resulted in its increased pathogenesis. The enzymatic

activity of pyruvate/ferredoxin oxidoreductase was suggested to be

responsible for the binding of hLf to the parasite as it helps with iron

acquisition (Peterson and Alderete, 1984).

Another previous study has suggested that the synergistic effect

of complement C3 with Lf protein causes cell lysis of T. vaginalis.

This study demonstrated that the presence of iron in the parasite

cultivation media sourced from either Lf or Tf showed an inhibitory

effect. However, in the absence of an iron source, the antiparasitic

effect predominantly came from complement-mediated lysis

(Alderete et al., 1995). Trichomonas is known to secrete a number

of cysteine proteases, collectively called cysteine proteases 30

(CP30), which have shown an apoptotic effect on the epithelial

cells of the host (Kummer et al., 2008). The authors reported that

the presence of iron sourced from holo Lf in cell culture media leads

to the reduced activity of CP30 and the survival of the parasite.

However, in the absence of an iron source, the CP30 enzyme

performed the proteolytic function and damages the epithelial

cells (Kummer et al., 2008). Thus, these studies signify the role of

Lf in promoting the growth of Trichomonas by stimulating different

signaling pathways, resulting in its pathogenesis.
5 Discussion

Lf research has progressed over several decades, expanding its

utility in various health-related areas. It is mentioned as a growth

supplement in infant formulas and for its role in iron metabolism. Lf

protein has shown its efficacy not only by chelating iron but also

through its binding efficacy to the DNA molecule. Lf protein has a

DNA binding site, which makes this protein more crucial in targeting
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or activating different transcription factors responsible for various

cellular or biochemical activities (Fleet, 1995). It has the ability to

provide adaptive and innate immunity to fight various diseases. Lf is

extracted from bovine, sheep, or goat milk. Over decades, there have

been improvements in the production of Lf. This protein is able to

express in many microbes such as Escherichia coli and some fungi

such as Aspergillus oryzae and Pichia pastoris, and its production has

been improved through recombinant technology. Studies have also

used CHO cell lines for the expression of this protein, and other cell-

free protein methods have also been successful in its production.

There has been a significant improvement in the yield of Lf after

producing a transgenic fetal calf that can express this protein and

enhance the yield.

Overall, this review suggests that the Lf protein exerts its effect on

human parasites through iron chelation and free radical ion

production where other possible mechanisms of action may also

play a role. Parasites gain their nutrition and enhance their virulence

by withdrawing the iron molecule from host cells or its surrounding.

Treatment with the low-iron form of the Lf protein, such as the apo

or mono form, can chelate the surrounding iron and prevent the iron

from being available to the parasite. More specific binding of Lf

protein with the target protein site of the parasite can be achieved by

Lf peptide formulation, which can show a more specific and targeted

killing effect with minimum toxicity. Nanoformulation of Lf protein

is another strategy for delivering this drug. Nanoformulation of the Lf

drug has been suggested because it is easy to incorporate with a

variety of particles and targeted drug delivery. This review not only

covers the antiparasitic nature of Lf but also highlights the

immunomodulatory effect of this drug. Lf research has advanced

over several decades and has expanded this protein’s value and

importance in various health-related areas as a growth booster and

for iron metabolism. Many countries are considering using Lf protein

in clinical trials as a growth and immune supplement. Therefore, this

review emphasizes the need for ongoing research to better

understand the role of Lf and its mechanism of action, especially in

the context of emerging infectious diseases. In-depth studies are thus

required to provide possible insights into how Lf can be optimally

utilized for parasitic infections.
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Ramıŕez-Rico, G., Martıńez-Castillo, M., Garza, M., Shibayama, M., and Serrano-
Luna, J. (2015). Acanthamoeba castellanii proteases are capable of degrading iron-
binding proteins as a possible mechanism of pathogenicity. J. Eukaryotic Microbiol. 62,
614–622. doi: 10.1111/jeu.12215

Reimão, J. Q., Coser, E. M., Lee, M. R., and Coelho, A. C. (2020). Laboratory
diagnosis of cutaneous and visceral leishmaniasis: current and future methods.
Microorganisms 8, 1632. doi: 10.3390/microorganisms8111632

Rigo, G. V., Frank, L. A., Galego, G. B., d. Santos, A. L. S., and Tasca, T. (2022). Novel
treatment approaches to combat trichomoniasis, a neglected and sexually transmitted
infection caused by Trichomonas vaginalis: Translational perspectives. Venereology 1,
47–80. doi: 10.3390/venereology1010005

Rivera-Rivas, L. A., Lorenzo-Benito, S., Sánchez-Rodrıǵuez, D. B., Miranda-Ozuna, J.
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Villa-Mancera, A., and RomeroRosales, T. (2023). Biological Activity of the Secondary
Compounds of Guazuma ulmifolia Leaves to Inhibit the Hatching of Eggs of
Haemonchus contortus. Pak Vet. J. 43 (1), 55–60. doi: 10.29261/pakvetj/2022.075
Frontiers in Parasitology 14
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