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Notch signaling can play oncogenic and tumor suppressor roles depending on cell type.
Hematologic malignancies encompass a wide range of transformed cells, and conse-
quently the roles of Notch are diverse in these diseases. For example Notch is a potentT-cell
oncogene, with >50% ofT-cell acute lymphoblastic leukemia (T-ALL) cases carry activating
mutations in the Notch1 receptor.Targeting Notch signaling inT-ALL with gamma-secretase
inhibitors, which prevent Notch receptor activation, has shown pre-clinical activity, and is
under evaluation clinically. In contrast, Notch signaling inhibits acute myeloblastic leukemia
growth and survival, and although targeting Notch signaling in AML with Notch activators
appears to have pre-clinical activity, no Notch agonists are clinically available at this time.
As such, despite accumulating evidence about the biology of Notch signaling in different
hematologic cancers, which provide compelling clinical promise, we are only beginning to
target this pathway clinically, either on or off. In this review, we will summarize the evi-
dence for oncogenic and tumor suppressor roles of Notch in a wide range of leukemias
and lymphomas, and describe therapeutic opportunities for now and the future.
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INTRODUCTION
“Notch” is a critical developmental pathway, which controls cell
fate, differentiation, proliferation, and survival, and is critical
in numerous developmental processes including neurogenesis,
angiogenesis, and hematopoiesis, among others (1). The ability
of Notch signaling to inhibit or induce differentiation, drive or
impair proliferation, and promote survival or induce apoptosis
in a cell-specific manner provides the opportunity for Notch sig-
naling to contribute to or impede oncogenesis in multiple cell
types (2).

The role of Notch has been studied in a wide variety of hemato-
logical malignancies including T and B leukemias and lymphomas
as well as myeloid leukemias (3–5). However, the consequences
of Notch signaling in these diseases varies significantly, and thus
targeting Notch, requires understanding the biology of Notch
signaling on a disease-by-disease basis (Table 1).

In this review, we will outline the roles of the Notch pathway
in a wide variety of leukemias and lymphomas, describe potential
targeted therapies and discuss future directions.

NOTCH PATHWAY
In mammals, the Notch signaling pathway consists of five cell
membrane-based ligands [Jagged1, Jagged2, Delta-like ligand-1
(DLL1), DLL3, and DLL4], each of which bind to and activate
four cell membrane-based Notch receptors (Notch1–4) present
on neighboring cells. Receptor interaction with ligand classically
requires cell–cell interaction and induces enzymatic cleavage of the
Notch receptors at their transmembrane domain by both metal-
loproteinases and the gamma-secretase complex (6). This releases
the intracellular domain of Notch (ICN) from the membrane,
which then translocates into the nucleus and associates with a

common transcription factor RBPjk (also known as CSL), leading
to the expression of Notch target genes, e.g., the HES/HEY family,
which can vary depending on cell type (7). Thus, Notch signal-
ing can occur in a variety of circumstances based on the presence
of the five different ligands in the microenvironment, expression
of metalloproteinase, and gamma-secretase complex enzymes, and
the expression of the four Notch receptors, yielding a large number
of potential variations on the Notch pathway.

NOTCH IN LYMPHOID LEUKEMIAS AND LYMPHOMAS
The normal developmental roles of the Notch pathway in lym-
phopoiesis have led to both similarities and contrasting findings
across the range of lymphoid malignancies. For example, Notch
has well-defined roles in inducing commitment, differentiation,
and function in the T-cell lineage, while impairing early B-cell
development, and inducing more mature marginal zone B-cell dif-
ferentiation. Thus, in normal development Notch appears to gen-
erally support T-cell growth, differentiation, and survival, while
effects in B cells appear to depend on the stage of differentiation,
inhibiting immature B cells, and supporting at least a subset of
more mature B cells (8).

T-CELL ACUTE LYMPHOBLASTIC LEUKEMIA
Aberrant Notch activation was first linked to cancer in 1991 when
Notch1 was identified as part of a t(7:9)(q34;q34) translocation
in patients with T-cell acute lymphoblastic leukemia (T-ALL) (9).
This translocation leads to high levels of truncated, constitutively
active intracellular Notch1 (ICN1), implicating Notch as a T-cell
oncogene. However, this translocation was subsequently found in
<1% of human T-ALL. This discovery however initiated numer-
ous studies of Notch signaling in normal T-cell development and
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Table 1 |The Notch pathway by cancer type.

Oncogene vs.

tumor suppressor

Genetic lesions Evidence

LYMPHOID CANCERS

T-cell acute lymphoblastic leukemia Oncogene >50% Notch1 HD/PEST activating

mutations, 15% FBXW7 mutations

T-cell oncogene in mice, Notch inhibition

impairs T-ALL growth and survival. Some

clinical responses to Notch inhibitors.

T-cell non-Hodgkin lymphoma Oncogene 50% Notch1 HD/PEST activating

mutations, 20% FBXW7 mutations

Notch inhibition induces apoptosis

B-cell acute lymphoblastic leukemia Tumor suppressor Methylation of Notch target genes,

no activating mutations

Notch activation impairs B-ALL growth and

survival

Chronic lymphocytic leukemia Oncogene 5–15% Notch1 PEST activating

mutations

Notch inhibition induces apoptosis

Hodgkin lymphoma Oncogene none Notch activation induces growth and survival

B-cell non-Hodgkin lymphoma Oncogenea 5–20% Notch1/2 PEST activating

mutations

Notch inhibition impairs growth but may

promote survival in some

MYELOID CANCERS

Chronic myelomonocytic leukemia Tumor suppressor 12% Notch pathway inhibiting

mutations

Notch loss induces CMML-like disease in mice

Acute myeloblastic leukemia Tumor suppressora Methylation of Notch target genes,

no activating mutations

Notch activation impairs AML growth and

survival, Notch inhibition promotes AML

in vivo

Chronic myelocytic leukemia Unclear None Notch aids blast crisis in mice, but is

decreased in humans. Notch activation impairs

CML growth and survival

T-ALL, T-cell acute lymphoblastic leukemia; B-ALL, B-cell acute lymphoblastic leukemia; CMML, chronic myelomonocytic leukemia; AML, acute myeloid leukemia;

HD, heterodimerization domain; PEST, proline–glutamine–serine–threonine-rich; FBXW7, F-box/WD repeat-containing protein 7; CML, chronic myelocytic leukemia.
aContrasting evidence.

leukemogenesis, where Notch was found to be a critical T-cell
pathway and a potent T-cell oncogene in mice (10, 11). Over a
decade later, it was shown that >50% of T-ALL cases have activat-
ing mutations in the Notch1 gene, revealing Notch1 mutation as
the most common oncogenic lesion in T-ALL (12). Activation of
Notch1 is found in all subtypes of T-ALL, including TAL1, HOX11,
HOX11L2, LYL1, MLL-ENL, and AF10-CALM, suggesting that
Notch1 activation is a fundamental event in T-cell transformation.
Interestingly, two major mutational hot spots were characterized in
T-ALL, with missense mutations in the heterodimerization (HD)
domain in 30–45% of T-ALL cases, leading to lower protection
from cleavage of Notch, resulting in potent Notch activation, and
nonsense or missense mutations in the proline–glutamate–serine–
threonine-rich (PEST) degradation domain in 20–25% of T-ALL,
allowing for prolonged but less potent Notch signaling. In addi-
tion, Notch signaling is aberrantly activated through mutation of
the Notch1-targeting E3 ligase FBXW7 in 10–15% of T-ALL cases,
which leads to prolonged Notch activation through a similar mech-
anism to PEST domain mutation (13, 14). The relative strength of
Notch signaling induced by the different mutations may provide
insight into oncogenic mechanisms and may potentially be useful
in selecting patients for Notch inhibitor therapies.

In patients with T-ALL, Notch1 and FBXW7 mutations
have generally been associated with favorable prognosis and
lower minimal residual disease (MRD) levels (15–17). How-
ever, Notch mutations have also been associated with higher
rates of CNS relapse and poor outcome in Notch mutated
patients with high end-induction MRD (18). Another study sug-
gested that Notch/FBXW7 mutations predict better outcome
only in the absence of RAS or PTEN alterations (19). Inter-
estingly, Notch1 mutations occur at lower frequency in early
thymic progenitor (ETP) T-ALL (20), suggesting alternate mecha-
nisms of Notch activation, or distinct leukemogenic mechanisms.
Given the overall high frequency of Notch activating lesions,
inhibiting Notch in T-ALL has been an attractive therapeutic
opportunity.

T-CELL NON-HODGKIN LYMPHOMA
Similar to T-ALL, T-NHL can carry activating Notch1 and/or
inhibiting FBXW7 mutations in up to 50% (7/14) of cases (21),
though the frequency may be lower in more mature T-NHL (22).
Interestingly Notch1 is frequently expressed in anaplastic large
cell lymphoma (ALCL) cells (23), and Notch signaling appears to
induce proliferation and survival (24).
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B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA
The role of Notch signaling in B-cell acute lymphoblastic leukemia
(B-ALL) is less clear. In B-ALL, a disease of immature B-precursor
cells, no Notch mutations have been found, and although Notch
receptors are expressed, Notch signaling does not appear to be
constitutively activated, in contrast to T-ALL (25, 26). Methylation
studies reveal that several of the Notch pathway target genes are
silenced in B-ALL, and re-expression inhibits growth and survival
(27). Several studies have shown that induced activation of the
Notch pathway in human B-ALL cells leads to growth arrest and
apoptosis, suggesting a tumor suppressor role for Notch (26–28).
In contrast, another report suggests that Notch signaling supports
B-ALL in the bone marrow niche (29). Although the roles for
Notch signaling in B-ALL are not yet fully defined, there may be
an opportunity to pharmacologically induce Notch signaling in
B-precursor ALL as a therapeutic approach.

CHRONIC LYMPHOCYTIC LEUKEMIA
Chronic lymphocytic leukemia is a disease of mature B cells, which
occurs in older adults. Recent sequencing data revealed that 5–15%
of CLL samples carry apparent activating mutations in Notch1
(30–33). These were enriched in chemo-refractory disease (21%)
and in patients whose CLL had undergone Richter’s transforma-
tion (31%) (33). These mutations occur almost exclusively in the
PEST domain of Notch1, not the HD domain as seen in T-ALL,
and >80% are a single recurrent 2-bp deletion (7544_7545 delCT),
suggesting a related but distinct mutational profile to Notch1
mutations in T-ALL. In vitro, Notch signaling appears to prevent
CLL apoptosis (34). In patients, Notch1 mutation is associated
with poor outcome and resistance to fludarabine treatment (30,
31, 35, 36).

HODGKIN LYMPHOMA
Expression of Notch1 and ligand Jagged1 were shown in classical
HL Reed-Sternberg cells (37). Activation of Notch signaling in vitro
induced proliferation and survival in HL cells (24). Conversely,
Notch inhibition led to decrease in NF-kB activity, supporting an
oncogenic role for Notch in HL (38). Interestingly, it has been sug-
gested that Notch signaling in HL leads to the loss of B-cell markers
through repression of critical B-cell genes E2A and EBF (39).

B-CELL NON-HODGKIN LYMPHOMA
In B-cell NHL, evidence for Notch activation occurs in a subset
of lymphoma subtypes. Mutations are found either in Notch1 or
Notch2, and occur in the PEST domain, but not the HD domain,
similar to CLL, but in contrast to T-ALL. In typically MYC-driven
Burkitt lymphoma, 7% (5/70) carry Notch1 mutations (40), 8%
(5/63) of BCL2-associated diffuse large B-cell lymphoma (DLBCL)
carry similar PEST mutations of Notch2,and 6% (2/35) had ampli-
fication of the Notch2 locus (41). Marginal zone lymphomas also
carry 5% (2/41) to 20% mutated Notch2, in addition to rare
Notch1, SPEN, and DTX1 mutations (42, 43). Finally, >12%
Notch1 mutations were found in mantle cell lymphomas and
were associated with poor survival (44). Notably, Notch activat-
ing mutations have not been found in B-cell lymphoblastic and
follicular lymphomas. These studies reveal that subsets of several
mature B-NHLs carry Notch1/2 PEST mutations, suggesting an
oncogenic role for Notch in these cancers.

NOTCH IN MYELOID LEUKEMIAS
In myeloid cells, Notch may have a range of effects including
inhibiting or promoting differentiation and stimulating or impair-
ing growth and survival, depending on the cell type studied.
Importantly, genetic inhibition of Notch signaling in murine mod-
els can lead to increased myeloid cells and myeloproliferation,
suggesting that Notch may generally inhibit myeloid develop-
ment (45–47). However, the roles of Notch in different myeloid
leukemias have not been fully characterized.

CHRONIC MYELOMONOCYTIC LEUKEMIA
Chronic myelomonocytic leukemia is a rare myeloproliferative and
myelodysplastic leukemia, which typically occurs in older adults.
However, a recent study found that inactivation of Notch signal-
ing in murine bone marrow led to a myeloproliferative disease,
and identified inactivating mutations in Notch pathway genes
(NCSTN, APH1, MAML1, and NOTCH2) in 12% (5/42) CMML
patient samples, implicating a tumor suppressor role for Notch in
this disease (48).

ACUTE MYELOBLASTIC LEUKEMIA
With the unclear roles of Notch in myelopoiesis, murine mod-
els were used to investigate whether loss of Notch would alter
myeloid leukemogenesis. Indeed loss of Notch in combination
with loss of the myeloid tumor suppressor TET2 led to an AML-
like disease in mice, suggesting a formal tumor suppressor role for
Notch in AML (49). Consistent with this, human AML samples
do not carry activating mutations in Notch pathway genes, except
in rare cases of recurrent T-myeloid leukemias, which can carry
Notch1 activating mutations from the initial T-ALL. AML cells
do express Notch receptors on their surface, however, they lack
constitutive Notch signaling and demonstrate methylation Notch
pathway genes, similar to B-ALL (25, 49). In some studies, activa-
tion of Notch signaling in AML cells led to growth arrest, apoptosis,
and differentiation, while inhibition of Notch led to increased
aggressiveness in vivo, suggesting a tumor suppressing effect in
AML (49–51). The mechanism of this effect may involve Notch-
mediated suppression of CEBPA, Pu.1, BCL2, and the stabilization
of p53 expression. In contrast, in some studies Notch signaling has
variable effects on AML growth and survival, depending on the
individual AML sample (52). Finally, Notch1, Jagged1, and DLL1
expression in patient samples were associated with poor outcome
though the activity of the Notch pathway was not measured (53).
Thus, there is generally evidence for a tumor suppressing effect in
AML, however additional studies are needed to better characterize
the roles of Notch in AML.

CHRONIC MYELOGENOUS LEUKEMIA
Chronic myelogenous leukemia is a mature myeloproliferative dis-
ease driven by the expression of BCR-ABL1 as a consequence
of t (9;22) translocation. BCR-ABL1 appears to enhance Notch1
expression and activation, leading to decreased MYC expression
and colony formation (54). In a murine model, expression of the
Notch target gene HES1 was shown to cooperate with BCR-ABL1
expression to promote CML blast crisis (55). In contrast, HES1
downregulation was associated with blast crisis in human patient
samples (56). Induced activation of Notch signaling in CML-
derived cell lines reveal growth inhibition, suggesting an inhibiting
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role for Notch in CML (50, 57, 58). Thus, murine leukemogenesis
studies suggest an oncogenic role while human studies suggest a
tumor suppressor role, leaving the role of Notch in CML unclear.

NOTCH TARGETING THERAPEUTICS
Given the emerging data demonstrating roles for Notch signal-
ing in a wide variety of leukemias and lymphomas, targeting the
Notch pathway either with inhibitors or activators is a very com-
pelling therapeutic possibility. However, caution should be used
when targeting this pathway as disease-specific responses to Notch
modulation may be counter-therapeutic. Several Notch inhibiting
strategies are being tested in clinical trials, while Notch activators
are still in the early pre-clinical stage (Figure 1).

NOTCH INHIBITING STRATEGIES
GAMMA-SECRETASE INHIBITORS
Interaction between Notch ligands and receptors induces a con-
formational change in the Notch receptors’ HD domain, which
allows for enzymatic access to the transmembrane region. Follow-
ing ligand interaction, the receptors are cleaved by ADAM/TACE
metalloproteinases, and subsequently cleaved again by the gamma-
secretase complex, which is a crucial step in the activation of Notch
signaling. It is this step, which is targeted by GSIs [reviewed in
Ref. (59)].

The potent role of Notch signaling in T-cell leukemogenesis and
>50% presence of activating Notch1 gene mutation in T-ALL has
prompted the testing of GSIs in multiple clinical trials, though
most results are unpublished, BMS-906024 (NCT01363817),
RO4929097 (NCT01088763), MK0752 [NCT00100152 (60)],

PF03084014 (NCT00878189), and LY3039478 (NCT01158404).
However, early trials were hampered by excessive toxicity from
on-target effects on the intestinal epithelial differentiation, result-
ing in dose-limiting diarrhea (60, 61). Alternative schedules and
dosing have been sought to ameliorate these symptoms with
some success. One attractive combination is the use of gluco-
corticoids and GSI. In a murine study, it was demonstrated that
steroids can ameliorate the GSI-induced gut toxicity in vivo,
protecting the animals from developing intestinal goblet cell
metaplasia (62). In addition, GSI treatment induces glucocor-
ticoid receptor expression and restores steroid sensitivity (63).
As single agent Phase I trials continue to address toxicity and
activity, multiple mechanisms of resistance have been identi-
fied. For example, PTEN loss has been associated with GSI
resistance (64). Also, GSI resistant cells appear to have distinct
epigenetic status, and BRD4-inhibiting JQ1 has been shown
to synergize with GSI (65). For future trials several classes of
agents, including PI3K/mTOR, histone deacetylase, and protea-
some inhibition, have been shown to enhance GSI effects in
T-ALL (66–68).

The use of GSI in T-cell NHL, including ALK+ ALCL, has
shown some pre-clinical promise inducing growth inhibition and
caspase-mediated apoptosis with downregulation of cyclin D1,
Bcl-XL, and XIAP (23, 69). Similarly, GSIs show pre-clinical
promise for CLL, demonstrating decreased NF-kB, XIAP, c-
IAP2 levels (34), though some data suggest Notch-independent
mechanisms (70). GSIs have also been effective in two mantle
cell lymphoma lines (44) and one DLBCL line without Notch
mutations (71).

FIGURE 1 |Targeting Notch. Multiple strategies for either activating or inhibiting Notch have been described. Notch activators (green, left) and Notch inhibitors
(red, right) will allow modulation of Notch depending on oncogenic or tumor suppressor roles in a given cancer type. Soluble ligands can either activate or inhibit
Notch signaling.
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In contrast, pre-clinical testing of GSIs in some B-NHLs has
shown a lack of efficacy and even perhaps pro-survival effects (72).
And while some data suggest pre-clinical efficacy of GSIs in AML
(73), other studies found that GSIs unexpectedly increased HES1
expression in GSI-sensitive B-NHL and AML lines (74), calling
into question the rationale and mechanism for GSI effects in these
diseases.

MONOCLONAL ANTIBODIES
Another class of agents under development is the mAb tar-
geted against Notch receptors or ligands, or the gamma-secretase
complex. The anti-receptor antibodies inhibit the production
of cleaved “activated” Notch receptors, e.g., Notch1 OMP52M51
(75), Notch2 OMP-59R5, Aveo anti-Notch1 or Notch3 (76), and
Genentech anti-Notch1 or Notch2 (77). Experimental evidence
demonstrates that Notch inhibition by either mAb against Notch1
or Notch2 appears to have anti-tumor and anti-angiogenic effects
with limited gastrointestinal toxicities while simultaneous inhi-
bition of Notch1 and 2 lead to gastrointestinal toxicity, as seen
with many GSIs (77–79). Anti-ligand antibodies targeting DLL4
(REGN421, OMP-21M18), which block the ability of ligand to
activate Notch receptors, have been shown to induce disorganized
angiogenesis, reduce perfusion, and impair solid tumor growth
while sparing intestinal toxicities in vivo (80, 81). Finally, an anti-
body against the gamma-secretase complex (A5226A) has shown
pre-clinical activity against T-ALL (82).

It is hoped that this category of drugs could reduce or spare
some of the toxicities associated with pan-Notch inhibition by
GSIs, though this has not yet been confirmed clinically. These
antibodies have not all been tested in hematologic cancers.

DECOYS
Additional approaches to inhibit Notch signaling come from the
use of proteins, fragments, or peptides, which inhibit Notch sig-
naling. First, soluble Notch pathway proteins have been shown to
inhibit Notch signaling through saturation of the Notch recep-
tors with soluble ligand DLL4-Fc (81, 83), Jagged1 (84), DLK1
(85), EGFL7 (86), or through binding of ligands through sol-
uble Notch1 receptor extracellular domain (87). Another decoy
approach that has been developed is a Mastermind inhibiting pep-
tide, which mimics the critical interaction domain of Mastermind-
like1 (MAML1) blocking the interaction of MAML with the
Notch intracellular domain (88). The success of these thera-
pies may rely on the specific biology of a given tumor and the
breadth and potency of Notch inhibition achieved. Although, these
approaches may provide more options to inhibit Notch signaling,
their protein/peptide structure makes them somewhat difficult to
transform into a reliable clinical therapeutics.

NOTCH ACTIVATING STRATEGIES
LIGAND-MIMICKING PROTEINS/PEPTIDES
Soluble Notch ligands are generally thought to inhibit Notch
receptor cleavage, however, several studies have demonstrated the
feasibility of using such Notch ligands and ligand-mimicking pro-
teins as agonists, e.g., clustered DLL1 extracellular domains (89),
DLL1 DSL domain (90), Jagged1 DSL peptide (50, 91, 92), DNER
(93), TSP2 (94), CCN3 (95), YB-1 (96), NB-3 (97), and periostin

(98). Although, all of these proteins have been shown to activate
Notch signaling in at least one model system, the role of most
of these Notch agonists in cancer remains to be evaluated. Impor-
tantly, a Jagged1 DSL peptide has been shown to be effective in vitro
against B-ALL (28) and AML (50), suggesting potential of Notch
agonists as cancer therapeutics depending on tumor type.

NOTCH RECEPTOR ACTIVATING ANTIBODIES
Monoclonal antibodies have been developed, which are capable
of specifically inducing cleavage of the Notch2 and Notch3 recep-
tors (99, 100). These activating antibodies have the advantage of
selectively inducing cleavage of one of the Notch receptors, allow-
ing one to choose the best target in a given disease and avoiding
global Notch activation, when desired. Notch receptor activating
antibodies have not been evaluated in cancer models.

INDUCERS OF NOTCH
In addition to targeted agents, which induce Notch signaling
through Notch ligands or receptors, epigenetic modifiers, e.g., his-
tone deacetylase inhibitors and DNA methyltransferase inhibitors,
can induce Notch signaling in cancers where Notch plays a tumor
suppressor role (27, 101–103).

FUTURE DIRECTIONS
Currently, several different GSIs and Notch inhibiting antibodies
are in clinical trials, with additional Notch inhibiting approaches
in near clinical development. With these agents, our greatest chal-
lenges are to overcome the intestinal toxicity caused by continuous
Notch inhibition, identify patients who are likely to respond to
Notch inhibition, and determine what combinations hold the most
promise for diseases where the oncogenic role of Notch is fairly
clear, i.e., T-ALL, CLL, and T-NHL, some mature B-NHL, perhaps
HL. Looking toward the future, we hope to have Notch activators
in clinical trial in the next few years so that we may target Notch
in diseases where Notch is likely a tumor suppressor, i.e., CMML,
AML, and B-ALL.

The Notch pathway is complex and the wide range of conse-
quences in different cancer subtypes makes targeting this pathway
challenging. However, as we learn more about the mechanisms
and consequences of Notch signaling in the range of leukemia and
lymphoma subtypes, we will be able to target Notch signaling to
specifically impair the growth, survival, and/or differentiation of
that disease while reducing the toxicities. With a growing number
of Notch modulating therapeutic agents, we may have the tools to
customize Notch targeting in the near future.
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