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Autism Spectrum Disorders (ASD) are neurodevelopmental disorders with multifactorial
origin characterized by social communication deficits and the presence of repetitive behav-
iors/interests. Several studies showed an association between the reelin gene mutation
and increased risk of ASD and a reduced reelin expression in some brain regions of ASD
subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellu-
lar matrix glycoprotein playing important roles during development of the central nervous
system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD,
we assessed the behavioral, neurochemical, and brain morphological features of reeler
male mice. We recently reported a genotype-dependent deviation in the ultrasonic vocal
repertoire and a general delay in motor development of reeler pups. We now report that
adult male heterozygous (Het) reeler mice did not show social behavior and communi-
cation deficits during male–female social interactions. Wildtype and Het mice showed a
typical light/dark locomotor activity profile, with a peak during the central interval of the dark
phase. However, when faced with a mild stressful stimulus (a saline injection) only Het mice
showed an over response to stress. In addition to the behavioral studies, we conducted high
performance liquid chromatography and magnetic resonance imaging and spectroscopy to
investigate whether reelin mutation influences brain monoamine and metabolites levels
in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate
and taurine in hippocampus were detected in Het mice, in line with clinical data collected
on ASD children. Altogether, our data detected subtle but relevant neurochemical abnor-
malities in reeler mice supporting this mutant line, particularly male subjects, as a valid
experimental model to estimate the contribution played by reelin deficiency in the global
ASD neurobehavioral phenotype.

Keywords: autism spectrum disorders, reeler mice, ultrasonic vocalizations, social interaction, stress response,
dopamine, glutamate, circadian cycle

INTRODUCTION
Autism Spectrum Disorders (ASD) are neurodevelopmental disor-
ders with multifactorial origin characterized by persistent deficits
in social communication and interaction and restricted and repet-
itive patterns of behavior, interests, or activities (1). Several studies
showed that abnormal reelin expression in the brain is involved in
a number of neuropsychiatric disorders including lissencephaly,
schizophrenia, and autism (2–8).

Clinical studies have shown reduced levels of reelin protein in
blood serum and in post-mortem brain of ASD patients (9–12).
Genetic variants in RELN have been investigated as risk factors
of ASD in numerous epidemiologic studies but with inconclusive
results (13–19). However, recent data collected on much larger
samples and with more advanced genetic approaches indicated
a relationship between reelin gene mutation and increase risk of
autism, suggesting that reelin deficiency may be a vulnerability
factor in the etiology of this neurodevelopmental disorder (20–27).

Animal models in which reelin expression is reduced or absent,
provide important information about the role of reelin defi-
ciency in the onset of neurodevelopmental disorders such as
ASD. Homozygous reeler mice show decreased brain volume,
increased ventricles volume, (28–30), a non-foliated cerebellum
(30), reduced number of Purkinje cells (31), deficits in lamination
of the hippocampus (Hip), and disorganization of the amygdala
(30). Some of these abnormalities are comparable with the ones
found in post-mortem studies on autistic brain such as: increased
ventricle volume, altered cortical lamination, heterotopias, dys-
plastic changes, and reduced number of Purkinje cells (32–39).
These morphological changes in homozygous reeler mice are also
associated with serious physical impairments and for this rea-
son these mice are not considered as a reliable animal model
for basic behavioral research but their use has been so far lim-
ited to the study of neuronal migration and of etiology of human
lissencephaly (4, 5).
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Heterozygous reeler mice, which exhibit the 50% reduction in
reelin expression, do not display a reeler phenotype but express
a number of abnormal traits including loss of Purkinje cells of
the cerebellum (40, 41) and decrease in the number of dendritic
spines in cortical and hippocampal neurons (42). Reduced levels
of reelin are also associated with an increased anxiety profile (43,
44), cognitive deficits in the operant conditioning (44, 45), exec-
utive functions (46), fear conditioning learning (47, 48), olfactory
conditioning learning (49), latent inhibition (50), and attentional
set-shifting (51).

Surprisingly, only limited studies have investigated the con-
tribution of reelin deficiency to the establishment of the
social/communicative deficits, first ASD core symptom as indi-
cated in the DSM 5 (1). Adult social responses in heterozygous
(Het) reeler mice have been tested so far in two studies assess-
ing either direct male–male and female–female social interactions
(52) or performance in a modified version of the three-chamber
sociability test (51). In both studies, only social behavioral per-
formances have been assessed but a detailed evaluation of the
ultrasonic vocalizations (USVs) emitted during the interaction
was missing. To this aim, we deeply investigated the social and
vocal repertoire of wildtype (Wt) and Het reeler mice during
courtship (53), to evaluate the presence of qualitative alterations
in social interaction and communication in this mutant line. In
addition, we evaluated the baseline circadian locomotor activity in
the home-cage as well as the response to a mild stressful stimulus
represented by a saline injection (54–57) to check for abnor-
malities in the spontaneous locomotor activity that could affect
the behavioral performances. To investigate whether reelin muta-
tion influences brain metabolism, brain morphology, and levels
of monoamines and their metabolites into selected brain regions
involved in ASD and social behavior, we performed in vivo quanti-
tative magnetic resonance imaging (MRI), spectroscopy, and high
performance liquid chromatography (HPLC) analyses.

MATERIALS AND METHODS
ANIMALS AND HOUSING
Breeding pairs were originally purchased from The Jackson Labo-
ratory (Bar Harbor, ME, USA) and bred in our laboratory at ISS.
About 2 weeks after pairing for breeding (15 Het×Het crosses),
the females were individually housed and subsequently inspected
daily for pregnancy and delivery. After weaning on postnatal day
(pnd) 25, mice were housed by sex in mixed genotype groups
(B6C3Fe Wt and Het) of two to three per cage. All mice were
housed in a colony room with temperature maintained at 21± 1°C
and humidity at 60± 10% with food (Enriched standard diet
purchased from Mucedola, Settimo Milanese, Italy) and water
available ad libitum. The colony room was maintained on a 12:12
light/dark cycle with lights on at 18.30 h. Mice genotype was deter-
mined at pnd 21 by polymerase chain reaction (PCR) analysis on
tale samples and the animals were marked by an ear punching
for identification. Consistent with the higher prevalence of autism
in human males, only male mice were tested. Homozygous reeler
mice were not tested due to their serious physical impairments
after weaning. The same cohort of adult male mice was tested
for male–female reciprocal social interaction with concomitant
USVs (3 months of age), locomotor activity in the home-cage

(6 months), and HPLC (7 months). A separate cohort of mice
was subjected to in vivo quantitative MRI and spectroscopy at
4 months of age. All procedures were conducted in strict com-
pliance with the European Communities guidelines (EC Council
Directive 86/609), Italian legislation on animal experimentation
(Decreto L.Vo 116/92).

ADULT MALE–FEMALE SOCIAL INTERACTIONS
Three-month-old male mice (N = 9 Wt, N = 21 Het) were eval-
uated in the male–female social interaction test as in Ref. (53).
Each male subject was isolated 1 h before testing and the vagi-
nal estrous condition of each stimulus female was assessed as in
Ref. (58). Only females in estrous were selected for the test. The
unfamiliar stimulus C57BL/6J female mouse was placed into the
home-cage of the isolated male mouse and behaviors and USVs
were recorded for a 3-min test session. Stimulus mice (C57BL/6J
females) were purchased from Jackson Laboratories (Bar Harbor,
ME, USA) and maintained in our colony room in social groups of
three per home-cage. Each female was used only twice and were
matched to the subject mice by age and body weight.

Social interaction test was conducted between 09.00 and
13.00 h, during the dark phase, under red light. In addition to the
isolated mouse, the cage contained litter (1.5-cm deep) and the
lid was removed during the test. For video recordings, the video-
camera (Panasonic monochrome charge-coupled device camera)
was mounted facing the side of the cage and the subsequent
scoring of social investigation parameters was conducted with
Noldus Observer 10XT software (Noldus Information Technology,
Leesburg, VA, USA).

Social interactions were scored from the videotapes for the
frequencies and durations of the following behavioral responses
performed by the subject mouse: anogenital sniffing (direct contact
with the anogenital area), body sniffing (sniffing or snout contact
with the flank area), head sniffing (sniffing or snout contact with
the head/neck/mouth area), locomotor activity, rearing up against
the wall of the home-cage, digging in the bedding, and grooming
(self-cleaning, licking any part of its own body). No observations
of mounting, fighting, tail rattling, and wrestling behaviors were
observed. Scoring was conducted by two investigators uninformed
of the genotype. Inter-rater reliability was 98%.

For audio recordings, the ultrasonic microphone (Avisoft
UltraSoundGate condenser microphone capsule CM16, Avisoft
Bioacoustics, Berlin, Germany) was mounted 20 cm above the
cage and the USVs recorded using Avisoft RECORDER soft-
ware version 3.2. Settings included sampling rate at 250 kHz;
format 16 bit. The ultrasonic microphone was sensitive to fre-
quencies between 10 and 180 kHz. For acoustical analysis, record-
ings were transferred to Avisoft SASLabPro (version 4.40) and a
fast Fourier transformation (FFT) was conducted as previously
described (59). Start times for the video and audio files were
synchronized. Parameters analyzed included number and mean
duration of calls, qualitative and quantitative analyses of sound
frequencies measured in terms of frequency, and amplitude at the
maximum of the spectrum. Waveform patterns of calls [a total
of 17195 (Wt) and 8454 (Het) calls] were examined in depth in
the sonograms collected from every mouse tested. Each call was
identified as one of eight distinct categories, based on internal
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pitch changes, lengths, and shapes, as in our previously published
studies (53, 59, 60).

Inter-rater reliability in scoring the call categories was 98%.
Scoring was conducted by two investigators blind to the mouse
genotype. Call category data were subjected to two different analy-
ses: (1) Genotype-dependent effects on the probability of produc-
ing calls (proportion of calls in each category for each subject)
from each of the eight categories of USV, as described below
under statistical analysis; (2) a descriptive analysis that included
genotype-dependent effects on the percentage of calls emitted by
each subject in each of the eight categories of USV.

LOCOMOTOR ACTIVITY IN THE HOME-CAGE
At 6 months of age, male mice (N = 9 Wt, N = 10 Het) were
individually housed in standard cages (33 cm× 13 cm× 14 cm)
and assigned to a continuous monitoring of spontaneous loco-
motor activity. The assessment of daily spontaneous activity in
the home-cage was carried out by means of an automatic device
using small passive infrared sensors positioned on the top of each
cage (Activiscope system, see the website: www.newbehavior.com)
(61–63). The system operated continuously for 13 days and after
2 days of acclimation the experimental procedure began. The sen-
sors (20 Hz) detected any movement of mice. Data were recorded
by an IBM computer with dedicated software. No movements
were detected by the sensors when mice were sleeping, inactive,
or performed moderate self-grooming. Scores were obtained dur-
ing 30-min intervals and expressed as counts per minute (cpm).
The 24-h profile of activity was obtained by averaging 7 days of
continuous registration. The position of Wt and Het mouse cages
in the rack was equally distributed in rows and columns. Animals
were provided with tap water and food pellets ad libitum. After
the first 7 days of spontaneous activity, all animals were subjected
to an injection of saline (a mild stressful stimulus), at 11 h (dark
phase), and locomotor activity monitored up to 3 days later. The
analysis of the locomotor profile over a period of 7 h (11–18) after
saline injection was performed to evaluate the immediate stress
response.

MONOAMINES AND THEIR METABOLITES: HPLC DETERMINATION
Subsequently to behavioral studies, male mice (N = 9 Wt, N = 10
Het) were sacrificed, their brains removed and rapidly dissected
on ice to obtain the olfactory bulb, frontal cortex, striatum, Hip,
and cerebellum for HPLC analysis. All samples were immedi-
ately flash frozen on dry ice, and then stored at −80°C until
further processing. HPLC was performed according to Ref. (64).
In particular, each brain region was weighed, ultrasonicated in
0.1 M perchloric acid, centrifuged for 20 min at 15,000 g (4°C)
and the supernatant was used for monoamine neurotransmit-
ters and their metabolites detection. The endogenous levels
of 5-HT and 5-HT metabolite (5-hydroxyindolacetic acid; 5-
HIAA), dopamine (DA) and final DA metabolite (homovanil-
lic acid; HVA), and norepinephrine (NA) and NA metabolite
(4-hydroxy-3-methoxyphenyl-glycol, MOPEG) were assayed by
HPLC using a SphereClone 150 mm× 2 mm column (3-µm pack-
ing). Detection was accomplished with a Unijet cell (BAS) with
a 6-mm-diameter glassy carbon electrode at +650 mV versus
an Ag/AgCl reference electrode, connected to an electrochemical

amperometric detector (INTRO, Antec Leyden, The Nether-
lands). For each analysis, a set of standards containing vari-
ous concentrations of each compound (monoamines and their
metabolites) was prepared in the perchloric acid solution, and
calibration curves were calculated by a linear regression. The
retention time of calibration standards was used to iden-
tify peaks, and areas under each peak were used to quantify
monoamine levels. Results were normalized to the weight of wet
tissue.

MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY
At 4 months of age, a separate cohort of male mice (N = 7 Wt,
N = 7 Het), was subjected to in vivo MRI and magnetic reso-
nance spectroscopy (MRS). During the MR analyses, animals were
anesthetized with 2.5–2.0% isoflurane in oxygen 1 l/min (Isoflo,
Abbott SpA, Latina, Italy). An integrated heating system allowed
maintaining the animal body temperature at 37.0± 0.1°C. All MRI
and MRS experiments were conducted on a 4.7 T Varian/Agilent
Inova animal system (Agilent Inc., Palo Alto, CA, USA), equipped
with actively shielded gradient system (max 200 mT/m, 12 cm bore
size). A 6-cm diameter volume coil was used for transmission in
combination with an electronically decoupled receive-only sur-
face coil (Rapid Biomedical, Rimpar, Germany). Spin-echo sagittal
anatomical images (TR/TE= 3000/60 ms, 13 consecutive slices of
0.8 mm thickness, FOV= 20 mm× 20 mm, matrix of 128× 128,
2 averages) were acquired for accurate positioning the voxel for
the MRS study. Single voxel localized 1H MR spectra (PRESS,
TR/TE= 4000/23 ms, ns= 256 or 512) were collected from rel-
evant brain areas: Hip (11.7 µl), striatum (STR, 10.4 µl), thala-
mus (Th, 12.96 µl), and cerebellum (Cb, 7.45 µl), as shown in
Figure 1A and defined in the mouse brain atlas (65). Quantita-
tive MRS protocol, including water T2 measurements, was applied
(66) and T2 measurements were performed on water signal in
order to identify any change in the mutant mice. Unsuppressed
water signal was used for metabolite quantification (assuming
79.9% for gray matter water content). Spectra were analyzed using
LCModel (67). Only those metabolites that were estimated to have
Cramer–Rao lower bounds (CRLB) <20%, which corresponded
to an estimated concentration error <0.2 µmol/g, were included
into the quantitative analysis. In some cases, metabolites that have
resonance overlapped or very close are also given as their sum.
An example of spectra and its LCModel analysis is shown in
Figure 1B.

Multislice fast spin-echo axial images (TR/TEeff= 3200/60 ms,
ns= 4, slice thickness 0.6 mm, 24 slices, matrix 256× 256,
FOV= 25 mm× 25 mm, which correspond to voxel resolution of
98× 98× 600 µm3) were also acquired for volumetric analyses.

Motor cortex thickness was measured at +1.32 from bregma
as shown in Figure 1C. Volumetric analyses of the whole brain
have been performed from olfactory bulb to cerebellum excluded.
Ventricles and cerebellum volumes were also measured. Brains
were manually segmented for forebrain, ventricles, and cerebel-
lum using Varian/Agilent Imaging Browser, which perform a 3D-
volume calculation by summing the pixels areas on the center of
each slices and interpolating the cross sectional areas between the
center of the other slices (Agilent Inc., Palo Alto, USA) on MR
images. Manual segmentation of the ventricles was facilitated by
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FIGURE 1 | Magnetic resonance imaging and spectroscopy performed
in 4-month-old reeler mutant mice. (A) MRI panel – example of in vivo
sagittal T2-weighted spin-echo images (TR/TE=3000/70 ms, slice thickness
0.8 mm, NS=2, FOV=20 mm×20 mm, matrix 128×128). Voxels localized
on STR, Hip, Th, and Cb are indicated by the white rectangles. (B) MRS
panel – examples of in vivo 1H spectra (as a black trace), acquired from the
thalamus (PRESS, TR/TE=4000/23 ms, NS=256). The result of LCModel fit
is shown as a red trace superimposed on the spectrum. Metabolite
assignments: Ins, inositol; Cr, creatine; PCr, phospho-creatine; Glu,
glutamate; Gln, glutamine; Tau, taurine; PCho, phospho-choline; GPC,
glicero-phospho-choline; NAA, N -acetyl-aspartate; NAAG,

N -acetyl-aspartyl-glutamate; MM, macromolecules. (C) Examples of axial
fast T2-weighted MR images from reeler heterozygous (Het) mice,
respectively (TR/TEeff= 3200/60 ms, ns=4, slice thickness 0.6 mm, 24
slices, matrix 256×256, FOV=25 mm×25 mm, which correspond to voxel
resolution of 98×98×600 µm3). The red lines show the motor cortex
thickness measure. (D) Example of brain segmentation for volumetric
analyses of brain (plain line), cerebellum (dashed line), and ventricles (dotted
line). (E) The histogram shows metabolite concentrations in hippocampus
(Hip) for the two groups. Data are expressed as mean+SEM, *P < 0.05,
**P < 0.005 between wildtype and heterozygous reeler mice. N =7 Wt and
N =7 Het.

the high contrast that cerebrospinal fluid has in the MR images.
Figure 1D shows an example of segmentation (slice central to the
brain in sagittal images).

STATISTICAL ANALYSIS
A mixed-model ANOVA with repeated measures was used to ana-
lyze: (1) sniffing of different body areas (anogenital, body, or
head), (2) spontaneous locomotor activity in the home-cage, (3)
number of USVs for each minute of interaction, and (4) prob-
ability of vocalizations in eight call categories with genotype as
between-subject factor. Probability of vocalizations within each
genotype was calculated as number of calls in each category for
each subject/total number of calls analyzed in each subject and
standardized by angular transformation.

Data relative to MRI and MRS were analyzed by a one way
ANOVA with genotype as the independent factor and MRI/MRS
parameters (values of water T2, metabolite levels in each brain
region and volume of each brain region) as dependent factor.
Differences between genotypes in each brain region with respect
to serotoninergic, dopaminergic, and noradrenergic systems (5-
HT, 5-HIAA, and 5-HT turnover for serotoninergic system; DA,
HVA, DOPAC, and DA turnover for dopaminergic system; and NA,
MOPEG, and NA turnover for noradrenergic system) were deter-
mined by a multivariate analysis of variance (MANOVA), due to
the potentially high correlation between these dependent variables
within each system. Pillai’s statistic was used. Univariate ANOVAs
were conducted for each variable (Statview II, Abacus Concepts,
CA, USA).

Frontiers in Pediatrics | Child and Neurodevelopmental Psychiatry September 2014 | Volume 2 | Article 95 | 4

http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive


Michetti et al. Neurobehavioral characterization of reeler mice

For all comparisons, data are expressed as mean± SEM and
significance was set at P < 0.05. Post hoc comparisons were per-
formed using Tukey’s test only when a significant F-value was
determined.

RESULTS
MALE–FEMALE SOCIAL INTERACTION TEST
To assess the presence or absence of a social communication
deficit in Het reeler mice, we evaluated the behaviors and the
USVs emitted by a male mouse during the interaction with an
estrus C57BL/6J female. Analysis of the social sniffing response on
different body areas (head,body,and anogenital) did not reveal sig-
nificant effects of genotype [frequency, F(2,56)= 0.15, P = 0.858,
(data not shown); duration, F(2,56)= 1.74; P = 0.183, Figure 2A].
No genotype effect was detected on explorative behaviors such
as rearing [frequency, F(1,28)= 0.27, P = 0.610 and duration,
F(1,28)= 0.30, P = 0.589] and digging [frequency, F(1,28)= 0.75,
P = 0.392 and duration, F(1,28)= 1,15, P = 0.292] (data not
shown).

Analysis of the USVs emitted by male mice during the
social interaction test did not detect significant differences
between Het reeler and Wt mice: number of USVs [number
of calls× genotype, F(2,56)= 0.89, P = 0.41, Figure 2B], mean
duration [F(2,54)= 0.79, P = 0.457 (data not shown)], peak fre-
quency [F(2,54)= 0.43, P = 0.650 (data not shown)], and peak
amplitude [F(2,54)= 0.14, P = 0.863 (data not shown)]. As a
whole, the pattern of sonographic structures did not differ between
Het reeler and Wt mice indicating a comparable vocal repertoire
in both genotypes (see pie graphs in Figure 2C).

LOCOMOTOR ACTIVITY IN THE HOME-CAGE
Sleep problems and irregular sleep–wake cycles have been iden-
tified in several ASD children (68–71). Alterations in circadian
rhythm lead to anxiety-like, impulsive, and depressive behaviors
both in humans and mice (72–74). In the present study, we eval-
uated baseline circadian locomotor activity in the home-cage as
well as response to a mild stressful stimulus represented by a saline
injection to check for abnormalities in the spontaneous locomotor
activity that could affect the behavioral performances.

Analysis of spontaneous locomotor activity measured in the
home-cage for 7 days revealed, as expected, an increased activity
in mice of both genotypes during the dark phase of the light/dark
cycle [phase effect, F(1,17)= 239.05, P < 0.001] (see Figure 3).
No genotype differences were found [light phase: genotype,
F(1,17)= 2.99, P = 0.102; dark phase: genotype, F(1,17)= 1.34,
P = 0.263].

The analysis of the locomotor profile over a period of 7 h
after saline injection (11–18, dark phase) was performed to eval-
uate the immediate stress response. Het reeler mice increased
significantly their locomotor activity as compared to Wt mice
[genotype, F(1,17)= 5.63, P = 0.029] thus revealing a genotype-
dependent increased sensitivity to mild stress challenge (see
graph on the top right of Figure 3). After this 7-h-period,
locomotor activity goes back to the normal activity profile
[genotype effect, F(1,17)= 0.226, P = 0,64; genotype× hours,
F(1,23)= 0.38, P = 0.99; data not shown].
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FIGURE 2 | Male–female social interaction test (3-min-session)
performed in 3-month-old reeler mutant mice. Parameters measured
during a direct interaction between a male with a sexually receptive
C57BL/6J female. (A) Sniffing duration. (B) Number of ultrasonic
vocalizations. Data are expressed as mean+SEM. (C) Pie graphs show the
percentages of the different call categories emitted by Wt and Het reeler
mice. Percentages were calculated in each genotype as number of calls in
each category for each subject/total number of calls analyzed for each
subject. Number of calls analyzed: 17195 in Wt and 8454 in Het. N =9 Wt
and N =21 Het.
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activity monitored for 7 h after a mild stressful stimuli represented by a
saline injection at 11 h (dark phase). Data are expressed as mean±SEM,
*P < 0.05, between wildtype and heterozygous reeler mice. N =9 Wt and
N = 10 Het.

MONOAMINES AND THEIR METABOLITES: HPLC DETERMINATION
High performance liquid chromatography determination has been
applied to investigate whether reelin mutation influences the dif-
ferent monoamine systems. MANOVA revealed a significant geno-
type effect on several components of the dopaminergic system in
hypothalamus [Pillai’s Trace: F(4,13)= 9.73, P < 0.001] and in
Hip [Pillai’s Trace: F(4,13)= 4.97, P = 0.005]. ANOVA showed
a strong reduction of DA levels [genotype effect, F(1,16)= 5.29,
P = 0.035] and a consequent increase in the DA turnover [geno-
type effect, F(1,16)= 7.43, P = 0.015] in the cortex of Het reeler
as compared to Wt mice (see Table 1). Moreover, Het reeler
mice showed an increase of DOPAC and HVA levels [genotype
effect: DOPAC, F(1,16)= 18.88, P < 0.001; HVA, F(1,16)= 11.47,
P = 0.003] in hypothalamus. ANOVA evidenced also a decrease
of HVA levels [F(1,16)= 6.43, P = 0.022] and an increase of DA
turnover [genotype effect, F(1,16)= 6.14, P = 0.025] in Hip of
Het mice.

Heterozygous mice showed an higher DA levels [genotype
effect, F(1,16)= 4.38, P = 0.052] and a lower DA turnover in
olfactory bulb [genotype effect, F(1,16)= 6.87, P = 0.018] than
Wt mice. No genotype related differences were found on nora-
drenergic and serotoninergic systems in each brain areas analyzed.

MAGNETIC RESONANCE IMAGING
To acquire deeper information into the functional state of brain
areas involved in ASD, we assessed a 1H magnetic resonance in
adult reeler male mice. Enlarged ventricles and reduced cerebellum
are typical features of reeler mice (75). Volumetric analyses con-
firmed a cerebellum reduction [genotype effect, F(1,10)= 15.50,
P = 0.002] and an enlargement of ventricles volume [genotype
effect, F(1,11)= 8.01, P = 0.016] in Het reeler when compared to

Wt mice. No genotype differences were detected in volume [geno-
type effect, F(1,11)= 0.86, P = 0.374] and medial motor cortex
(MC) thickness [genotype effect, F(1,11)= 3.62, P = 0.083] (see
Table 2).

MAGNETIC RESONANCE SPECTROSCOPY
To investigate the possible alterations in brain metabolism of adult
reeler male mice, we performed MRS. The high quality spec-
tra allowed reliable quantification (%SD <20%) not only for
the commonly observed N -acetyl-aspartate (NAA), total creatine
(Cr+PCr) and total choline resonances (NAA+NAAG), but also
for glutamine (Gln), glutamate (Glu), taurine (Tau), and inositol
(Ins) in all the investigated brain regions.

Water T2 analyses confirmed that no changes between the geno-
types occurred in the T2s in Hip [F(1,10)= 2.52, P = 0.143], Stria-
tum [F(1,10)= 0.02, P = 0.883], Thalamus [F(1,10)= 1.15E-5,
P = 0.977], and Cerebellum [F(1,10)= 0.32, P = 0.584] (data not
shown).

Metabolic changes were detected in Hip while no differences
have been found for any metabolite in thalamus, striatum, and
cerebellum. Het reeler mice showed increased levels of Glu
[genotype effect, F(1,11)= 4.61, P = 0.044], Tau [genotype effect,
F(1,11)= 4.82, P = 0.050], PCr [genotype effect, F(1,7)= 18.08,
P = 0.003], and total amount of PCr+Cr [genotype effect,
F(1,11)= 24.68, P < 0.001] in Hip as compared to Wt mice (see
Figure 1E).

DISCUSSION
Reelin is a glycoprotein playing a crucial role during development:
it regulates neuronal migration and brain lamination (6, 8, 29,
30, 76, 77) and its reduced or complete lack of signaling impairs
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Table 1 | Levels of monoamines and their metabolites detected ex vivo in cortex, bulbs, hypothalamus, striatum, hippocampus, and cerebellum (mean±SEM: picogram per milligram of

wet tissue).

Brain region Genotype Neurotransmitter, metabolite concentration picogram per milligram wet brain weight)

Noradrenergic system Dopaminergic system Serotoninergic system

NA MOPEG DA DOPAC HVA 5-HT 5-HIAA

Cortex Wt 469.60±22.99 102.74±7.53 874.14±268.95 134.50±19.85 252.97±35.58 523.10±29.72 341.42±17.59

Het 440.84±28.76 102.47±6.20 296.37±69.32* 108.65±18.65 184.52±40.76 470.09±31.15 285.37±14.32

Bulbs Wt 291.82±24.28 46.35±5.94 312.11±33.66 100.26±8.63 152.87±15.49 247.65±25.63 191.88±16.88

Het 346.10±14.98 66.26±6.28 396.15±23.84* 102.06±6.83 154.78±8.95 131.53±20.97 192.13±9.76

Hypothalamus Wt 1789.74±80.36 205.08±23.06 394.87±16.83 116.63±6.12 362.10±13.19 518.33±22.43 934.82±42.78

Het 1742.52±81.41 183.74±7.50 540.86±163.65 144.44±5.48** 444.55±13.27** 487.36±29.79 864.22±19.73

Striatum Wt 129.71±32.78 339.05±49.89 12521.13±1661.54 2718.95±326.72 4310.08±383.59 453.07±30.88 654.30±23.09

Het 128.12±19.16 261.70±25.90 12275.97±1376.40 2847.63±196.75 4583.34±398.19 109.34±26.48 679.84±24.65

Hippocampus Wt 508.02±33.64 115.37±6.77 82.16±7.61 18.21±1.33 69.47±8.48 505.52±61.78 540.99±37.90

Het 423.67±39.12 108.17±8.75 84.80±13.48 25.16±4.81 42.01±6.93* 580.54±33.18 503.31±53.05

Cerebellum Wt 402.46±28.48 48.85±3.12 5.09±1.06 12.52±2.38 80.66±5.09 115.60±17.51 129.05±6.03

Het 433.56±17.08 46.17±3.42 6.75±2.68 18.77±7.55 79.52±3.59 118.94±21.13 126.85±6.04

Brain region Genotype Neurotransmitter turnover

NA DA 5-HT

Cortex Wt 0.22±0.01 0.24±0.05 0.66±0.03

Het 0.24±0.01 0.45±0.05* 0.62±0.03

Bulbs Wt 0.16±0.02 0.33±0.02 0.80±0.05

Het 0.19±0.01 0.26±0.02* 0.86±0.05

Hypothalamus Wt 0.11±0.01 0.30±0.02 1.81±0.09

Het 0.11±0.01 0.35±0.04 1.83±0.11

Striatum Wt 4.09±1.01 0.23±0.03 1.47±0.06

Het 2.86±0.7E 0.26±0.03 1.71±0.10

Hippocampus Wt 0.23±0.01 0.23±0.02 0.95±0.11

Het 0.26±0.02 0.29±0.02* 0.87±0.07

Cerebellum Wt 0.12±0.01 2.83±0.51 1.25±0.13

Het 0.11±0.01 6.76±2.45 1.36±0.23

*P < 0.05, **P < 0.005 between wildtype and heterozygous reeler mice.
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Table 2 | Analysis for forebrain, cerebellum, and ventricles volume.

Forebrain

volume (µ1)

Ventricles

volume (µ1)

Cerebellum

volume (µ1)

Medial cortex

thickness (mm)

Wt 366.17±2.6 3.29±0.5 59.18±1.2 1.16±0.1

Het 369.85±3.0 5.25±0.4* 53.03±1.1* 1.22±0.1

Data are expressed as mean±SEM. *P < 0.05, between wildtype and heterozy-

gous reeler mice.

neuronal connectivity and synaptic plasticity (43, 78). Moreover,
recent data suggest that a defect in reelin signaling pathway confers
greater susceptibility to autism (20–25, 27).

For these reasons,we consider Het reeler mice,haploinsufficient
for reelin and sharing some neurochemical and behavioral features
with autistic patients, a suitable animal model for studying the
effects of reelin deficiency in determining social communication
deficits and in changing brain monoamine and brain metabolites
levels. Unfortunately, no comparison can be drawn with homozy-
gous mutant mice, since adult knockout reeler mice did not survive
longer than weaning (79–82).

NO DEFICITS IN SOCIAL AND VOCAL REPERTOIRES DURING COURTSHIP
To our knowledge, this is the first time that a detailed analy-
sis of the adult male vocal repertoire has been performed in
this mutant line. Only behavioral data on same-sex interactions
or approaching/recognizing a conspecific have been collected
(44, 51, 52).

Recently, we characterized vocal and motor repertoires on
homozygous and Het reeler pups (60) evidencing a general delay
in vocal and motor development during the first 2 weeks of post-
natal life, in line with the alterations in the same two systems
observed in children with ASD. In addition, a preferential use of
a specific call category (two-components) at pnd 2 and 6 was
detected in both mutants (Het and homozygous), whereas an
increased number of vocalizations characterized only Het pup’s
emission.

Contrary to what we found in pups, adult Het male mice did
not show deficits on USVs emitted during courtship of a female in
estrous. Social behaviors, generally associated to this vocal emis-
sion, were not affected either. These results are in contrast with
the reduction in anogenital sniffing and/or the number of USVs
found in other ASD animal models such as BTBR, En2, NMDA-
Nr1, NLG3, NLg4, Dlg4, and FmR1 mice (53, 83–87), but in line
with data collected on Shank3 mice, carrying a mutation strongly
implicated in autism and Phelan-McDermid 22q13 deletion syn-
drome, where male knockout mice did not present alterations in
social communication and interaction (88).

These data thus confirm that adult Het reeler mice present
deficits on cognitive performances but not on social domains (44–
47, 49–52). It is worth of notice that intellectual disabilities are
present in about 50% of autistic individuals. Due to the cerebellar
alteration leading to death shortly after weaning, no data could be
collected on mice with the complete deletion in the reelin gene,
thus we cannot exclude an impairment of the social domain only
related to the complete deletion of reelin.

OVER RESPONSE TO A MILD STRESS STIMULI
Previous studies indicated that Het reeler mice have several abnor-
malities in their brain architecture (40–42), but, at a first sight,
their phenotype is absolutely“normal”(7, 44, 89). Some behavioral
deficits become evident only after a“second hit”(7, 63, 90, 91) sup-
porting the “double-hit” theory postulating a gene–environment
interaction in the pathogenesis of several neurodevelopmental
disorders such ASD (89). Depending on the features of environ-
mental factors and the time-window of insult interacting with
reelin expression, an individual could thus develop one neurode-
velopmental disorder rather than another one (i.e., schizophrenia
versus ASD).

Our previous evidence shows that either an environmental pol-
lutant or, for example, an activated stress reactivity caused by
repeated separation from the dams, elicits different responses as a
function of the mouse genotype (91). In line with these data, in
the present study, no significant genotype differences were found
in basal activity levels of mice monitored in their home-cages for
1 week. By contrast, after a saline injection (a mild stressful stim-
ulus), the Het male displayed a higher locomotor activity profile
as compared to Wt male mice. Already in a previous study, our
group showed a hyperactive profile in Het adolescent reeler mice
following handling plus saline injections (63). Altogether, these
data indicate that Het reeler mice show a different response to
environmental stimuli, confirming the suitability of such mutant
line for the study of gene–environment interactions (7, 92).

Moreover, a deficit in behavioral inhibition has been reported
as a core alteration of Het reeler mice, associated with dysfunc-
tions of mesolimbic DA transmission (93) and reduced GABAergic
transmission in central nervous system (40, 94–96).

IMPAIRMENT IN THE DOPAMINERGIC PATHWAY
To correlate observed behavioral abnormalities to the neural sys-
tems reportedly affected by reelin mutation, we conducted HPLC
analyses in different brain areas involved in autism, detecting
impairments in the dopaminergic system. Specifically, Het reeler
mice had decreased DA levels in cortex and increased levels in the
olfactory bulb, whereas DA turnover was altered in cortex, bulb,
and Hip.

A disruption of DA maturation in reelin haploinsufficient mice
had been already suggested: a reduced locomotor activation by d-
amphetamine in reeler mice was associated with an exaggerated
drug-induced stereotyped behavioral syndrome (90). Moreover,
Ballmaier et al. (93) reported alterations in the mesolimbic DA
pathway of Het reeler mice. In particular, they found that Het
mice exhibit a reduction in DA transporter immunoreactivity and
D2 receptor mRNA in the limbic striatum and the ventral tegmen-
tal area (93). In agreement with our study, they did not find any
significant alteration in the dopaminergic markers examined in
the nigrostriatal pathway of Het reeler mice.

Alterations in DA levels and its turnover have been found in
brain areas primarily associated to reward. Individuals with ASD
show reduced responsiveness to reward stimuli, a feature that
appears to be especially prominent with social reinforces such
as facial expressions, spoken language, and gestures (97, 98). No
effects have been found in the striatum where DA contributes to
motor performances.
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In addition, the neurotransmitter DA plays a pivotal modu-
latory role on executive functions and learning (99, 100), thus a
dysfunctional DA system could underlying the cognitive deficits
detected in Het mice.

GLUTAMATE AND TAURINE INCREASED LEVELS IN HIPPOCAMPUS
To gain deeper insights into the functional state of brain areas
involved in ASD, we carried out a 1H MRI guided spectroscopy
examination in adult reeler mice. MRS is a powerful, non-invasive
tool for monitoring neurological diseases (101) and it is also used
in clinical studies on autistic individuals (102). Abnormalities in
neurotransmitter pathways have been associated to ASD, with evi-
dence for a possible implication of glutamatergic, GABAergic, and
serotonergic imbalances (102).

In the Hip, as compared to Wt in Het mice, MRS showed
increased levels of glutamate, taurine,phospho-creatine,and of the
total amount of phospho-creatine plus creatine. Glutamate is the
main brain excitatory neurotransmitter involved in cognitive func-
tions, although in excessive quantities can cause neuronal damages
typical of neurodegenerative diseases (for example, Alzheimer’s
and Huntington’s diseases) (103–105). The higher levels of gluta-
mate in the Hip of Het reeler mice are in agreement with previous
findings reporting an increase of glutamate in Hip (106) and
cortex (107) of ASD patients; altogether these evidences support
the hypothesis of an imbalance between excitatory and inhibitory
(GABA) systems as one of the possible causes of autism (107).

Recently, clinical trials with glutamate antagonists have been
initiated, since they have been proved to be effective in rescuing
social deficits and repetitive behaviors in selected animal models
of autism (108). Also the presence of high levels of taurine in the
Hip could be correlated to high levels of glutamate. In fact, taurine
appears to have a protective action against glutamate excitotoxic-
ity (109) and it is widely considered a general index of neuronal
functionality.

The largest meta analysis performed on ASD patients showed
evidence that ASD is characterized by age-dependent fluctuations
in metabolite levels across the whole brain. In particular, sig-
nificant reduction in the level of a cerebral metabolites, NAA, a
specific neuronal marker, in whole gray matter of ASD children as
well as significant increase in the total pool of creatine (phospho-
creatine plus creatine) in adult subjects were observed (110). The
observed differences in creatine as a function of age and brain
region, suggest caution in the use of Cr-based ratio measures of
metabolites. For this reason, we adopt a quantitative approach for
brain metabolites level determination, which has been validated on
phantom (111) as well as on other animal models of psychiatric
and neurodevelopmental diseases (51, 112–114).

CONCLUSION
In the literature, Het reeler mice are widely considered a reli-
able animal model of either autism or schizophrenia. Genetic and
molecular evidences showed that reelin messenger-RNA and its
protein are downregulated in cortical, hippocampal, and cerebellar
neurons of patients suffering of schizophrenia and autism (3, 8, 10,
20, 115, 116). In particular, these mutant mice are characterized
by decreased contextual fear conditioning (48), prepulse inhibi-
tion (43, 117), impaired executive functions (45), and associative

learning (48), all typical traits of schizophrenia. In addition, Het
reeler mice yielded autistic-like deficits in social behavior and
communication in the first two postnatal weeks of age (60) and
perseverative (51) and hyperactive behaviors (44) at adulthood.
Discordant evidences exist on this model, possibly associated with
differences in the genetic background, age of mice, training and
testing protocols, and rearing conditions (52, 89).

Overall, our results, together with data previously collected by
our (Laviola and collaborators) and other groups suggest that Het
reeler mice have common behavioral traits to both these neu-
rodevelopmental disorders. Moreover, these studies indicate the
suitability of this mutant line to investigate the role of reelin as vul-
nerability factor on the etiology of both disorders. In addition, Het
reeler mutant mice may represent a useful animal model to develop
novel treatment strategies for these devastating human disorders.
For example, our HPLC and MRS results favor further studies
to evaluate the effects of DA agonist or glutamate antagonist
treatments on behavioral and neurochemical responses.
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