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Background: Mucus transport mediated by motile cilia in the airway is an important
defense mechanism for prevention of respiratory infections. As cilia motility can be
depressed by hypothermia or exposure to anesthetics, in this study, we investigated the
individual and combined effects of dexmedetomidine (dex), fentanyl (fen), and/or isoflurane
(iso) at physiologic and low temperatures on cilia motility in mouse tracheal airway epithe-
lia. These anesthetic combinations and low temperature conditions are often used in the
setting of cardiopulmonary bypass surgery, surgical repair of congenital heart disease, and
cardiac intensive care.

Methods: C57BL/6J mouse tracheal epithelia were excised and cilia dynamics were cap-
tured by videomicroscopy following incubation at 15, 22–24, and 37°C with different
combinations of therapeutic concentrations of dex (10 nM), fen (10 nM), and iso (0.01%).
Airway ciliary motion was assessed and compared across conditions by measuring ciliary
beat frequency and ciliary flow velocity. Statistical analysis was carried out using unpaired
t -tests, analysis of variance, and multivariate linear regression.

Results:There was a linear correlation between cilia motility and temperature. Fen exerted
cilia stimulatory effects, while dex and iso each had ciliodepressive effects. When added
together, fen+ iso, dex+ iso, and dex+ fen+ iso were all cilia inhibitory. In contrast
fenl+ dex did not significantly alter ciliary function.

Conclusion:We show that ciliary motility is stimulated by fen, but depressed by dex or iso.
However, when used in combination, ciliary motility showed changes indicative of complex
drug–drug and drug–temperature interactions not predicted by simple summation of their
individual effects. Similar studies are needed to examine the human airway epithelia and
its response to anesthetics.

Keywords: ciliary beat frequency, dexmedetomidine, fentanyl, isoflurane, hypothermia

INTRODUCTION
Multi-ciliated epithelial cells in the respiratory tract help maintain
pulmonary health by clearing mucus and expelling particulates
that have the potential to cause infection and inflammation (1).
This process is mediated by motile cilia in the respiratory epithelia
that beat in synchrony to propel mucus from the airway. Forward
flow required to achieve effective mucociliary clearance is influ-
enced by many factors that can affect ciliary motility. Previous
studies have shown that ciliary beat frequency (CBF) is tightly cor-
related to temperature, exhibiting a sigmoidal pattern with limited
effects above physiologic temperature and below ~5–10°C (2–5).
Multiple pharmaceutical agents have also been investigated for
their effects on ciliary motion. Of particular interest are inhaled
and intravenous anesthetics.Volatile anesthetics, such as isoflurane
(iso), have been shown to depress CBF and inhibit mucociliary
clearance (6–12). One study demonstrated that commonly used
intravenous anesthetics, such as ketamine and fentanyl (fen) used

at high doses, can have a ciliostimulatory effect, whereas others
such as midazolam, propofol, and dexmedetomidine (dex) had no
effect on CBF (13).

In clinical scenarios, where intravenous and inhaled anes-
thetics are used in combination with hypothermia, such as in
patients with congenital heart disease (CHD) undergoing car-
diopulmonary bypass surgery (CBS), insights on the combined
effects of low temperature and different anesthetic combinations
on airway ciliary function are of critical importance for opti-
mizing surgical and postsurgical care. Of particular interest are
CHD patients, where recent evidence has shown that patients
with CHD associated with heterotaxy have a high incidence of
ciliary dysfunction similar to those associated with primary cil-
iary dyskinesia (PCD) (14, 15). Such CHD patients may be at
increased risk for pulmonary complications post-operatively due
to anesthetic-mediated mucociliary clearance function associated
with respiratory ciliary dysfunction (16).
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Christopher et al. Anesthetic effects on airway cilia function

FIGURE 1 | Mouse tracheal ciliated respiratory epithelia. Ciliated
tracheal epithelium (arrow) bathed in medium containing microspheres
(arrowheads) for quantifying cilia-generated flow.

FIGURE 2 | Effect of temperature on ciliary beat frequency (CBF) and
flow velocity. CBF and flow velocity at 15, 22–24, and 37°C.

In this study, we investigated the effects of temperature and
various combinations of anesthetics on ciliary motility using
mouse tracheal epithelia. Our studies focused on iso, fen, and
dex anesthetics commonly used in our institution during car-
diopulmonary bypass. Dex, a commonly used anesthetic dur-
ing the operative and post-operative period, is an α2-adrenergic
receptor agonist with analgesic, sedative, and anxiolytic proper-
ties (17). Dex is extensively used in recent years due to its ability
to produce effective sedation with few adverse effects, but little
is known about how it affects ciliary function and respiratory
outcome (18–20). We also examined the effects of fen, an opi-
oid receptor agonist commonly used for sedation and analgesia
during cardiac surgery. We quantitatively assessed CBF and flow
velocity with exposure to different drug combinations. We found
drug–drug and drug–temperature interactions on ciliary func-
tion that provide an insight on the complex regulation of ciliary
motility by anesthetics and temperature. Our findings provide a
better understanding of anesthetic-mediated impairment of cil-
iary function during hypothermic conditions, and could serve
as basis for human studies, which could lead to better selection
of the anesthetic/analgesic combinations to optimize mucociliary

FIGURE 3 |Titration of anesthetic concentration on ciliary beat
frequency. Cilia beat frequency was measured at room temperature
(22–24°C) with increasing concentrations of fen (A), dex (B), and iso (C).
Values are expressed as percentage difference from control at 22–24°C
(12.6±2.3 Hz). The lowest drug concentration exerting a significant effect
on CBF and was within the clinical dose was chosen for all further
experimental analyses (10 nM fen, 10 nM dex, 0.01% iso). *indicates
significant difference from control (P < 0.05).

clearance function and possibly respiratory outcome in high risk
patients.

MATERIALS AND METHODS
MOUSE TRACHEA SAMPLE PREPARATION AND VIDEO MICROSCOPY
Experiments were conducted in accordance with an animal pro-
tocol approved by the Institutional Animal Care and Use Com-
mittee of the University of Pittsburgh. After euthanasia, mouse
trachea were removed, flushed extensively, and prepared accord-
ing to our previously published protocol (21, 22). Each sample
was placed luminal side down on a glass slide in L-15 medium
containing 0.50-µm Fluoresbrite microspheres (Polysciences, Inc.,
Warrington, PA, USA). Cilia dynamics were captured with a
100× differential interference contrast (DIC) oil objective and a
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Christopher et al. Anesthetic effects on airway cilia function

Leica DMIRE2 inverted microscope (Leica Microsystems). Movies
[400 frames/s (fps)] were recorded with a Phantom v4.2 camera
(Vision Research, Wayne, NJ, USA). For analysis at 15°C, the entire
experiment was performed in a cold room set at 15°C, while 37°C
incubation was carried out using a heated stage and an objective
heater (Bioptechs, Butler, PA, USA).

ANESTHETIC CONCENTRATION
Treatment media containing anesthetics was prepared by adding
the appropriate dose of each drug to L-15 medium+ 10% fetal
bovine serum. Dex and fen were used at concentrations based on
titration studies and published therapeutic plasma concentrations
of 1–8 nM for dex (23) and 3–100 nM for fen (24). Iso was added
to a concentration of 0.01% by volume (0.8 mM) using previously

established partition coefficient (PC) of iso (25) in Tyrode’s
solution in 0.1% BSA at 37°C. This most closely simulated the
liquid bathing, the ciliated airway epithelia. Assuming the delivery
of 2× the minimal alveolar concentration of iso (MAC= 1.2%
atm), we can substitute the PC into the following equation
and determine an aqueous concentration to be 0.88mM, or
0.01% by volume of stock solution: Caq (mM)= 1000/22.4 * p(%
atm)/100 * PC (26).

QUANTITATIVE MEASUREMENT OF CILIARY BEAT FREQUENCY AND
CILIA-GENERATED FLOW
To measure CBF and cilia-generated flow, at least two videos
were collected from each tracheal sample, with a total of three
different tracheas sampled at each condition. A line was traced

FIGURE 4 | Anesthetic effects on ciliary beat frequency. Mean CBF after exposure to different combinations of anesthetics at 15, 22–24, and 37°C.

FIGURE 5 | Anesthetic effects on cilia flow velocity. Mean cilia flow velocity after exposure to different combinations of anesthetics at 15, 22–24, and 37°C.
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Christopher et al. Anesthetic effects on airway cilia function

FIGURE 6 | Analysis of anesthetic effects on ciliary beat frequency relative to control. The effects of anesthetics alone (A), and in different combinations
(B) on CBF at 15, 22–24, and 37°C relative to control. *indicates significant difference from control (P < 0.05).

perpendicular to the cilia along that each video was resliced to cre-
ate a kymograph using ImageJ (NIH). The CBF was then measured
for an average of eight “areas of interest” (AOI) from different tra-
cheas by calculating the mean of four successive wavelengths per
cilia using the program GIMP v2.6. Therefore, the average CBF for
48 AOI was calculated for most treatment conditions (except 37°C,
for which only the first video of each sample was analyzed, yield-
ing an average of 24 cilia). To calculate cilia-generated flow speed,
each of the two videos per trachea was examined at a reduced
frame rate of 15 fps. Five beads at equal distance from each tissue
sample were then tracked using DIAS v3.4.2 (Soll Technologies,
Inc., Iowa City, IA, USA) through 20 consecutive frames to yield
an average speed and directionality for 30 beads per condition (15
beads at 37°C conditions).

REAL TIME PCR ANALYSIS
Mouse tracheal epithelia were allowed to reciliate in culture using
a suspension culture method that enriched for respiratory epithe-
lial cells RNA was extracted from tracheal epithelia and cDNA

amplified (NuGen Ovation Kit) (27). Real time PCR was per-
formed on a Perkin Elmer 7500HT thermal cycler using primers
specific for mouse α- and β-adrenergic receptors as well as opioid
receptors. All expression levels were normalized using β-actin.

STATISTICAL ANALYSIS
Ciliary beat frequency (Hz) and flow speed (µm/min) are
expressed as mean± standard deviation. Values of n represent the
numbers of cilia or beads analyzed for CBF and flow speed, respec-
tively, for each treatment condition. Log-transformed flow speed
was used in the statistical tests to reduce the variability and improve
normality of the data. Difference in the mean values between two
conditions was determined by a heteroscedastic unpaired t -test.
The one-way analysis of variance models was used to examine
differences in the eight anesthetic groups at each temperature
and differences in the three temperatures given the same anes-
thetic treatment. Then at each temperature, a multivariate linear
regression model was used to assess the main effect of the three
anesthetics and their interactions. Finally, an overall multivariate
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FIGURE 7 | Analysis of anesthetic effects on cilia-generated flow relative to control. The effects of anesthetics alone (A), and in different combinations (B)
on flow speed at 15, 22–24, and 37°C relative to control. *indicates significant difference from control (P < 0.05).

regression model that included data from three temperatures was
used to estimate the main temperature and anesthetic effects
and identify significant drug–drug and drug–temperature inter-
actions. The non-significant interaction terms were dropped in
the regression models by the backward model selection proce-
dure. All tests were two-tailed and P values <0.05 were considered
significant. Analyses were performed with SAS 9.3 (SAS Institute,
Cary, NC, USA).

RESULTS
To assess the effects of anesthetics on respiratory airway cilia func-
tion, strips of mouse trachea were imaged by videomicroscopy
to capture cilia dynamics (Figure 1). The videos obtained were
quantitatively assessed for ciliary motility by measuring CBF,
and cilia-generated flow was quantified by adding fluorescent
beads to the media and measuring fluorescent bead displace-
ment velocity. CBF and cilia-generated flow speed were used to
assess the effects of temperature and anesthetic exposure on cilia
motility.

EFFECT OF TEMPERATURE ON AIRWAY CILIARY MOTILITY
We examined temperature effects on ciliary motility at 37°C
(physiological body temperature), 22–24°C (room temperature),
and 15°C (cardiopulmonary bypass temperature). As tempera-
ture declined from 37 to 25°C, CBF and flow speed decreased
(Figure 2), dropping from 18.2± 3.8 at 37°C to 12.6± 2.3 Hz at
room temperature (22–24°C; P < 0.001). This was associated with
a change in flow speed from 2090± 498 to 1547± 410 µm/min
(P = 0.001), respectively (Figure 2). Further reduction in temper-
ature to 15°C depressed CBF to 7.3± 1.9 Hz (P < 0.001) and flow
speed to 473± 78 µm/min (P < 0.001). Overall, we observed a
linear decrease in temperature and flow speed with reduction in
temperature.

TITRATION OF ANESTHETIC EFFECTS ON AIRWAY CILIA MOTILITY
To assess the effects of fen, dex, and iso on airway cilia motility,
we first carried out a titration analysis with different anesthetic
concentrations spanning the established clinical doses (Table S1
in Supplemental Material). For the inhaled anesthetic iso, the
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Christopher et al. Anesthetic effects on airway cilia function

Table 1 | Parameter estimate in ANOVA models for ciliary beat frequency.

Variables Model A Model B Model C Model D

Temperature 15°C Temperature 22–24°C Temperature 37°C Overall model

(n = 417) (n = 399) (n = 207) (n = 1023)

Estimate (SE) P -value Estimate (SE) P -value Estimate (SE) P -value Estimate (SE) P -value

Intercept (control) 7.40 (0.22) <0.0001 12.46 (0.27) <0.0001 17.58 (0.66) <0.0001 17.83 (0.40) <0.0001

Fen 0.93 (0.24) 0.0001 2.40 (0.32) <0.0001 2.53 (0.74) 0.008 2.03 (0.38) <0.0001

Dex −0.46 (0.24) 0.06 −1.84 (0.32) <0.0001 −4.46 (0.74) <0.0001 −4.42 (0.49) <0.0001

Iso −0.84 (0.30) 0.006 −1.19 (0.39) 0.002 −4.17(0.89) <0.0001 −4.64 (0.51) <0.0001

Drug–drug interaction

Fen and iso −2.55 (0.34) <0.0001 −3.02 (0.46) <0.0001 −4.05 (1.05) 0.0002 −3.04 (0.31) <0.0001

Dex and iso 0.80 (0.34) 0.02 1.64 (0.46) 0.0003 7.55 (1.05) <0.0001 7.49 (0.69) <0.0001

Temperature

15°C – – – – – – −10.55 (0.49) <0.0001

22–24°C – – – – – – −5.37 (0.48) <0.0001

Drug andTemperature Interactions (reference category: 37°C)

15°C/fen – – – – – – −0.85 (0.42) 0.045

15°C/dex 3.99 (0.60) <0.0001

22–24°C/dex – – – – – – 2.58 (0.60) <0.0001

15°C/iso – – – – – – 4.04 (0.61) <0.0001

22–24°C/iso – – – – – – 3.46 (0.60) <0.0001

15°C/dex and iso −6.74 (0.84) <0.0001

22–24° – – – – – – −5.84 (0.85) <0.0001

/dex and iso

Note: At each temperature, a full regression model including three two-way interactions and three-way interactions among fentanyl (fen), dexmedetomidine (dex),

and isoflurane (iso) were performed first, and then the non-significant terms were dropped in the final regression model presented in the table. The overall model

used all data and included the main temperature and drug effects and all the significant interactions, with temperature 37°C as the reference category.

clinically relevant dose was calculated based on the expected sol-
ubility of the inhaled iso gas in airway mucus (see “Materials and
Methods”). Titration analysis of fen at room temperature (22–
24°C) showed a cilia inhibitory effect at very low concentration
of 0.1 nM (CBF= 12.6± 2.3 Hz). In contrast, at 10 nM, which is
equivalent to a 1 µg/kg dose, a significant stimulatory effect was
observed with CBF of 14.7± 3.1 Hz (P < 0.001) (Figure 3). In
comparison, dex and iso each depressed CBF at all concentrations,
with the first significant effect noted at 10 nM dex, equivalent to
a dose of 1 µg/kg (10.4± 2.4 Hz, P < 0.001) and at 0.01% iso, or
2× MAC (11.5± 2.2 Hz, P = 0.011) (Figure 3). For the remainder
of the studies below, we used iso (0.01%; 2× MAC), dex (10 nM),
and fen (10 nM) at the clinically established doses to examine their
effects on cilia motility in isolation and in combination with each
other at the three different temperatures.

OPPOSING EFFECTS OF FENTANYL VS. DEXMEDETOMIDINE AND
ISOFLURANE ON CILIARY MOTILITY
Fen at 10 nM increased CBF and flow speed at all three tem-
peratures (Figures 4 and 5). Of note, with hypothermia (15°C),
fen raised the mean CBF by 15% from 7.3± 1.9 to 8.4± 1.6 Hz
(p= 0.003) (Figure 6), and with an even greater effect on flow
speed with a 40% increase from 473± 78 to 637± 271 µm/min
(p= 0.003) (Figure 7). In contrast, dex or iso administered at

10 nM or 0.01% respectively, exerted largely inhibitory effects on
CBF and flow, with the greatest inhibitory effects noted at 22–24
and 37°C (Figures 4–7).

COMBINED EFFECTS OF ANESTHETICS AND TEMPERATURE ON CILIARY
MOTILITY
The opposing effects of fen vs. dex or iso would suggest that ciliary
function might be restored if dex or iso were used in combination
with fen. This was in fact observed with therapeutic dosing of fen
and dex together, which preserved CBF at levels similar to that of
untreated control at all three temperatures (Figure 6). This was
associated with an increase in flow speed at 15°C (37% increase,
p < 0.001), but flow speed was decreased at 22–24 and 37°C (27%
decrease at 37°C, p= 0.013) (Figure 7). In contrast, exposure to
iso-fen, or iso-dex, or all three together, uniformly depressed both
CBF and flow (Figures 6 and 7). However, the magnitude of cilia
inhibition was quite different from that expected by simple sum-
mation of their effects. Fen, which enhances ciliary motility, when
used in combination with iso depressed ciliary function to levels
lower than that with iso alone. This was significant for CBF and
flow speed across all temperatures (Figures 6 and 7). In compari-
son, dex and iso, which individually were cilia inhibitory, together
caused depression of CBF to levels similar to or less than that
observed with either anesthetic alone (Figures 6 and 7), suggesting
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Christopher et al. Anesthetic effects on airway cilia function

the suppressive effects of the two drugs were reduced when they
were used in combination. These findings showed dex and fen
exerted unique interactions with iso.

ANALYSIS OF DRUG–DRUG AND DRUG–TEMPERATURE INTERACTIONS
ON CILIA MOTILITY
To examine possible anesthetic–anesthetic and anesthetic–
temperature interactions,we used the totality of over 700 CBF/flow
measurements generated above for linear regression modeling
(Tables 1 and 2). From the analysis of CBF and flow speed, we
observed dex–fen together exerted only additive effects without
any additional drug–drug interactions (Tables 1 and 2). In con-
trast, fen–iso and dex–iso combinations showed opposing drug–
drug interactions (Tables 1 and 2). Thus, the cilia-stimulatory
effect exerted by fen was depressed by significant negative

interaction with iso, while positive interaction between iso and dex
attenuated their individual cilia-inhibitory effects (Tables 1 and 2).

The linear regression analysis was carried out using 37°C as
the reference temperature to model how lower body tempera-
ture may affect the effects of drugs on ciliary motility, reveal-
ing significant drug–temperature interactions. Dex or iso each
showed positive temperature interaction with both 15 and 22–
24°C, causing a greater depression of CBF and flow speed when
compared to their individual effects at 37°C (Table 2). Fen exhib-
ited negative interaction with 15°C, but this was only observed
for CBF and not for flow speed. When combined, dex–iso showed
negative temperature interaction at both 15 and 22–24°C, which
was observed for both CBF and flow speed (Table 1). In con-
trast, fen–iso exhibited negative temperature interaction at 15°C
but positive interaction at 22°C, which was only observed for flow

Table 2 | Parameter estimate in ANOVA models for flow speed (log-transformed).

Model A Model B Model C Model D

15°C 22–24°C 37°C Overall model

(n = 240) (n = 250) (n = 130) (n = 620)

Estimate (SE) P -value Estimate (SE) P -value Estimate (SE) P -value Estimate (SE) P -value

Intercept (control) 6.12 (0.05) <0.0001 7.28 (0.05) <0.0001 7.61 (0.08) <0.0001 7.73 (0.07) <0.0001

Fentanyl 0.22 (0.06) 0.0004 0.09 (0.05) 0.05 0.37 (0.12) 0.002 0.15 0.0002

−0.04

Dexmedetomidine 0.12 (0.04) 0.008 −0.37 (0.06) <0.0001 −0.32 (0.12) 0.008 −0.57 (0.09) <0.0001

Isoflurane −0.02 (0.06) 0.71 −0.40 (0.06) <0.0001 −0.36 (0.11) 0.002 −0.51 (0.10) <0.0001

Drug–drug interaction

Iso and fen −0.59 (0.09) <0.0001 – – −0.62 0.0002 −0.30 (0.09) 0.002

−0.16

Iso and dex – – 0.37 (0.09) <0.0001 0.39 (0.16) 0.02 0.75 (0.12) <0.0001

Fen and dex – – – – −0.47 0.0046 – –

−0.16

Fen and dex and iso – – – – 0.69 (0.23) 0.003 – –

Temperature

15°C – – – – – – −1.54 (0.08) <0.0001

22–24°C – – – – – – −0.47 (0.08) <0.0001

Drug and temperature Interactions (reference category: 37°C)

15°C and dex – – – – – – 0.62 (0.11) <0.0001

22–24°C and dex – – – – – – 0.20 (0.11) 0.054

15°C and iso – – – – – – 0.39 (0.12) 0.001

22–24°C and iso – – – – – – 0.14 (0.12) 0.23

15°C and fen/iso – – – – – – −0.22 (0.11) 0.043

22–24°C and – – – – – – 0.24 (0.11) 0.023

Fen/ISO

15°C and dex/iso – – – – – – −0.61 (0.15) <0.0001

22–24°C and dex/iso – – – – – – −0.37 (0.15) 0.013

Note: Log-transformed flow speed was used in the models. At each temperature, a full regression model including three two-way interactions and three-way interac-

tions among fentanyl (fen), dexmedetomidine (dex), and isoflurane (iso) were performed first, and then the non-significant terms were dropped in the final regression

model presented in the table.The overall model used all data and included the main temperature and drug effects and all the significant interactions, with temperature

37°C as the reference category.
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FIGURE 8 | Analysis of adrenergic and opioid receptor transcript expression in the mouse airway epithelia. Real time PCR analysis of the mouse airway
epithelia of various receptors (normalized to actin expression) showed expression of adrenergic but not opiate receptor transcripts.

speed but not CBF. When all three anesthetics were combined, no
drug or temperature interactions were observed.

ADRENERGIC AND OPIOID RECEPTOR TRANSCRIPT EXPRESSION IN
THE MOUSE AIRWAY EPITHELIA
To gain further insights into the possible molecular basis for the
differing drug–drug and drug–temperature interactions on cilia
function, we used real time PCR analysis to examine transcript
expression for the adrenergic and opioid receptor subtypes in the
mouse airway epithelia. Our analysis revealed robust expression of
the β-adrenergic type 2 receptor and lower expression of the β type
1 receptors, but no transcripts were detected for the α-adrenergic
or any of the opioid receptors (Figure 8).

DISCUSSION
We examined mouse trachea ciliary motility at different tempera-
tures and with varying combinations of dex, fen, and iso to model
conditions experienced during hypothermia associated with car-
diac bypass and administration of multiple anesthetics. We found
CBF generally correlated with flow speed, although the magni-
tude of the change can differ. This likely reflects the fact that CBF
does not assess the ciliary waveform nor the coordination of the
ciliary beat, which together determine flow. Consistent with previ-
ous studies, CBF and flow declined as temperature decreased from
37 to 22–24/15°C (2–5). While fen was cilia stimulatory, iso and
dex were cilia inhibitory across all temperatures.

When these three anesthetics were used in different com-
binations, except for fen+ dex, ciliary function showed non-
additive drug–drug and drug–temperature interactions not pre-
dicted by simple summation of their individual effects. Fen+ dex
had additive effects, with fen counteracting the cilia inhibitory
effects of dex. However, fen+ iso exhibited negative interac-
tion with more cilia inhibition, while iso+ dex showed pos-
itive interaction with less cilia inhibition. Interestingly, when
all three anesthetics were added together, no drug interac-
tions were observed. Drug–temperature interactions were also
observed for some of the drug combinations, with dex and

iso each exhibiting positive temperature interaction with less
cilia inhibition at 15 and 22–24°C, while fen showed modest
negative temperature interaction at 15°C. In contrast, dex+ iso
showed strong negative temperature interaction with increased
cilia inhibition at 15 and 22–24°C. Interestingly, when all three
drugs were combined, no drug–temperature interactions were
observed.

In preliminary studies to investigate the mechanism of anes-
thetic action, we examined transcript expression for the adrenergic
receptors using real time PCR analysis. While we detected tran-
scripts for β-adrenergic receptors, no transcripts were detected for
either the α2 or µ opioid receptors known to mediate the effects of
dex (28) and fen (24), respectively. As the RNA used in our analy-
sis was obtained from reciliated airway epithelia largely devoid of
other cell types in the trachea, this discrepancy suggests the pri-
mary responder to the anesthetic exposure may not be the ciliated
epithelial cells in the trachea. Consistent with this possibility, stud-
ies by Iida et al. (13) using cultured rat respiratory epithelial cells
showed dex at 10 and 100 nM had no effects on cilia motility and
only slight stimulation with fen at 100 nM. The contrasts with the
robust effects, we observed with dex and fen using intact mouse
trachea.

Overall, our study suggests mucociliary clearance function can
be better managed and optimized with careful consideration of
the drug–drug and drug–temperature interactions on respiratory
ciliary motility. The applicability of these findings in the mouse
respiratory epithelia to ciliary function in the human airway needs
to be carefully examined and validated. Future efforts to develop
therapeutic strategies for optimizing mucociliary clearance func-
tion in patients undergoing surgical intervention will also require
insights into the underlying pharmacology and identification of
the primary responding cells in the airway.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Journal/10.3389/fped.2014.
00111/abstract
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