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Pulmonary hypertension (PH) can be a rapidly progressive and fatal disease. Although
right heart catheterization remains the gold standard in evaluation of PH, echocardiogra-
phy remains an important tool in screening, diagnosing, evaluating, and following these
patients. In this article, we will review the important echocardiographic parameters of the
right heart in evaluating its anatomy, hemodynamic assessment, systolic, and diastolic
function in children with PH.
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INTRODUCTION
Pulmonary hypertension (PH) is a progressive disease that carries
high morbidity and mortality. Although cardiac catheterization is
used to define PH, echocardiography is the most important non-
invasive tool that is used to detect PH (1). It provides the anatomy
of the right heart, non-invasive hemodynamic assessment, systolic
and diastolic evaluation of the right heart, and serial follow-up
for this patient population. A diagnostic classification has been
developed and modified at the World Symposiums on Pulmonary
Hypertension (WSPH). Initially developed at the second WSPH
in Evian (France) in 1998, this clinical classification system iden-
tifies five categories of disorders that cause PH, with each group
sharing similar hemodynamic, pathologic, and management fea-
tures; Pulmonary arterial hypertension (PAH) (Group 1); PH due
to left heart disease (Group 2); PH due to chronic lung disease
and/or hypoxia (Group 3); chronic thromboembolic PH (Group
4); and PH due to multifactorial mechanisms (Group 5) Table 1
(1). Echocardiography is valuable in each of these disorders as
will be described. We will further discuss the conventional and
advanced echocardiographic evaluation of pediatric PH.

CONVENTIONAL TWO-DIMENSIONAL ECHOCARDIOGRAPHY
Two-dimensional (2D) echocardiography provides qualitative and
quantitative evaluation of the severity of PH.

RIGHT ATRIUM
The right atrium (RA) dilates over time in patients with PH and
it represents decreased right ventricular (RV) compliance and RV
diastolic dysfunction. It is a reservoir for systemic venous return
when the tricuspid valve is closed, a passive conduit during early
diastole, and active conduit in late diastole (2). Imaging of the
RA is easily obtained in the apical four chamber view where RA
dimensions of minor and major axis are measured and planimetry

of the RA area in end-systole is performed to evaluate for RA dila-
tion (Figure 1) (3). Indexed RA area to body surface area in adult
patients with idiopathic PH has been a predictor of mortality and
has been shown to be a prognostic marker for follow up of PH
patients in adults and children (4–6).

INFERIOR VENA CAVA DILATION
The inferior vena cava (IVC) can be dilated in patients with PH
because of rising RA pressure. It is measured in the subcostal
longitudinal view with IVC entering the RA. RA pressure can be
estimated by IVC diameter and the presence of inspiratory collapse
(7–9). IVC diameter≤2.1 cm that collapses > 50% with a sniff sug-
gests a normal RA pressure of 3 mmHg (range, 0–5 mmHg). IVC
diameter≥ 2.1 cm that collapses <50% with a sniff suggests a high
RA pressure of 15 mmHg (range 10–20 mmHg) (3, 8, 10, 11). In
children, the IVC varies with age of the patient. Elevated RA pres-
sure in children can be assessed on the percentage of collapse of
the IVC during inspiration rather than an absolute number.

RIGHT VENTRICLE
With chronic pressure overload, there is progressive hypertrophy
and dilation of the RV. The complex morphology of the RV makes
2D imaging of the RV difficult and frequently requires multiple
views in the parasternal, apical, and subcostal views to completely
evaluate the RV dimensions. However, current recommendation
from the guidelines in assessing the right heart includes a stan-
dardized imaging of the RV linear dimensions to evaluate for
RV dilation (3). The RV size can be measured from the apical
four chamber view at end-diastole in the “RV-focused view” (3,
12). The basal diameter is measured at the level of the tricus-
pid valve and the mid-cavity diameter is measured at the middle
third of the RV at the level of the left ventricular (LV) papil-
lary muscle. The longitudinal dimension is from the plane of the
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

Table 1 | Updated classification of pulmonary hypertension.

1. Pulmonary arterial hypertension

1.1 Idiopathic PAH

1.2 Heritable PAH

1.2.1 BMPR2

1.2.2 ALK-1, ENG, SMAD9, CAV1, KCNK3

1.2.3 Unknown

1.3 Drug and toxin induced

1.4 Associated with:

1.4.1 Connective tissue disease

1.4.2 HIV infection

1.4.3 Portal hypertension

1.4.4 Congenital heart diseases

1.4.5 Schistosomiasis

1’ Pulmonary veno-occlusive disease and/or pulmonary capillary

hemangiomatosis

1”. Persistent pulmonary hypertension of the newborn (PPHN)

2. Pulmonary hypertension due to left heart disease

2.1 Left ventricular systolic dysfunction

2.2 Left ventricular diastolic dysfunction

2.3 Valvular disease

2.4 Congenital/acquired left heart inflow/outflow tract obstruction and

congenital cardiomyopathies

3. Pulmonary hypertension due to lung diseases and/or hypoxia

3.1 Chronic obstructive pulmonary disease

3.2 Interstitial lung disease

3.3 Other pulmonary diseases with mixed restrictive and obstructive

pattern

3.4 Sleep-disordered breathing

3.5 Alveolar hypoventilation disorders

3.6 Chronic exposure to high altitude

3.7 Developmental lung diseases

4. Chronic thromboembolic pulmonary hypertension (CTEPH)

5. Pulmonary hypertension with unclear multifactorial mechanisms

5.1 Hematologic disorders: chronic hemolytic anemia, myeloproliferative

disorders, splenectomy

5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis,

lymphangioleiomyomatosis

5.3 Metabolic disorders: glycogen storage disease, Gaucher disease,

thyroid disorders

5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal

failure, segmental PH

BMPR: bone morphogenic protein receptor type II; CAV1: caveolin-1; ENG:

endoglin; HIV: human immunodeficiency virus; PAH: pulmonary arterial

hypertension.

tricuspid valve annulus to the RV apex (Figure 2). Indexed RV
end-diastolic diameter measured just above the tricuspid valve
annulus reported by Burgess et al. has been associated with poor
prognosis in patients with chronic pulmonary disease in adults
(13). RV dilation is an early sign of RV maladaptation to increased
pressure overload and an early sign of RV dysfunction (14). This
has also been shown in children with PAH although the mea-
surements of RV end-diastolic dimension were measured from
the parasternal short axis view from M-mode (6). Future stud-
ies are needed in RV basal diameters in children with PH to
evaluate progressive RV dilation which is an early sign of RV
dysfunction.

INTERVENTRICULAR SEPTUM
Right ventricular pressure overload causes flattening of the inter-
ventricular septum (IVS) in end-systole into the left ventricle
(LV), resulting a “D-shaped” LV in parasternal short axis view.
Eccentricity index has been derived from the ratio between the
LV anteroposterior dimension and the septolateral dimension at
the level of the papillary muscle (Figure 3) (15). LV deformation
of the IVS is greatest in end-systole in patients with RV pressure
overload. Eccentricity index is abnormal when the ratio is >1.0
and has been shown to correlate well with invasive measurements
of pulmonary artery pressure and associated with adverse clinical
outcome in adults with PH (5, 16). Serial evaluation of eccen-
tricity index with improvement in this index has been shown in
targeted PH therapy in adults (17). The eccentricity index has
been shown in children to be worse in patients with idiopathic
PH compared to PH associated with congenital heart disease (6).
Flattening of the IVS can be classified into mild, moderate, or
severe depending on the degree of PH (Figure 3). In the absence
of tricuspid regurgitation (TR) to estimate RV pressure, septal
flattening offers indirect evidence of elevated pulmonary artery
pressure. End-systolic flattening of the IVS has proven to be a
sensitive marker for RV systolic hypertension in children (18).
RV/LV ratio at end-systole measured at the level of the papillary
muscles incorporates RV dimension in the parasternal short axis
view and has been shown to correlate with invasive measures of
hemodynamics and RV/LV end-systolic ratio>1 is associated with
adverse clinical outcomes in children with PH (Figure 4) (19).
Flattening of IVS into the LV impairs LV filling. Both the systolic
and diastolic volumes are reduced. The importance of ventricular–
ventricular interactions is increasingly recognized in patients with
PH in both adult and pediatric populations (20, 21). Interven-
tricular septal shift impairs LV diastolic filling, which results in
decreased LV function. In severe PH with severe septal shift, the
LV mid-cavity or outflow tract may become obstructed and the
cardiac output (CO) can be decreased. CO can be estimated from
echocardiography by the following equation:

CO = (LVOT diameter/2)2
× 3.14× VTI (LVOT)×HR

The LV outflow tract (LVOT) is obtained from the parasternal
long axis view and the velocity time integral (VTI) of LVOT is
obtained by spectral Doppler from an apical four chamber view
tilted anterior to view the LVOT. Cardiac index is calculated by
dividing the CO by the body surface area.
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 1 | Measurement of right atria dimensions (major and minor axis) and right atrial area in end-systole in a pulmonary hypertension patient.
RA= right atria, RV= right ventricle, IAS= interatrial septum, LA= left atria, LV= left ventricle.

FIGURE 2 | Measurement of right ventricular dimensions in end-diastole with basal dimension at the level of the tricuspid valve, the mid-cavity
dimension (red arrows), and longitudinal dimension (yellow arrow). RA= right atria, RV= right ventricle, LA= left atria, LV= left ventricle.

ATRIAL LEVEL SHUNT
An atrial level shunt is important in patients with PH as it pro-
vides relief to symptoms of severe PH by increasing systemic flow,
reducing RV preload, and increasing CO. Atrial level shunts can be

assessed in the parasternal short axis, subcostal short axis, and sub-
costal long axis views. Contrast echocardiography may also help in
the assessment of atrial level shunt. In adults with PH, functional
class has been shown to improve with the creation of an atrial level
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 3 | (A) Eccentricity index=D2/D1 and normal septum. There is progressive septal flattening from mild (B), moderate (C), to severe (D).
D1= diameter 1, D2=diameter 2.

shunt, which leads to cyanosis from right to left shunting but can
increase CO. Some series advocate use of an atrial septostomy to
prolong survival (22, 23).

PERICARDIAL EFFUSION
The presence of pericardial effusion is associated with increased
risk of poor outcome in adults with PH but has not been a prognos-
tic indicator for children (5). The size of the pericardial effusion is
not predictive of outcome in children. Pericardial thickening and
total pericardial score has been developed to score the amount of
pericardial effusion seen in patients with PH (24). Increased peri-
cardial thickening and increased pericardial effusion were found
to be higher in adults with severe PH.

HEMODYNAMIC ASSESSMENT USING DOPPLER
ECHOCARDIOGRAPHY
SYSTOLIC PULMONARY ARTERY PRESSURE
The normal TR jet has a maximal velocity of <2.5 m/s (25). The
normal estimated systolic pulmonary artery pressure (SPAP) is
≤35 mmHg (26). SPAP can be estimated from a peak TR velocity
by continuous-wave Doppler using the modified Bernoulli equa-
tion in the absence of RV outflow tract (RVOT) obstruction (27).
This is the most useful non-invasive method to predict SPAP. The

mean RA pressure must be added to the result of the Bernoulli
equation to determine the RV systolic pressure (RVSP). In the
absence of RVOT obstruction, the SPAP equals the RVSP. The
equation is below:

RVSP = SPAP = 4(TR max)2
+mean RA pressure (mRAP)

Estimation of SPAP from the TR jet is dependent on the angle
and the presence of the sufficient Doppler envelope (Figure 5).
Therefore, it is recommended that the TR is obtained from mul-
tiple views (apical four chamber view or parasternal views) until
the best Doppler angle and the highest velocity are obtained. Adult
studies have shown that this method of estimating SPAP correlates
linearly with hemodynamic assessment in cardiac catheterizations
(28, 29). In pediatric patients with chronic lung disease, this esti-
mate of SPAP using TR velocity has been shown to correctly
diagnose the presence or absence of PH in 79% of children but
was only able to diagnose correctly the severity of PH in 47%.
(30) In a recent prospective trial of pediatric PH patients using
TR to estimate SPAP compared to right heart catheterization,
overestimation and underestimation of RV pressure occurred and
TR velocity was inaccurate in children with elevated right heart
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 4 | Parasternal short axis view of the right and left ventricles at the level of the papillary muscles. The RV/LV ratio is derived from RV diameter
and LV diameter at end-systole.

FIGURE 5 |Tricuspid regurgitation estimating right ventricular pressure in a patient with pulmonary hypertension. Systolic (S) to diastolic (D) ratio from
tricuspid regurgitation velocity can be measured.
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 6 | Spectral Doppler pattern across a ventricular septal
defect with low velocity left to right shunt (A) indicating pulmonary
hypertension and high velocity left to right shunt (B) indicating low
pulmonary pressure. Spectral Doppler pattern across patent ductus

arteriosus with continuous high velocity left to right shunt
(C) indicating lower pulmonary artery pressure compared to aortic
pressure and bidirectional shunt (D), indicating pulmonary
hypertension.

pressures (31). Nevertheless, TR is still used clinically and serially
to evaluate children with PH.

Estimation of SPAP can also be made in the presence of ven-
tricular septal defect (VSD). This can only be done if there is no
RV or LV outflow tract obstruction. This method has been shown
to correlate well with invasive measurements obtained by cardiac
catheterization (32, 33). The equation is below:

SPAP = Systolic blood pressure (SBP)− 4V (VSD) max2(
for left to right shunts

)
SPAP = SBP+ 4V (VSD) max2 (

for right to left shunts
)

The maximal velocity across the ventricular septal defect is
V (VSD)max. Flow direction and velocity across the VSD may
help in the diagnosis of PH. Right to left shunt across the VSD and
low velocity left to right shunt may suggest the presence of ele-
vated pulmonary pressure (Figure 6). Parasternal and subcostal
long axis views are used to interrogate perimembranous VSDs
whereas parasternal and subcostal short axis views are best used
to interrogate muscular VSDs.

Lastly, SPAP can be estimated in patients with patent ductus
arteriosus (PDA) in the following equation:

SPAP = SBP− 4V (PDA) max2 (
for left to right shunts

)
SPAP = SBP+ 4V (PDA) max2 (

for right to left shunts
)

The maximal velocity across the PDA is denoted as V (PDA) max.
This method has been validated by invasive measurements in car-
diac catheterization (34). The flow and velocity across the PDA
are dependent on the pressure between the aorta and the main
pulmonary artery. Right to left shunting across the PDA indi-
cates SPAP higher than the aortic pressure (Figure 6). Left to right
shunting across the PDA indicates lower SPAP compared to the
aortic pressure. Bidirectional shunting across the PDA is a com-
mon finding in newborns until the pulmonary vascular resistance
(PVR) has decreased (Figure 6).

DIASTOLIC PULMONARY ARTERY PRESSURE
The diastolic pulmonary artery pressure (DPAP) can be estimated
from the velocity of the end-diastolic pulmonary regurgitant
velocity using the modified Bernoulli equation (Figure 7):

DPAP = 4 V (end-diastolic pulmonary regurgitation velocity)2

+ RA pressure

MEAN PULMONARY ARTERY PRESSURE
The mean pulmonary artery pressure (mPAP) can be estimated
from the following equation (Figure 7):

mPAP = 4V
(
early peak pulmonary regurgitation velocity

)2

+ RA pressure
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 7 |The diastolic pulmonary artery pressure (DPAP) can be
estimated from the velocity of the end-diastolic pulmonary
regurgitant velocity using the modified Bernoulli equation. The mean

pulmonary artery pressure (mPAP) can be estimated from the following
equation: mPAP=4V (early peak pulmonary regurgitation velocity)2 + RA
pressure.

This equation has been shown to correlate well with invasive mea-
surements in adults and children (35, 36). Another method to
estimate mPAP is by using pulmonary acceleration time (AT) mea-
sured by pulsed-wave Doppler of the pulmonary artery in systole,
where mPAP= 79 – (0.45×AT) and in patients with AT < 120 ms,
the formula for mPAP= 90− (0.62×AT) performed better (37).
Recently, a newer method to evaluating mPAP is by adding the
mean RA pressure to the velocity–time integral of the TR jet. This
method has been validated by invasive measurements in adults
where the mean difference between mPAP calculated using this
method was closer to the right heart catheterization mPAP (38,
39). Some of the equations used to estimate mPAP do not add the
mean RA pressure.

PULMONARY VASCULAR RESISTANCE
Pulmonary vascular resistance is calculated from cardiac catheter-
ization as pressure gradient across the pulmonary bed divided by
the pulmonary blood flow. PVR is important in the evaluation of
PH and can be estimated using the following equation:

PVR = [V (TR) max/VTI (RVOT)× 10]+ 0.16

The VTI(RVOT) denotes the velocity time integral of RVOT that
can be obtained by spectral Doppler in the parasternal short axis
view. In adults, this echocardiographic derived PVR has been val-
idated with cardiac catheterization (40). In another adult study
that included children, PVR can be estimated using a simple ratio
of peak TR velocity to the VTI(RVOT) and value of >38 pro-
vided a specificity of 100% for a PVR of >8 Wood units (WU)
(41). However, this relationship is not reliable in patients with

very high PVR as determined by invasive hemodynamic measure-
ments (42). In children with congenital heart disease, the ratio of
isovolumic time (IVRT) to RV ejection time (ET) has been shown
to correlated with PVR, with IVRT/ET <0.3 being 97% specific
for a PVR < 3 WU and a IVRT/ET ratio > 0.4 highly predictive of
PVR > 5WU (43). However, other studies did not find a correla-
tion between the ratio of IVRT/ET and PVR. Recently, Panda et al.
used TR velocity over VTI(RVOT) ratio (TRV/VTIRVOT) to cor-
relate with invasive measurements of PVR in children with PH in
congenital heart disease (44). The TRV/VTIRVOT ratio correlated
well with PVR measured at catheterization. They found that for
PVR of 6 WU, a TRV/VTIRVOT value of 0.14 provided a sensi-
tivity of 96.67% and a specificity of 92.86% and for PVR of 8 WU
a TRV/VTIRVOT value of 0.17 provided a sensitivity of 79.17%
and a specificity of 95% (44). Although echocardiogram can esti-
mate PVR, cardiac catheterization remains the gold standard in
diagnosing PVR.

OTHER DOPPLER ECHOCARDIOGRAPHY IN PULMONARY
HYPERTENSION
With rising pulmonary artery pressure, the RV outflow spectral
Doppler pattern changes from a smooth round shape to a trian-
gular shape (45). RV AT is also decreased in patients with PH.
The ratio of AT/ET < 0.3 is suggestive of PH but cannot reliably
determine the severity of PH. Alkon et al. used a simple measure
of systolic to diastolic time (S/D) ratio (Figure 5) from the TR jet
to evaluate pediatric PH patients and found that as the RV func-
tion worsens, the systolic portion of the cardiac cycle lengthens
leading to an increased S/D ratio (46). S/D ratio was found to
be higher in pediatric PH patients compared to controls and is
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

associated with worse hemodynamics by cardiac catheterization,
shorter 6 min walk test, and worse clinical outcomes independent
of PVR or pressures (46).

RIGHT VENTRICULAR SYSTOLIC FUNCTION
The RV function has been shown to be an important prognos-
tic determinant of PH. The assessment of RV function is more

FIGURE 8 | Right ventricular fractional area change= (end-diastolic area – end-systolic area)/end-diastolic area×100. RA= right atria, RV= right
ventricle, LA= left atria, LV= left ventricle.

FIGURE 9 |Three-dimensional echocardiography evaluation of the right heart volume and ejection fraction.
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 10 |The myocardial performance index (MPI) can be obtained
from the spectral Doppler of tricuspid inflow and pulmonary outflow
velocities [top left and bottom left, (A,B)] or can be obtained from
tissue Doppler imaging (C) at the lateral annulus of the tricuspid

valve. IVCT= isovolumic contraction time, IVRT= isovolumic relation
time, and ET=ejection time. Tissue Doppler imaging of the tricuspid
valve. S′= systolic velocity, E′ =early diastolic velocity, A′ = late diastolic
velocity.

difficult because of its complex geometry and visual assessment
of RV function is frequently used (47). The RV is composed of
the smooth muscular inflow, the outflow region, and the trabecu-
lar apical region. The RV has inner longitudinal fibers that result
in base to apex contraction and superficial circumferential mus-
cle fibers responsible for its inward bellow movement (48). The
evaluation of RV systolic function can be divided into global and
regional systolic function.

GLOBAL ASSESSMENT OF RIGHT VENTRICULAR FUNCTION
RV fractional area change
The RV fractional area change (FAC) is a measure of RV systolic
function and can be calculated by the following equation:

RVFAC = (end-diastolic area-end-systolic area)/

end-diastolic area× 100

The RV FAC can be obtained by tracing the RV endocardium both
in systole and diastole from the tricuspid valve annulus, along the
right free wall to the apex, and then back to the tricuspid valve
annulus, along the IVS (Figure 8). RV FAC has been shown to
correlate with RV ejection fraction (EF) by magnetic resonance

imaging (MRI) (49). In adults, the lower reference value for nor-
mal RV FAC is 35%. In pediatric patients with idiopathic PAH, RV
FAC was found to be significantly worse in patient who did not
survive at follow-up when compared to patients who survived (6).

Three-dimensional volume and EF estimation
By eliminating the need for geometric assumptions, three-
dimensional (3D) echocardiography provides more accurate and
reproducible measurements of RV volume and EF in adults with
PH (Figure 9) (50). Disk summation and apical rotational meth-
ods for RV volume and EF calculation are the most commonly
used methods in 3D echocardiography. Both methods have been
shown to correlate well with MRI volume and EF in children
(51–54) and in adults (55–61). The lower reference limit for RV
EF is 44% from disk summation method in adult patients. In a
recent study by Kong et al. regional and global RV systolic dys-
function in adult PH patients measured by 3D echocardiography
were inversely related to the PASP and PVR (62). Measurements of
volumes and EF become difficult in patients with arrhythmia and
breath holding in small children maybe a limiting factor; however,
with the advent of newer software using semi-automated quantifi-
cation of RV volume and EF, breath holding is no longer required.
RV volume and EF from 3D echocardiography can be accurately
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Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 11 | Measurement of tricuspid annular plane systolic excursion (TAPSE) from M-mode in the apical four-chamber view at the level of the
tricuspid annulus in a patient with pulmonary hypertension.

measured using real-time 3D algorithms and need further studies
in children with PH.

MYOCARDIAL PERFORMANCE INDEX
The myocardial performance index (MPI) is a non-invasive mea-
surement of global ventricular function (systolic and diastolic)
independent of geometric assumptions (63). It can be applied to
the RV and the LV. It is defined as the ratio of isovolumic time
divided by the ET.

MPI = (isovolumic contraction time (IVCT)+ IVRT) /ET

The MPI is easily obtained from either the spectral Doppler or
from tissue Doppler imaging (TDI) (Figure 10). RV MPI is diffi-
cult to obtain in one single heart beat or similar heart beat because
it is difficult to image the tricuspid valve and pulmonary valve
in the same spectral Doppler signal. This results in errors in the
calculation of the RV MPI. In TDI, the RV MPI is more easily
measured from a single heart beat by sampling at the tricuspid
annulus. RV MPI using the spectral Doppler has been studied in
pediatric patients with PH. It is increased in PH patients com-
pared to controls and RV MPI correlated well with both mPAP
at cardiac catheterization and response to therapy. (64) Another
study in infants with PH from congenital diaphragmatic hernia
has shown that RV MPI is elevated compared to controls, but did
not correlate well with SPAP (65). RV MPI may be a useful tool
to follow PH patients serially but it may be unreliable if there is
significant TR with an elevated RA pressure because the IVRT will
shorten and result in an inappropriately lower value of MPI. RV

MPI will not work if patients have irregular heart rates. There are
currently no studies in children using TDI method of RV MPI to
evaluate pediatric PH and further studies are needed in this area.

REGIONAL ASSESSMENT OF RIGHT VENTRICULAR FUNCTION
Tricuspid annular plane systolic excursion
The longitudinal fibers are the major contributor to RV systolic
function. Tricuspid annular plane systolic excursion (TAPSE) is
a method to measure the distance of systolic excursion of the
RV annular segment along its longitudinal plane from the apical
four chamber view in millimeters from end-diastole to end-systole.
The greater the descent of the basal annulus in systole, the better
RV systolic function is. TAPSE is usually acquired by placing the
M-mode cursor through the lateral tricuspid annulus and mea-
suring the amount of longitudinal motion of the annulus in peak
systole (Figure 11). TAPSE < 18 mm has been demonstrated in
adult patients with PH to be associated with greater RV systolic
dysfunction and lower survival rate (66). There is also a strong
correlation between TAPSE and reduced RV FAC regardless of pul-
monary artery pressures in adults (67). Normal values for TAPSE
in children have been published and z-scores established (68).
Children with idiopathic PAH who had TAPSE z-score <−4.3
were associated with increased risk of transplant or death (6).
The advantage of using TAPSE is that it is a simple and repro-
ducible measure but it is important to note that TAPSE is angle
and load dependent. TAPSE is also one-dimensional and does not
take into the account the three-dimensional structure of the RV.
TAPSE does not evaluate apical systolic dysfunction in patients
with PH.

Frontiers in Pediatrics | Pediatric Cardiology November 2014 | Volume 2 | Article 124 | 10

http://www.frontiersin.org/Pediatric_Cardiology
http://www.frontiersin.org/Pediatric_Cardiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jone and Ivy Echocardiography in pediatric pulmonary hypertension

FIGURE 12 |The left upper panel shows 2D strain (speckle tracking) of
right ventricle in pulmonary hypertension patient.The right upper panel
represents the strain curves sampled in each of the analyzed myocardial
segments and decreased global longitudinal strain (GS=−16.5%).The

lower left panel measures the peak systolic strain in each of the
myocardial segments.The lower right panel depicts the longitudinal
strain according to the color map of M-mode; red segments indicate
higher contractility.

Tissue Doppler imaging
Tissue Doppler imaging measures the myocardial velocities in the
apical four chamber view with the pulse-wave Doppler sample
volume placed at the level of RV lateral tricuspid, basal IVS, and
LV lateral mitral annuli (Figure 10). Myocardial systolic wave (S′)
measures the systolic longitudinal function of the RV or the LV
and two diastolic waves: early diastolic (E ′) and late diastolic (A′)
denote the diastolic function of the ventricles. Pulse-wave TDI
measures the peak myocardial velocities and color TDI measures
the mean velocities, which is lower than the pulse-wave TDI mea-
surements by 20%. Acquisition of the TDI velocities must be as
parallel as possible to avoid underestimation of the velocities. In
adults with idiopathic PH, tricuspid and septal peak systolic (S′)
velocities relate to the RV dysfunction and cut-off values have
been described to predict RV systolic dysfunction (69). RV S′ at
the tricuspid valve has also been shown to have an inverse rela-
tionship with cardiac catheterization mPAP and PVR in adults.
(70) RV S′ at the tricuspid valve has been shown to correlate
with RV FAC and TAPSE (67). The lower limit value of RV S′

at the tricuspid valve in adults is <10 cm/s (3). A strong cor-
relation has been shown between RV S′ at the tricuspid valve
and RV EF with a RV S′< 10 cm/s predicting RV EF < 40%
(71, 72). In infants with PH, RV S′ at the tricuspid valve is
lower compared to controls (73). RV S′ by pulsed Doppler is
a simple, reproducible measure of basal RV free wall function

and should be used in the assessment of RV regional systolic
function.

Strain and strain rate
Strain measures the percentage change in myocardial deforma-
tion whereas its time derivative, strain rate, defines the rate of
deformation of myocardium over time. Strain is load-independent
global measure of ventricular systolic function and correlates
closely with myocardial contractility (Figure 12). Strain can mea-
sure regional and global systolic function. Using speckle track-
ing, longitudinal strain is displayed as a negative wave. For the
RV, longitudinal and radial strain and strain rate are typically
assessed. Optimal quality images with frame rates between 60 and
90 frames/s during image acquisition are necessary prerequisites
for reproducibility and reliability of the data. RV free wall strain
imaging has been applied to adult patients with PH and has been
shown to correlate with invasive pulmonary hemodynamics (74).
Recently, Fine et al. demonstrated that RV longitudinal strain is a
powerful tool to predict clinical outcome in adults with PH (75).
Smith et al. demonstrated that 3D area strain, radial strain, longi-
tudinal strain, and circumferential strain were lower in adult PH
patients compared to controls and reduced area strain, longitudi-
nal strain, circumferential strain, and EF were all determinants of
mortality in adults with PH (76). The disadvantages of strain are
that there are many different vendors with strain software and no
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standard methods of measuring strain. Some are deriving strain
and strain rate from velocity vector imaging (VVI) and others
derive it from speckle tracking. Normal values for the RV and
LV strain have been published in children (77). Normal ranges of
RV systolic and diastolic strain measures in children using speckle
tracking have been published in a meta-analysis (78). Evaluation
of 2D RV strain in children with PH is promising but requires
further research. 3D strain has not been investigated in children
and will require further research.

RIGHT VENTRICULAR DIASTOLIC FUNCTION
Pulmonary hypertension can result in RV diastolic dysfunction,
which affects outcome in these patients. In the apical four chamber
view, a pulsed Doppler beam should be aligned as parallel as pos-
sible to RV inflow. The sample volume should be placed at the tip
of the tricuspid leaflets (79). Tricuspid inflow can be achieved with
high reproducibility (80). The presence of moderate to severe TR
can confound measurements of the tricuspid inflow velocities (E
and A) and are excluded from most studies. The evaluation of RV
diastolic function includes tricuspid inflow velocities (E, A, E/A),
TDI of the tricuspid annulus (E ′, A′, and E ′/A′), deceleration time,
and IVRT. The tricuspid E/E ′ ratio, RA area, and diastolic strain
rate have shown promise in the evaluation of RV diastolic function.
In adult studies with chronic heart failure and PH, the presence of
RV diastolic dysfunction is associated with worse functional class
and is an independent predictor of mortality (81). In infants with
PH, diastolic E ′ velocities have been shown to be lower than con-
trols (73). In pediatric patients with bronchopulmonary dysplasia,
increasing tricuspid E/E ′ has been shown to correlate with clini-
cal severity of the disease (82). In children with idiopathic PAH,
tricuspid valve E ′ correlated with mPAP and RV end-diastolic pres-
sure (83). In this study, the tricuspid valve E ′ was lower in worse
functional class and the cumulative event-free survival rate was
significantly lower when tricuspid valve E ′ was <8 cm/s (83). In
a recent study, echocardiographic diastolic parameters of RV in
children with PAH correlated with invasive measures of cardiac
catheterization and tricuspid deceleration time with global early
diastolic strain rate were independent predictors of tau (84).

LEFT VENTRICULAR DIASTOLIC AND SYSTOLIC FUNCTION
In PH patients, the late diastolic filling pattern through the mitral
valve will reverse with E < A, E/A < 1, and a short E deceleration
time have been observed in adults (85). The pulmonary venous
Doppler can be abnormal in patients with LV diastolic dysfunction.
In patient with PH from left sided heart disease, the evaluation of
mitral valve and pulmonary veins remains important in determin-
ing the cause of PH. Evaluation of the LV systolic function can be
measured by EF from bi-plane Simpson’s formula (86, 87).

CONCLUSION
Echocardiography is a valuable non-invasive tool in screening,
diagnosing, and assessing pediatric PH. Echocardiography pro-
vides indirect measurements of pulmonary artery pressures, which
can help in the initial assessment and follow-up of these patients.
Echocardiographic assessment of RV function is important in
this population and can be used as a chronic surveillance of
these patients. Advancement in technology has allowed new tech-
niques in evaluating RV function (3D echocardiography, strain,

and strain rate) using echocardiography but more data are needed
in the pediatric population in the reproducibility of these new
techniques.
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