
REVIEW
published: 24 April 2015

doi: 10.3389/fped.2015.00033

Edited by:
Giuseppina Milano,

Centre Hospitalier Universitaire
Vaudois, Switzerland

Reviewed by:
Yasuhiro Fujii,

Okayama University Hospital, Japan
Umberto Morbiducci,

Politecnico di Torino, Italy

*Correspondence:
Futoshi Shibasaki,

Department of Molecular Medical
Research, Tokyo Metropolitan

Institute of Medical Science, 2-1-6
Kamikitazawa, Setagaya-ku, Tokyo

156-8506, Japan
shibasaki-ft@igakuken.or.jp

Specialty section:
This article was submitted to Pediatric

Cardiology, a section of the journal
Frontiers in Pediatrics

Received: 13 March 2015
Accepted: 07 April 2015
Published: 24 April 2015

Citation:
Hashimoto T and Shibasaki F (2015)

Hypoxia-inducible factor as an
angiogenic master switch.

Front. Pediatr. 3:33.
doi: 10.3389/fped.2015.00033

Hypoxia-inducible factor as an
angiogenic master switch
Takuya Hashimoto1,2 and Futoshi Shibasaki 3*

1 Department of Surgery, Yale University School of Medicine, New Haven, CT, USA, 2 Division of Vascular Surgery,
Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan, 3 Department of Molecular
Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the
response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but
stabilized under hypoxia. HIFs have been widely studied in physiological and patho-
logical conditions and have been shown to contribute to the pathogenesis of various
vascular diseases. In clinical settings, the HIF pathway has been studied for its role
in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of
ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration
of a single growth factor have yielded unsatisfactory or controversial results, possibly
because the coordinated activity of different HIF-induced factors is necessary to induce
mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a
spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis.
Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-
2α is a promising approach to the treatment of ischemic diseases caused by arte-
rial obstruction, where insufficient development of collateral vessels impedes effective
therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with
HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, inde-
pendent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA
stabilizes HIF-2α activity even under normoxic conditions and induces the expression of
several angiogenic factors, at levels sufficient to produce functional arteries and veins
in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic
limbs or cold-injured brains reduces ischemic damage in animal models. This review
summarizes the current understanding of the relationship between HIFs and vascular
diseases. We also discuss novel oxygen-independent regulatory proteins that bind
HIF-α and the implications of a new method for therapeutic angiogenesis using HIF
stabilizers.
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Abbreviations: ARNT, aryl hydrocarbon receptor nuclear translocator; bFGF, basic fibroblast growth factor; CAD, coronary
artery disease; CLI, critical limb ischemia; eIF, eukaryotic initiation factor; FIH, factor-inhibiting HIF; HAF, hypoxia-
associated factor; HDAC, histone deacetylase; HIF, hypoxia-inducible factor; HRE, hypoxia responsive element; IBS,
Int6 binding site; IC, intermittent claudication; ID, inhibitory domain; MMP, matrix metalloproteinase; ODD, oxygen-
dependent degradation domain; PAD, peripheral arterial disease; PAS, Per–ARNT–Sim; PHD, prolyl-hydroxylase domain;
SUMO, small ubiquitin-related modifier; TAD, terminal activation domain; VEGF, vascular endothelial growth factor;
VHL, von Hippel-Lindau.
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Introduction

Oxygen is essential for eukaryotic life, and changes in oxygen
availability can lead to cell and organ dysfunction. To ensure
adequate oxygen delivery, metazoans have developed complex
and elaborate systems that respond to hypoxia, as seen in the cir-
culatory and respiratory systems in mammals. Cellular responses
to hypoxia are mainly regulated by the activation of transcription
factors called hypoxia-inducible factors (HIFs) (1, 2). HIFs affect
hypoxia and stress response signaling pathways that influence
development, metabolism, inflammation, and circulatory and res-
piratory physiology (1–4).

Structurally, HIFs are heterodimers comprised an oxygen-
regulated HIF-1α or HIF-2α subunit and a constitutively
expressed HIF-1β subunit. The HIF-1α and HIF-2α subtypes
have high identity in their functional domains (5), and their
expression and transcriptional activity are regulated by the
hydroxylation of specific proline and asparagine residues (6). On
the other hand, HIF-1α and HIF-2α have distinct expression pat-
terns. HIF-1α is ubiquitously expressed in all mammalian tissues
and cell types (7). In contrast, HIF-2α expression is restricted to
specific cell types, including endothelial cells, but is not confined
to the vasculature, with a distinct distribution in cells and tissues
(8). Moreover, the degree of hypoxia needed to induce each sub-
type differs. HIF-2α is induced at higher oxygen concentrations
and for longer durations than HIF-1α (9). These findings indi-
cate that the two subtypes have complementary functions in the
coordinated transcriptional response to hypoxia/stress.

Although HIFs were originally identified as oxygen-dependent
transcription factors, recent studies have provided evidence for
the hypoxia-independent regulation of HIFs, as described later.
The differences in the mechanisms that regulate HIF-1α and
HIF-2α provide further evidence for the proteins’ distinct but
coordinated functions.

Hypoxia-inducible factors are disrupted in cancer and disor-
ders affecting the circulatory system. Most human cancers exhibit
increased levels of HIF subtypes (10, 11), and HIF expression
levels correlate with mortality (12). The hypoxic environment
within solid tumors and various genetic alterations contribute to
alterations inHIF activity. HIF target genes play important roles in
all aspects of cancer biology, including angiogenesis, cell survival,
metabolism, invasion, and metastasis (13, 14). Dissecting the HIF
pathway is of major clinical significance because the hypoxic
response correlates with tumor progression and resistance to ther-
apy (15). Several anti-cancer treatment strategies targeting theHIF
pathway have already been applied in clinical settings (16–18).
However, the inconclusive results of the clinical trials suggest that
further analysis of HIF biology and improved selection of patient
subpopulations are needed.

Hypoxia-inducible factors are also associated with many dis-
eases in the circulatory system. Given that HIF pathways have
evolved tomaintain oxygen homeostasis, it is no wonder that their
disruption causes pathophysiology in the circulatory system. One
example is ischemic disease due to arterial obstruction, where an
impaired response to ischemia in diabetes or aging is a critical
risk factor. Therefore, controlling angiogenesis and arteriogenesis
by modulating the HIF pathway could be a valuable strategy in

patients with ischemic diseases. Clinical studies have only just
begun, and several studies using gene or protein delivery to sta-
bilize HIFs have failed to show efficacy (19–21). Methodology,
including the choice of HIF subtype, the method of drug delivery,
and the combined use of cell therapy, will be key factors in the
success of HIF-modulating therapy.

In this review, we summarize the current understanding of the
relationship between HIFs and diseases in the circulatory system.
We also focus on binding proteins that regulate HIFs and the
implications of newmethods for therapeutic angiogenesis that use
HIF stabilizers.

Basic Mechanism for the Response
of HIFs to Hypoxia
Hypoxia-inducible factors are DNA-binding transcription fac-
tors that associate with specific nuclear cofactors under hypoxia.
Heterodimeric proteins, HIFs consist of an oxygen-regulated
subunit (HIF-1α or HIF-2α) and a constitutively expressed
HIF-1β subunit [aryl hydrocarbon receptor nuclear translocator,
ARNT1/(HIF-1β) or ARNT2/(HIF-2β)] (22–24). HIFs have a
characteristic Per–ARNT–Sim (PAS) domain and belong to the
basic helix–loop–helix (bHLH) transcription factor superfamily
(24). In humans, three genes encode distinct HIF-α isoforms:
HIF1A, encoding HIF-1α; EPAS1 or HIF2A, encoding HIF-2α,
and HIF3A, encoding multiple HIF-3α splice variants (24–26).
HIF-1α is ubiquitously expressed, whereas HIF-2α (originally
named endothelial PAS domain protein-1 (EPAS-1) is abundant
in endothelial cells and some highly vascularized tissues (5). HIF-
1α and HIF-2α have 48% amino acid identity and similar protein
structures. Their bHLH domains and PAS regions are 83 and
70% identical, respectively. Furthermore, the oxygen-dependent
degradation domains (ODD) in the two HIF-α subunits, includ-
ing the two critical proline residues, exhibit a high degree of
homology (27). Prolyl-hydroxylase domain (PHD) 2 binds to both
HIF-α subtypes and catalyzes the hydroxylation of Pro-402 and
Pro-564 in HIF-1α and Pro-405 and Pro-531 in HIF-2α. Factor-
inhibiting HIF (FIH)-1 also binds to both HIF-α subtypes and
catalyzes the hydroxylation of Asn-803 in HIF-1α and Asn-851
in HIF-2α. However, HIF-1α and HIF-2α play distinct, non-
redundant biological roles because of their different expression
patterns and binding partners (28). HIF-1α and HIF-2α regu-
late their target genes by binding to hypoxia-responsive elements
(HREs). Many target genes are transactivated by either HIF-1α or
HIF-2α, and some genes are upregulated by both.

The main sensors of the hypoxic condition are the HIF-α
subunits. HIF-1α and HIF-2α each contain an ODD and two
transactivation domains, an N-terminal transactivation domain
(N-TAD) and a C-terminal transactivation domain (C-TAD) (26,
29–36). However, HIF-3α does not have a C-TAD, suggesting
that its function is regulated in a simpler manner (37). The
stability of the HIF-α proteins is negatively regulated by PHD-
dependent hydroxylation in a post-translational manner. Under
normoxia, HIF-α proteins are hydroxylated on at least one of two
conserved proline residues within the ODD by PHD-containing
enzymes (38) and rapidly degraded via the von Hippel-Lindau
(pVHL)-ubiquitin-proteasome pathway (38–40). The key HIF-
1α destabilizing enzyme in normoxia is PHD2 (41). Chelators

Frontiers in Pediatrics | www.frontiersin.org April 2015 | Volume 3 | Article 332

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


Hashimoto and Shibasaki HIF as angiogenic master switch

of cobalt and iron ions such as desferrioxamine, which mimic
hypoxia, inhibit hydroxylases by displacing Fe(II) from the ferro-
protein oxygen sensor (38).

Another hydroxylase domain-containing protein, named FIH,
participates in the negative regulation of HIF-α by hydroxylat-
ing Asn-803 in the C-TAD in the presence of oxygen, thereby
inhibiting the interactions between HIF-α and transcriptional
co-activators (42). Dayan et al. reported that the N-TAD and
C-TAD have distinct functions. FIH controlled a spectrum of
gene expression, consistent with further fine-tuning of HIF-1α
regulation, by binding the C-TAD in severe hypoxia, independent
of PHD binding to the N-TAD in intermediate hypoxia (37).

When cells are exposed to hypoxic conditions, the oxygen-
requiring hydroxylation process is prevented, andHIF-α subtypes
escape proteasomal degradation. TheHIF-α subtypes then dimer-
ize with HIF-1β and associate with transcriptional co-activators.
The transcriptional complex subsequently recognizes HREs in
various hypoxia-responsive genes, resulting in physiological adap-
tation to hypoxia. Oxygen depletion also reduces FIH-mediated
Asn-803 hydroxylation, allowing HIF-α to interact with the tran-
scriptional co-activators p300/CREB-binding protein (CBP) (43).
The transcriptional complex recognizes the HREs in downstream
responsive genes, leading to the adaptive response to hypoxic
stress. Of note, stimuli other than hypoxia, such as nitric oxide
and reactive oxygen species, can also activate HIFs (2).

Genes Downstream of HIFs
Hypoxia-inducible factor-1α was originally identified as a pro-
tein whose binding to the HRE in the human erythropoietin
(EPO) genewas required for transcriptional activation in response
to a reduced cellular O2 concentration (22). EPO increases
the blood O2-carrying capacity by stimulating erythropoiesis.
Other HIF downstream genes regulate processes such as glucose
uptake, glycolysis, angiogenesis, vascular remodeling, extracellu-
larmatrixmetabolism, inflammation, cell proliferation, apoptosis,
autophagy, migration and invasion, DNA damage responses, and
survival (3, 12, 13). The encoded proteins, which play roles in
systemic, tissue, or intracellular O2 homeostasis, include vas-
cular endothelial growth factor (VEGF) (44), which mediates
vascularization, and inducible nitric oxide synthase (iNOS) (45)
and heme oxygenase 1 (HO1) (46), which modulate vascu-
lar tone. A central adaptation to hypoxia is the shift toward
anaerobic glycolysis. HIF-1α guides this shift by promoting
the expression of glucose transporters and glycolytic enzymes
(1, 47–49). Under hypoxia, HIF-1 mediates a transition from
oxidative to glycolytic metabolism by regulating genes such as
pyruvate dehydrogenase kinase 1 (50, 51), lactate dehydroge-
nase A (52), and BNIP3/BNIP3L, which mediate mitochondrial
autophagy (53–55).

Activation of HIF-1α Transcriptional Activity by
Histone Deacetylase 7
Using the yeast two-hybrid method, Kato et al. identified a
novel transcriptional activator of HIF-1α, histone deacetylase 7
(HDAC7) (56). HDAC7 is a transcriptional repressor that belongs
to the mammalian class II HDAC family, whose members include
HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10.

HDAC4, HDAC5, and HDAC7 contain a highly conserved cat-
alytic domain (HDAC domain) in the C-terminal region (57, 58).
However, the N-terminal region and C-terminal tail of HDAC7
and the corresponding regions of HDAC4 and HDAC5 are less
homologous (59, 60). The catalytic domain of HDAC7 interacts
with the inhibitory domain (ID) of HIF-1α in both normoxia
and hypoxia. Kato et al. also found that the regions contain-
ing amino acids 735–785 in HIF-1α and amino acids 669–952
in HDAC7 were the minimum contact sites required for the
interaction. HDAC7 bound solely to HIF-1α, among the HIF-
α isoforms, while HIF-1α only interacted with HDAC7 in the
class II HDAC family. HIF-2α and HIF-3α do not contain the
ID found in HIF-1α. Therefore, the ID domain likely plays an
important role in regulating the transcriptional activity of HIF-
1α by mediating the interaction with HDAC7. Although HDAC7
was predominantly localized to the cytoplasm at normal oxygen
concentrations, HDAC7 co-translocated to the nucleus with HIF-
1α under hypoxia. Thus, HDAC7 forms a complex with HIF-1α
and CBP/p300 in the nucleus under hypoxic condition, leading
to enhanced transcription of HIF-1α target genes (VEGF and
Glut-1). Conversely, HDAC4 and HDAC5 did not bind HIF-1α
(56). Immunoprecipitation experiments suggested that HIF-1α,
HDAC7, and p300 formed a complex in the nucleus. The binding
of HDAC7 to HIF-1α might lead to a conformational change
within the ID of HIF-1α that facilitates binding to co-activators
such as CBP/p300 and increases transcriptional activity under
hypoxia.

Differences in the Functions of the HIF Subtypes
Hypoxia-inducible factor-2α, a paralog of HIF-1α, is also reg-
ulated by prolyl and asparaginyl hydroxylation in vertebrates
(55). Unlike HIF-1α, HIF-2α is mainly expressed in vascu-
lar endothelial cells. Therefore, HIF-2α is thought to regulate
endothelial-specific genes and have functions different from those
of HIF-1α. Efforts to distinguish the roles of HIF-1α and HIF-
2α are ongoing. Like HIF-1α, HIF-2α is also stabilized during
hypoxia; HIF-2α forms a heterodimer with ARNT and transacti-
vates the promoters of genes such asVEGF and EPO. AlthoughO2
regulates the stability of both proteins in a similar manner, HIF-
2α was stabilized and localized to the nucleus of bovine arterial
endothelial cells even under normoxia (35, 61), suggesting that the
subtypes have different roles that depend on the degree of oxygen
availability.

Hif-1α−/− mice exhibit mid-gestation lethality due to severe
cardiac malformations, blood vessel defects, and impaired ery-
thropoiesis (1, 62), indicating that major components of the cir-
culatory system are dependent onHIF-1 for normal development.
On the other hand, Hif-2α−/− mice manifest defective vascu-
lar remodeling during embryonic development (63), as well as
defective catecholamine homeostasis (64), fetal lung maturation,
and hematopoietic cell production (65). Semenza proposed that
both HIF-1 and HIF-2 have important roles in circulatory system
development, although the appearance of the circulatory system
and HIF-2α are associated in vertebrate evolution (55).

Although the structures of HIF-1α and HIF-2α are similar,
the proteins activate distinct target genes. Whereas some genes
are robustly activated by both HIF-1 and HIF-2, other genes are
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preferentially activated by one factor (48, 49). DNA microarray
analysis in renal cell carcinoma cells that exclusively expressed
HIF-2α (but not HIF-1α) (48) showed that a number of hypoxia-
inducible genes were expressed, including CITED2, a putative
negative regulator of HIF-1α activity (66, 67).

The C-TAD and N-TAD confer HIF target gene specificity by
interacting with additional transcriptional cofactors (49). The C-
TADs in HIF-1α and HIF-2α are highly homologous; and the
domain promotes the expression of genes commonly regulated by
HIF-1α and HIF-2α. The N-TADs are less homologous and are
important for target gene specificity. The HIF-3α splice variants
are homologous to HIF-1α and HIF-2α, but lack the C-TAD
or N-TAD. Therefore, HIF-3α cannot induce gene expression,
and it is thought to have an inhibitory effect on HIF-1α- and
HIF-2α-induced gene expression (25, 68). Although HIF-1α and
HIF-2α respond to similar cell stimuli, they often control dif-
ferent pathways. The degree to which the roles of HIF-1α and
HIF-2α overlap or compensate remains a question. For example,
hypoxic induction of HIF-1α target genes is attenuated in HIF-
1α-deficient endothelial cells, suggesting that HIF-2α or other
hypoxia-induced factors cannot sufficiently compensate for the
loss of HIF-1α.

miRNA Regulation of HIF mRNA
Recent studies have focused on the induction of miRNAs that
positively or negatively affect the transcription of specificmRNAs.
miRNAs are a class of endogenous tiny RNAs that inhibit trans-
lation or promote RNA degradation by forming a duplex within
the untranslated region of mRNAs. miRNAs play an important
role in a wide range of cellular processes by fine-tuning gene
expression (69, 70). Bruning et al. reported that miR-155 con-
tributes to the isoform-specific downregulation ofHIF-1α activity
in cells exposed to prolonged hypoxia (71). Bartoszewska et al.
showed that HIF-1 is in a negative regulatory loop with miR-
429 (72). While the activity of stabilized HIF-1 increases miR-429
expression, miR-429 attenuates HIF-1 activity by decreasing HIF-
1α mRNA levels during the early stages of hypoxia in endothelial
cells. Poitz et al. showed that miR-17 and miR-20a target HIF-
1α and HIF-2α during the adaptation of macrophages to hypoxia
(73). The mechanisms by which miRNAs regulate HIFs require
further investigation.

Oxygen-Independent Regulation of HIFs

As described above, the regulation of HIFs is dependent on the
oxygen concentration. Although HIF-2α is not strictly regulated,
the stability of HIF-1α is completely dependent on the oxygen
concentration. The key regulator of HIF-α is pVHL, which medi-
ates the oxygen-dependent, proteasomal degradation of HIF-α in
normoxia by binding to hydroxylated proline residues (Pro-402
and Pro-564 in humanHIF-1α) and promoting ubiquitin binding.
Three new binding factors regulate oxygen-independent regu-
lation: hypoxia-associated factor (HAF), small ubiquitin-related
modifier (SUMO)-specific protease 1, and Int6/eukaryotic initi-
ation factor (eIF) 3e, a translation initiation factor. These fac-
tors promote HIF degradation in a similar manner by binding
directly to HIFs and triggering ubiquitin-proteasome activation.

However, SUMO-specific protease 1 and HAF are specific to HIF-
1α, whereas Int6 is specific to HIF-2α. We describe the three
hypoxia-independent regulators of HIF-α in the sections that
follow.

HIF-1α-Specific Regulation
HAF in HIF-1α Degradation
Hypoxia-associated factor is an E3 ligase for HIF-1α that medi-
ates the subtype-specific proteasomal degradation of HIF-1α in
an oxygen- and pVHL-independent mechanism (74). HAF, also
known as SART1800 (squamous cell carcinoma antigen recognized
by T cells), was originally identified as a nuclear protein expressed
in proliferating cells (75).

Hypoxia-associated factor is overexpressed in a variety of
tumors. Its levels decrease during acute hypoxia, but increase
following prolonged hypoxia. HAF binds to the ODD in HIF-1α
and induces ubiquitination. In contrast, in HIF-2α, HAF binds
to the region between the N-TAD and C-TAD and increases
HIF-2α activation, thereby inducing a switch from HIF-1α- to
HIF-2α-dependent response to chronic hypoxia (28, 74). The
process activates genes involved in invasion, such asmatrixmetal-
loproteinase (MMP)-9, PAI-1, and the stem cell factor OCT-3/4,
resulting in more aggressive growth of tumors under prolonged
hypoxia (28). Guan et al. reported that activation of the NF-κB
pathway drives theHAF-mediated switch fromHIF-1α toHIF-2α
in bladder cancer cells (76). Koh et al. recently described the role
of SUMOylation (discussed later) inHAF activation (77). In clear-
cell renal cell carcinoma (CRCC), hypoxia inducedHAF SUMOy-
lation without affecting HAF-mediated HIF-1α degradation. On
the other hand, HAF overexpression in a mouse model increased
CRCC growth and metastasis. Koh et al. also confirmed that HAF
overexpression was associated with poor prognosis in a clinical
setting. The findings indicate that HAF acts as a specific mediator
of HIF-2 activation that is critical for CRCC development and
morbidity.

Role of SUMO-Specific Protease 1 (SENP1) in HIF-1α
Stability
Small ubiquitin-related modifiers are small proteins that share
low sequence identity but high structural similarity with ubiqui-
tin (78). SUMO post-translationally modifies many proteins and
regulates protein localization and activity. Thus, SUMOylation
affects diverse cellular functions, including transcription (79),
nuclear translocation (80), the stress response (81), and chromatin
structure (82). SUMOylation is catalyzed by SUMO-specific lig-
ases and reversed by SUMO-specific proteases (SENPs). Cheng
et al. generated a SENP1 knockout mouse, in which sumoylated
HIF-1α was unstable (83). SENP1 knockout embryos exhibited
severe anemia stemming from deficient Epo production that was
lethal during mid-gestation. Further experiments showed that
SENP1 controlled Epo production by regulating the stability of
HIF-1α. The authors identified a role for the E3 ubiquitin lig-
ase VHL in sumoylated HIF-1α degradation. Hypoxia induced
the SUMOylation of HIF-1α, which led to the hydroxylation-
independent binding and subsequent degradation of HIF-1α by
the pVHL–E3 ligase complex (83). The results indicate that SENP1
is essential for the stabilization of HIF-1α during hypoxia.
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HIF-2α-Specific Regulation
Int6/Eukaryotic Initiation Factor 3 Subunit e in HIF-2α
Regulation
Eukaryotic initiation factor 3 is a highly complex, multiprotein
assembly that regulates translation initiation by orchestrating the
formation of 43S–48S preinitiation complexes (84). The highly
conserved eIF3e gene has been described in yeast and mammals.
The gene encoding eIF3e, also called Int6, was first identified
as a tumor suppressor gene based on frequent integration of
mouse mammary tumor virus (MMTV) (85). MMTV inser-
tion into mouse Int6-coding DNA sequences appears to create
a C-terminal truncated protein, which functions as a dominant-
negative mutant. Overexpression of the truncated protein trans-
forms cells in culture, and injection of the transformed cells into
nude mice induces tumor formation (86, 87). eIF3e has also been
characterized in rabbits (88), Schizosaccharomyces pombe (89–91),
and Arabidopsis thaliana (92, 93).

Using a yeast two-hybrid approach, Chen et al. identified
Int6/eIF3e as a novel regulator of HIF-2α (27). Subtype-specific
binding of Int6/eIF3e to HIF-2α at the Int6 binding site (IBS)
led to HIF-2α degradation via the proteasome pathway in a
hypoxia-independent manner (Figure 1). When specific siR-
NAs against Int6/eIF3e were used, HIF-2α activity was sta-
bilized even under normoxic conditions, and the expression
of several angiogenic factors, such as ANG-1, basic fibrob-
last growth factor (bFGF), and VEGF, subsequently increased

in HeLa and MCF-7 cells (27). The authors extended their
investigation of eIF3e/Int6 silencing to in vivo angiogene-
sis. Injection of siRNA-Int6 into the subcutaneous tissues of
mice promoted neoangiogenesis in a dose-dependent manner
(94). Additionally, subcutaneous fibroblasts were identified as
the main target of the eIF3e/Int6 silencing effects. Subcuta-
neous ex vivo transplantation of siRNA-Int6-transfected fibrob-
lasts induced potent angiogenesis in nude mice. Moreover,
co-injection of siRNA-HIF-2α into mouse skin abolished the
neoangiogenesis induced by siRNA-Int6, confirming that siRNA-
Int6 induced neoangiogenesis and enhanced wound healing by
upregulating HIF-2α. Promoter analysis showed that HIF-2α
regulated Int6/eIF3e and HIF-2α expression; Int6/eIF3e, as a
negative regulator of HIF-2α stability, reduced HIF-2α pro-
tein levels. Int6/eIF3e silencing at a certain level inactivated
existing and de novo-transcribed Int6/eIF3e, reducing the degra-
dation of HIF-2α. The accumulated HIF-2α then further acti-
vated HIF-2α transcription, and the enhanced accumulation
of HIF-2α led to potent angiogenesis. Thus, the effect of
Int6/eIF3e silencing on angiogenesis is stronger than that of
HIF-2α overexpression. In this way, Int6/eIF3e acts as a mas-
ter switch of angiogenesis by controlling HIF-2α protein lev-
els in an oxygen-independent manner. Int6/eIF3e silencing is
an effective way to promote HIF-2α activity in the absence of
hypoxia, leading to physiological and functional neoangiogenesis
in mice.

FIGURE 1 | Schema illustrating the degradation of HIF-2α.
Hypoxia-inducible factor 2 (HIF-2) activates gene transcription in
response to hypoxia. Under normoxic conditions (blue arrows), HIF-2α is
hydroxylated on proline residues 496 and 542 by a prolyl-hydroxylase
domain (PHD) protein. Hydroxylation is required for binding of the von
Hippel-Lindau protein (VHL), the recognition subunit of a ubiquitin protein
ligase that targets HIF-2α for ubiquitination and proteasomal

degradation. In addition, hydroxylation on asparagine residue 847 by
factor-inhibiting HIF (FIH) blocks the binding of the co-activator p300. On
the other hand, binding of eIF3e/Int6 to the Int6/eIF3e binding site (IBS)
leads to the proteasomal degradation of HIF-2α, irrespective of
hypoxia/normoxia. This mechanism of post-transcriptional regulation is
specific for the HIF-2α subtype. Thus, inhibition of eIF3e/Int6 by siRNA
leads to the accumulation of HIF-2α.
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Pathophysiological Roles of HIFs in
Angiogenesis and Vascular Remodeling

Cancer Angiogenesis
Oxygen tension is markedly below physiological levels in solid
tumors (95, 96). In fact, solid tumors contain severely hypoxic
regions, in which pO2 values are <10mmHg (97, 98). Rapidly pro-
liferating cancer cells can outgrow their vascular network, limiting
O2 diffusion within the tumor itself. Perfusion defects, resulting
from abnormal tumor blood vessel structure and function, can
also cause hypoxic stress. Consequently, in the tumor tissues of
most human cancers, HIF levels are higher than in normal tissues
(10, 11). Hypoxia-independent mechanisms also increase HIF-
α expression in cancer cells. Various alterations, such as VHL
mutation in renal cell carcinoma, mutations in the Wnt/β-catenin
signaling pathway in colon cancer, and other oncogenic events,
have been reported to elicit HIF-α stabilization (99). HIF-1α acti-
vates the transcription of genes that are involved in crucial aspects
of cancer biology, including angiogenesis, energymetabolism, cell
survival, chemotherapy and radiation resistance, invasion, and
metastasis (3, 100). The importance of HIF activity in cancer is
evidenced by the fact that increased HIF-α expression correlates
with poor clinical prognosis in many cancer types (101). A large
body of experimental data shows that manipulations that increase
HIF-1α expression result in increased tumor growth, vasculariza-
tion, and metastasis, whereas loss of HIF activity has the opposite
effect (14).

Endothelial cells that interact with malignant cells are also
essential components of solid tumor angiogenesis. In mediating
angiogenesis, HIF has similar effects on endothelial cells in tumor
tissues and in non-malignant tissues. However, unlike “normal”
blood vessels, the tumor-associated vasculature is leaky, tortuous,
and non-contiguous (102). The microenvironment of the solid
tumor is typically hypoxic, and hypoxia-induced changes in the
expression of angiogenic factors in cancer cells are critical for
tumorigenesis. Loss of HIF-1α in the endothelium inhibits blood
vessel growth in solid tumors (103). Tumor-associated endothelial
cells interact with tumor cells as well as non-malignant stromal
cells, such as fibroblasts and infiltrating bone marrow-derived
cells. These cell types differ widely in their responses to hypoxic
stress and therefore contribute to tumor angiogenesis in different
ways. The selective manipulation of the hypoxic stress response
in distinct tumor subcompartments might be more effective as an
anti-tumor strategy than systemic HIF inhibition.

Circulatory and Vascular System
The circulatory and vascular system is the first functional
organ system required for embryonic survival. HIF-1α homozy-
gous knockout mice show embryonic lethality at mid-gestation,
with cardiac malformations, vascular regression, and impaired
hematopoiesis (1, 104, 105), suggesting that HIFs are essential for
embryonic development of the circulatory system. After matura-
tion of the circulatory system, HIFs continue to mediate adaptive
responses to hypoxia by regulating local O2 delivery through
alterations in vascular tone, angiogenesis, and the remodeling
and maturation of collateral vessels. On the other hand, HIFs
also regulate the O2 content of the blood as a systemic response

to hypoxia. EPO increases the blood O2-carrying capacity and
systemic oxygenation. EPO is a representative example of the way
in which HIFs upregulate genes to increase O2 delivery to tissues.

Many common disease processes impair or co-opt the phys-
iological responses of the circulatory system. HIF-induced pro-
angiogenic factors activate vascular remodeling by binding to
receptors on endothelial or smooth muscle cells within vessels.
Thus, the HIF pathway also contributes to the regulation of
pathophysiological vessel remodeling. Initially, the remodeling
is “intended” to provide protection from hemodynamic stresses.
However, excessive changes through chronic and repeated activa-
tion of the HIF pathway can lead to the pathologic remodeling of
vessels.

Ischemia
Myocardial ischemia
Coronary artery disease (CAD) is the leading cause of mortality
in the United States, with a prevalence of 12.3% in the popula-
tion older than 50 years of age (106). The formation and sudden
disruption of atherosclerotic plaques in coronary arteries leads to
insufficient myocardial perfusion, either chronically or acutely.
Malperfusion can lead to sudden death or the development of
heart failure.

Remodeling of collateral arteries is a major physiological
response to tissue ischemia. When occlusion of a major coro-
nary artery suddenly disrupts blood flow, patients with a greater
number of collateral vessels typically have smaller infarctions,
leading to better survival. HIF-1α plays an important role in
coronary vascularization, which can be a source of collateral blood
flow. Resar et al. investigated the association between genetic
variation at the HIF-1α locus and the branching of coronary
arteries (i.e., collaterals), as determined with angiography (107).
They presented evidence that a specific polymorphism in HIF-α
exon 12 was associated with the absence of coronary collaterals in
patients with CAD. The genetic variation also affected the clinical
presentation of CAD (108, 109). These studies suggest thatHIF-α
is a major genetic modifier in myocardial ischemia in humans.

Another important issue related to myocardial ischemia is
ischemic preconditioning. In ischemic preconditioning, short-
term ischemia followed by reperfusion triggers adaptations,
such as a shift from oxidative to glycolytic metabolism, that
promote survival during O2 deprivation (110), thereby con-
ferring protection against a subsequent, prolonged episode of
ischemia–reperfusion. In “remote ischemic preconditioning,”
brief cycles of ischemia and reperfusion in the limbs protect the
heart from ischemic injury (111). Recently, Cai et al. demonstrated
that HIF-1 activates IL-10 transcription; experiments using HIF-
1α heterozygous mice showed that HIF-1 was required for remote
ischemic preconditioning (112). Interestingly, HIF-1α and HIF-
2α have distinct spatial expression patterns in a rat model of
ischemic heart disease (113), suggesting that the two subtypes
have different roles in the response to hypoxic stress.

Limb ischemia (peripheral arterial disease)
Peripheral arterial disease is a disorder in which the chronic
obstruction or stenosis of arteries due to atherosclerosis leads to
the characteristic symptoms of limb ischemia. Characteristic limb
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pain during exercise is called intermittent claudication. Further
progression of the disease leads to severe ischemia that causes rest
pain, ulcer, or gangrene in the affected limbs and digits, called
critical limb ischemia (CLI). Patients with CLI often have no
option but limb amputation. The prevalence of PAD is in the range
of 3–10%, increasing to 15–20% in persons over 70 years old; 1–2%
of PAD patients develop CLI (114).

Hypoxia-inducible factors trigger neovascularization in tissues
under physiologic and pathologic conditions by stimulating the
expression of angiogenic growth factors such as VEGF (103). In
hindlimb ischemiamodels in animals, HIF-1α mediates the adap-
tive responses to ischemia by increasing the production of angio-
genic cytokines. These cytokines include VEGF, stromal-derived
factor 1, placental growth factor, angiopoietin 1, angiopoietin 2,
and platelet-derived growth factor (PDGF) B. Loss-of-function of
HIF-1α, due to aging or heterozygous knockdown, impairs the
expression of angiogenic cytokines, themobilization of angiogenic
cells, and the recovery of limb perfusion in the ischemic hindlimb
of mice (115). Furthermore, delivery of adenovirus encoding
constitutively active HIF-1α stimulates perfusion recovery after
femoral artery ligation in older or diabetic mice (115). In these
studies, the effect of HIF-1α was attributed to the mobilization
of circulating angiogenic cells and the local effects of angiogenic
factors.

Given that clinical trials using a single angiogenic factor such
as VEGF have failed to promote recovery in patients with PAD,
targeting HIFs might be a better therapeutic option because HIF
is a master switch that coordinately induces a spectrum of angio-
genic factors. Translational studies and clinical trials are further
discussed in the Section “Clinical Application of HIF Activators
and Inhibitors.”

Vascular Wall Disease
Aneurysm
Abdominal aortic aneurysm (AAA) is mostly asymptomatic; rup-
ture may be the first manifestation of the disease, which is lethal
in most cases. The prevalence of AAA is 8.8% in the population
older than 65 years of age (116). The arterial wall of aneurysms
is hypoxic (117, 118). The intraluminal thrombus often seen in
aneurysms might also limit oxygen diffusion to the aortic wall,
leading to wall weakening and rupture (117). AAA tissues in
humans express HIF-1α, MMP-2, and Ets-1 within smooth mus-
cle cells and inflammatory infiltrate of the tunicamedia (119). The
expression of HIF-1α is significantly higher in aortic aneurysms
than in normal arteries, with increased nuclear translocation,
implicating HIF-1α in AAA progression (119). Hypoxia alters
vascular smooth muscle cell function, inflammatory processes,
and MMPs, decreasing the strength of the arterial wall (120,
121). Results of DNA microarray analyses using specimens of
AAA from mice (122) and ruptured intracranial aneurysms from
human (123) also suggest that transcription factors, including
HIF-1α, have key roles in processes in the aneurysmal vessel
wall. Recent studies, using samples from patients with AAA in
Poland (124), identified polymorphisms in theHIF-1α andVEGF
genes as potential genetic markers that indicate a predisposition
to AAA.

Vascular malformation
Vascular malformations encompass a wide spectrum of lesions
that can involve every part of the body; they can present as an inci-
dental finding or produce life- or limb-threatening complications.
If the disease causes complications or esthetic problems, the ther-
apeutic strategy is multidisciplinary, but interventional radiology,
including embolization, sclerotherapy, and laser coagulation, is
playing an increasingly important role.

Increased activation of the HIF pathway causes aberrant
expression of angiogenic factors that contribute to the forma-
tion and maintenance of vascular malformations (125). HIF-1α
and VEGF are highly expressed in cerebral arteriovenous mal-
formations (126, 127) and dural arteriovenous fistulas (128). In
Sturge–Weber Syndrome vessels, immunohistochemical analy-
sis demonstrated that nuclear HIF-1α and HIF-2α levels were
markedly elevated (129). HIF-1α is also associated with the dis-
ease progression of vascular malformations (130). These observa-
tions might aid the development of therapeutic strategies to treat
currently incurable vascular lesions.

Varicose veins
Varicose veins, a common disease worldwide, are described as
tortuous and dilated palpable veins that are more than 3mm
in diameter. The prevalence has been estimated at 25–33%
in women and 10–20% in men (131). Predisposition includes
family history, female sex, pregnancy, and prolonged standing.
However, the precise pathophysiology of varicose veins remains
unknown. While recent studies have focused on endothelial cell
integrity and function, including adhesion molecules, increas-
ing evidence suggests that hypoxia explains the pathogenesis
of varicose veins. Blood stasis can cause hypoxia in the vein
wall (132), and increased expression of HIF-1α in human vari-
cose veins has been reported. In addition, prolonged increases
in venous wall tension are associated with overexpression of
HIF-1α and HIF-2α, increased MMP expression, and reduced
venous contraction in an ex vivo animal model of IVC (133).
These findings suggest that hypoxia is one cause of varicosity
formation (134, 135).

Others
Atherosclerosis
The rupture of an unstable atherosclerotic plaque in humans
causes clinical complications through thrombus formation. These
atherosclerotic lesions contain hypoxic areas. Vink et al. reported
that HIF-1α was expressed in 49% of carotid and 60% of
femoral endarterectomy specimens (4). Another study using
human carotid artery specimens from surgery found that HIF-1α
expression was higher in atherosclerotic plaques than in control
specimens from autopsy (136). The analysis also detected early
expression of apoptotic molecules in the atherosclerotic plaque
and implicated oxidative stress in triggering inflammatory and
apoptotic responses. Emerging evidence suggests that HIF-1α
participates in the progression of atherosclerosis by initiating
and promoting foam cell formation, endothelial cell dysfunction,
apoptosis, inflammation, and angiogenesis (137, 138). Intimal
thickening and calcification, which restrict oxygen diffusion
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into the arterial wall, are thought to contribute to hypoxia in
atherosclerotic plaques (139). Plaque inflammation also con-
tributes to hypoxia by increasing oxygen demand (138).

Pulmonary arterial hypertension
In chronic lung disease, persistent alveolar hypoxia induces HIF-
1α expression in pulmonary arterial smooth muscle cells, result-
ing in remodeling of the pulmonary vessel and contributing
to the pathogenesis of pulmonary arterial hypertension (PAH)
and right ventricular dysfunction. The expression of multi-
ple HIF-1α target genes, including endothelin 1 (EDN1) (140,
141), transient receptor potential canonical proteins (TRPC1
and TRPC6) (142), and sodium-hydrogen exchanger 1 (NHE1)
(143), has been reported. Signal transductions results in vaso-
constriction and medial thickening, reducing the luminal diam-
eter of pulmonary arterioles and increasing the resistance to
blood flow. The fact that mice with heterozygous deficiency
in HIF-1α and HIF-2α are protected from hypoxic pulmonary
hypertension indicates that HIF-1α and HIF-2α play pathogenic
roles (144, 145).

Graft failure
Vascular graft failure after bypass surgery for ischemic disease
or after hemodialysis access creation for end-stage renal disease
results primarily from stenosis caused by intimal hyperplasia.
The mechanism of intimal hyperplasia initiation and develop-
ment is likely multifactorial, involving endothelial injury and
ischemia secondary to tissue handling during the procedure, as
well as hemodynamic factors, including hypoxia, shear stress,
and mechanical strain (139). Alterations in the HIF pathway
might contribute to vascular graft failure through the formation
of intimal hyperplasia. Increased hypoxia within the vessel wall
in regions of intimal hyperplasia has been observed in animal
models with prosthetic grafts (146). At a cellular level, HIF-1α
regulates the expression of many genes that are increased in
venous neointimal hyperplasia formation, including those encod-
ing macrophage migration inhibition factor, MMPs, and tissue
inhibitors of metalloproteinases (147).

Venous thromboembolism
Venous thromboembolism is a disease entity comprising deep
vein thrombosis, typically in a lower extremity, and pulmonary
embolism. Pulmonary embolism presents with a variety of non-
specific symptoms, but the onset of pulmonary embolism can
lead to sudden death. On the other hand, deep vein thrombosis
of the limbs can cause chronic symptoms, referred to as post-
thrombotic syndrome. Anticoagulant therapy is the mainstay for
the treatment of venous thromboembolism, although surgical
treatment or endovascular intervention is an option. Activation
of HIF-1α might contribute to the formation (148, 149) and
resolution (150–152) of thrombus in this disease entity. Exper-
imental data suggest that stasis of venous blood flow induces
localized hypoxemia within the valvular sinus, which is also the
predilection site of venous thrombus (153). Hypoxia associated
with blood stasis is thought to activate several hypoxia-adaptive
responses, including the HIF and early growth response-1
pathways (148).

Clinical Application of HIF Activators and
Inhibitors

Targeting the HIF pathway with pharmacologic agents or gene
therapy is a promising therapeutic strategy for the management
of various diseases associated with alterations in the HIF path-
way. Increased understanding of HIF biology has translated into
clinical applications. HIF-modulatory drugs are being developed
for diverse diseases. In particular, the therapeutic manipula-
tion of angiogenesis holds great promise for treating diverse
pathological conditions, including cancer, macular degeneration,
atherosclerosis, and PAD. In this section, pharmacological agents
that induce HIF activity are described. Several strategies to pro-
mote HIF-1α or HIF-2α activity are in development for use
in therapeutic angiogenesis for ischemic diseases. The interven-
tions could be applied to other ischemic injuries such as wound
healing.

PHD Inhibitors
In clinical applications, themost advanced pharmaceuticals devel-
oped to target theHIF pathway are PHD inhibitors. PHD enzymes
are oxygen sensors that act gatekeepers of the adaptive response to
hypoxia (99). The oral PHD inhibitors FG-2216 and FG-4592 are
being evaluated in clinical trials for the treatment of renal anemia.

Prolyl-hydroxylase domain inhibition, which permits the
activation of hypoxic adaptation under normoxic conditions,
improves wound healing in diabetic mice (154) and histological
and functional outcomes in ischemic and hemorrhagic stroke
models (155). Watanabe et al. reported that PHD inhibition after
cobalt chloride administration attenuated aneurysm formation in
a mouse model of AAA; the effect was associated with a reduction
in inflammatory cytokines and in the activity of MMP-2 and
MMP-9 (156).

In limb ischemia, Loinard et al. tested whether inhibition of
PHDs using small hairpin RNA (shRNA) promoted neovascu-
larization after femoral artery ligation in mice (157). shRNA
targeting PHD2 or PHD3 increased vascularization in aged mice
through the transient and local upregulation of endogenous
HIF-1α.

The oral PHD inhibitor GSK1278863 was tested in a clinical
trial in PAD patients with intermittent claudication. However, the
trial failed to show a benefit of this compound in regimens of a
single dose or a daily dose for 2weeks (Table 1) (21).

Activation of HIF-1α by Gene Expression
Viral delivery of a constitutively active form of HIF-1α improved
the recovery of limb perfusion in ischemic models of aged mice,
diabetic mice, and rabbits (108, 115, 158). Based on these results,
the first clinical trial using HIF-1α replacement gene therapy was
tested in PAD patients with CLI from 1999 to 2004 (Table 1)
(19). A recombinant adenovirus, encoding the HIF-1α bHLH-
PAS domain fused to the herpes simplex virusVP16 transactivator
protein, was administered to 34 patients with no options for
surgical and endovascular revascularization. In a phase I study
that mainly tested safety, a single intramuscular injection resulted
in no serious toxicity, including no evidence of malignancy or
ocular neovascularization disorders related to the transgene in
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TABLE 1 | Clinical trials for PAD with HIF activators.

Phase Condition Drug Administration Results Reference

1 CLI (critical limb ischemia) Adenoviral activation of HIF-1α Intramuscular injection Well tolerated (19)
2 PAD (intermittent claudication) Adenoviral activation of HIF-1α Intramuscular injection No benefit (20)
3 PAD (intermittent claudication) PHD inhibitor (protein) Oral No benefit (21)

CLI, critical limb ischemia; HIF, hypoxia-inducible factor; PAD, peripheral arterial disease; PHD, prolyl-hydroxylase domain.

the 1-year follow-up. Although the authors noted some favorable
clinical responses, the higher death rate and amputation rate in
the treatment population prevented further assessment.

Creager et al. tested the same method in a different PAD
subpopulation, patients with intermittent claudication. In the
prospective, randomized, double-blinded, placebo-controlled,
multicenter study from 2005 to 2010, the authors hypothesized
that a single intramuscular injection of Ad2/HIF-1α/VP16 would
improve peak walking time. However, the hypothesis was not
upheld in an assessment of 273 patients who participated in a
treadmill exercise test after randomization (Table 1) (20). The
possible reasons for the negative result include a low efficacy
of gene transfer, an insufficient duration of effect after a single
administration, and a lack of functional collateral vessel formation
owing to the distance between injection sites.

HIF-2α Stabilization by Int6/eIF3e Silencing
Hypoxia-inducible factor-2α is involved in microvessel remodel-
ing andmature vessel formation (63, 159). Stabilization of HIF-2α
through Int6/eIF3e silencing promotes functional vessel forma-
tion and facilitates the recovery of peripheral circulation and
limb function in a hindlimb ischemia model. Int6/eIF3e silencing
with shRNA delays HIF-2α degradation; stabilized HIF-2α then
binds to the HRE in the HIF-2α promoter region to upregu-
late its own expression (Figure 2). On the other hand, because
eIF3e/Int6 has an HRE, the method suppresses the negative feed-
back loop regulating HIF-2α protein stability. HIF-2α activity
increases, as does the downstream expression of a spectrum of
angiogenic factors, including VEGF, bFGF, PDGF-B, angiopoi-
etins, and Tie-2 (94). Chen et al. reported that Int6/eIF3e silencing
through siRNA plasmid injection resulted in a twofold increase
in the expression of HIF-2α, without affecting HIF-1α. The treat-
ment enhanced subcutaneous neovascularization and accelerated
wound healing in diabetic mice (94). The increase in neovascu-
larization was completely abolished by the simultaneous silencing
of HIF-2α, suggesting that the improvements depended on HIF-
2α. In this model, HIF-2α stimulated vascular sprouting and
stabilization.

The usefulness of eIF3e/Int6 silencing is also evidenced by
several studies using ischemia models. We showed that silenc-
ing Int6/eIF3e in ischemic thigh muscle enhanced the recovery
of peripheral circulation and limb function in a mouse model
of femoral artery ligation (160). Int6/eIF3e silencing enhanced
PDGF-B and bFGF transcription in muscle cells and the secre-
tion of bFGF and ANG-1, thereby inducing tube formation by
endothelial cells via paracrine signaling. Int6/eIF3e silencing also
decreased brain damage in a rat model of cold injury in the brain,
suggesting a potential clinical application for the treatment of

brain ischemia and injury (161). Endler et al. have suggested that
IL-6 and IL-8 are the main cytokines controlled by the HIF-2α-
mediated angiogenic response in endothelial cells (162). To eluci-
date the mechanism of the strong angiogenic effect of Int6/eIF3e
silencing, we performed DNA microarray analysis in MCF-7 cells
and identified 378 upregulated genes and 244 downregulated
genes (Figure 3). The upregulated genes included those encoding
the potent angiogenic factors bFGF, PDGF, HGF, and VEGF.
These findings indicate that Int6/eIF3e functions as an angiogenic
master switch. HIF-2α stabilization by Int6/eIF3e silencing might
be a promising methodology in clinical practice for the treatment
of ischemic diseases such as CAD, cerebral infarction, and PAD.
One concern with the method is that the misregulated expression
of several eIF3 subunits has been implicated in oncogenesis and
in the maintenance of the cancerous state (163). However, we
have not observed cancer formation in animal models, including
non-human primates.

Combination Treatment with Cell Therapy
For treatment of limb ischemia, Rey et al. used a two-stage
therapy consisting of intramuscular injection of AdCA5 followed
24 h later by intravenous administration of bone marrow-derived
angiogenic cells (BMDACs), which were cultured for 4 days in
the presence of angiogenic growth factors and dimethyloxalyl-
glycine (DMOG), a hypoxia-mimicking reagent (164). The strat-
egy, which combined HIF-1α gene therapy and cell therapy,
improved perfusion and clinical symptoms in a mouse model of
CLI. The rationale for the unique staged approach with local and
systemic delivery was as follows. Local administration of AdCA5
induces the production of angiogenic factors and thereby provides
a homing signal for BMDACs. Systemic administration selects for
a subpopulation of cells that migrate to the ischemic tissue and
participate in the vascular remodeling process. In contrast, direct
injection increases cell death in hypoxic muscle (55). Another
recent study found that PHD2 mRNA levels were upregulated
in blood cells from patients with CLI, whereas HIF-1α mRNAs
levels were attenuated. The study confirmed that PHD2 inhibition
enhances the therapeutic potential of cell-based therapy in a CLI
mousemodel. Cell therapy throughmodification of theHIF signal
might be a potent and promising strategy for the treatment of
ischemic disease.

Future Perspectives

Several hurdles must be overcome if HIF pathway modulation
is to be used for therapeutic angiogenesis in clinical settings.
First, we must choose the best modality for treatment. We think
that an ideal clinical therapy would use intramuscular injection

Frontiers in Pediatrics | www.frontiersin.org April 2015 | Volume 3 | Article 339

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


Hashimoto and Shibasaki HIF as angiogenic master switch

FIGURE 2 | Feedback mechanisms regulating the expression of HIF-2α.
In hypoxia, stabilized and dimerized HIF-2α recognizes hypoxia responsive
elements (HREs) in its own promoter and in the eIF3e/Int6 promoter, resulting in

the transcription of both genes as part of positive and negative feedback
mechanisms, respectively. eIF3e/Int6 binds to and degrades newly synthesized
HIF-2α, even under hypoxic conditions.

FIGURE 3 | DNA microarray analysis of eIF3e/Int6 silencing in MCF-7
cells. DNA microarray analysis of MCF-7 cells transfected with eIF3e/Int6
silencing plasmids identified 378 upregulated genes and 244 downregulated
genes, relative to expression in cells transfected with GAPDH.

of naked plasmid DNA rather than viral transfer for safety and
simplicity, despite the relatively low transfection efficiency of
the former approach. To restore blood flow and salvage limbs,
cell-based interventions are another promising option for ther-
apeutic angiogenesis in patients with CLI (165). We are inves-
tigating a method for cell therapy that uses cultured fibroblasts
harvested from the patient’s skin tissue and transfected with
an eIF3e/Int6 silencing plasmid. Second, optimization of drug

delivery is important for efficient treatment. Therapeutic site
selection is another important factor for the successful develop-
ment of collateral vessels (166). Further understanding of the
HIF pathways will provide insight into the mechanisms respon-
sible for the pathology of various diseases and will facilitate the
development of promising therapies aimed at modulating HIF
pathways.

Concluding Remarks

In this review, we summarized the current understanding of the
association between HIFs and pathophysiology in the human
circulatory system. We also described the regulation of HIFs.
Modulation of the HIF system is a potential approach for treat-
ing patients who suffer from ischemic diseases. However, for
clinical applications, many questions remain to be solved, and
greater understanding of the oxygen-dependent and -independent
mechanisms that regulate the HIF-α subunits is needed. We
must also be cautious about possible side effects. Further trans-
lational research and clinical trials for each pathophysiology are
warranted.
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