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Intermittent hypoxia (IH) often occurs in early infancy in both preterm and term infants
and especially at 36–44weeks postmenstrual age. These episodes of IH could result
from sleep-disordered breathing or may be temporally unrelated to apnea or bradycardia
events. There are numerous reports indicating adverse effects of IH on development,
behavior, academic achievement, and cognition in children with sleep apnea syndrome.
It remains uncertain about the exact causative relationship between the neurocognitive
and behavioral morbidities and IH and/or its associated sleep fragmentation. On the other
hand, well-controlled andmoderate IH conditioning/training has been used in sick children
for treating their various forms of bronchial asthma, allergic dermatoses, autoimmune
thyroiditis, cerebral palsy, and obesity. This review article provides an updated and
impartial analysis on the currently available evidence in supporting either side of the
seemingly contradictory scenarios. We wish to stimulate a comprehensive understanding
of such a complex physiological phenomenon as intermittent hypoxia, which may be
accompanied by other confounding factors (e.g., hypercapnia, polycythemia), in order to
prevent or reduce its harmful consequences, while maximizing its potential utility as an
effective therapeutic tool in pediatric patients.

Keywords: sleep apnea, ventilatory response, bronchial asthma, neurocognitive development, age difference,
childhood health, adaptation, hypoxic therapy

Introduction

Episodes of intermittent hypoxia (IH) are among typical consequences of immature respiratory
control. Particularly, the incidence of IH in the infants with low birth weight would increase
progressively over the first 4 weeks of postnatal life and reach a subsequent plateau followed by a
slow decline beginning at sixth to eighth weeks. Repetitive cycles of hypoxia/reoxygenation often
lead to a pro-inflammatory cascade with resultant multisystem morbidity, including retinopathy of
prematurity and impaired growth, as well as cardio-respiratory instability and neurodevelopmental
defects (1, 2). Similarly, 15 years ago, Gozal and colleagues had described that IH is themost frequent
form of hypoxia occurring in the developing mammal (3), because the maturational process of
neural, mechanical, pulmonary, and sleep state-dependent factors would all favor the occurrence
of IH during early postnatal life. It has been increasingly recognized that hypoxia, even when short
lasting, canmodify subsequent respiratory responses to hypoxia and induce a variety of genes whose
consequences will persist for much longer periods than the duration of the hypoxic stimulus itself,
i.e., functional and adaptive plasticities. The dynamic interactions between the severity, overall
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duration, and repetitive frequency of IH and the level of maturity
of the organs and systems at the time of IHwill modify the ventila-
tory, metabolic, and cardiovascular responses to hypoxia and the
adaptive (beneficial) or maladaptive (detrimental) consequences
after exposure to IH.

In this review article, we primarily focus on providing an
impartial overview on the currently available evidence regarding
the functional and structural impact of IH in healthy children
or pediatric patients. In addition, the interested readers may find
many other important aspects of IH research in adult individuals
in two monographs that we recently edited (4, 5).

Intermittent Hypoxia and Cardiovascular
and Metabolic Functions

Obstructive Sleep Apnea: Pathological
Consequences in Pediatric Patients
One of the most common examples of the negative health impact
of IH is obstructive sleep apnea (OSA), which is characterized by
brief, recurrent cycles of hypoxia-reoxygenation, typically <60 s
in duration. Such repetitive cycles activate sympathetic nervous
system and systemic inflammation.WhenOSAbecomes a chronic
condition, it often results in adverse physiological effects such as
abnormal gas exchange and/or alteration of sleep patterns that
impact on health and development (6). In fact, pediatric OSA is
not only a very frequent condition affecting 2–4% of all children
but also is associated with an increased risk for a variety of end-
organ injury and dysfunction (such as accelerated atherosclerosis
and endothelial dysfunction) that impose both immediate and
potentially long-term morbidities and resultant high healthcare
costs (7).

There are a number of reports indicating that alterations
in autonomic nervous system function occur in children with
OSA, including either an increase in sympathetic nervous sys-
tem tone and/or responsiveness, or the emergence of sympa-
thetic–parasympathetic imbalance (8–10). A recent prospective
cross-sectional study of 26 children with polysomnography-
confirmed OSA (versus 30 children in control group) demon-
strated that OSA in children was associated with increased lipid
peroxidation in an OSA severity-dependent manner, indicated
by a positive correlation between plasma oxidized low-density
lipoproteins and the apnea/hypopnea index (11).

Interestingly, a recent review by Gozal’s group suggested that
IH may not be the primary cause of pathological disorders in
pediatric patients with OSA (12). In addition to the component
of IH, OSA is also accompanied by hypercapnia, which may be a
main contributor to the development of pathological process. The
combination of IH, sleep fragmentation, episodic hypercapnia,
and increased intrathoracic pressure swings can separately and
together activate or amplify the onset and propagation of endothe-
lial dysfunction, atherogenesis, increased systemic inflammation,
oxidative stress, and activation of adhesion molecules and coagu-
lation (13, 14). Tam et al. used a pigletmodel of infantOSA to eval-
uate circulating IL-6, TNF-alpha, andC-reactive protein following
exposure to acute hypercapnic IH (15). The IH protocol consisted
of two 90-min sessions of hypercapnic IH with arterial blood
sampled before and after each session. The authors concluded

that acute hypercapnic IH caused a transient increase in pro-
inflammatory cytokine – IL-6 levels, whichmay have implications
for the pro-inflammatory status in pediatric OSA.

Substantial evidence also suggested a major role for IH in
altering autonomic nervous system control (12). Both IH and
CO2 retention may augment sympathetic nerve activity (SNA)
via stimulation of both central and peripheral chemoreceptors
in adults (16). SNA is higher in infants and young children,
and progressively declines through age 5–7 years, followed by a
stable period until the beginning of puberty that is associated
with increases in SNA (17–19). Until today, little information
is available concerning the effect of IH on SNA in children. In
addition, severe retinopathy of prematurity was also associated
with more variable, longer, and less severe IH events in preterm
infants (20). The increased SNA may be driven by two major and
potentially interactive pathways as previously proposed, i.e., (1)
peripheral chemoreceptor- and baroreceptor-dependent pathway
(21–23); and (2) interactions between peripheral and central ner-
vous system (CNS)-located pathways (24, 25). In addition, Zhao
et al. suggested that IH differentially regulates plasma membrane
Na+ channels in the developing brain, depending on duration
of IH (26).

Intermittent Hypoxia and Cardiovascular and
Metabolic Responses in Children
As IH episodes are common among preterm infants, the early
postnatal chronic IH exposure may lead to long-term alterations
in cardio-respiratory control, such as reduction in baroreflex
sensitivity. Reeves et al. have shown that the exposure of rats
to chronic IH for the first 30 days of life leads to the substan-
tial structural changes within both nucleus tractus solitarii and
ventrolateral medulla (27). A more recent study by Pozo et al.
tested the hypothesis that a clustered versus dispersed pattern of
repetitive IH during early postnatal life would induce differential
long-term alteration in growth and cardiovascular regulation in
rat pups from 1 to 7 days of life (28). They found that exposure
to both patterns of repetitive IH-induced early growth restriction
and exhibited a sustained decrease in heart rate. By contrast, only
the clustered paradigm resulted in a significantly lower BP versus
controls, while dispersed IH protocol had no effect on blood
pressure. Apparently, the repetitive IH during a critical develop-
mental window with either clustered or dispersed IH exposure
paradigm contributed to prolonged changes in sympathovagal
balance of cardiovascular regulation (28). Pediatric OSA is asso-
ciated with cardiovascular consequences, including accelerated
atherosclerosis and endothelial dysfunction in blood vessels (7).

Severe and chronic IH as occurs during a number of disease
states can induce a series of cellular and molecular responses that
result in cell injury and death. In response to IH, a number of sig-
naling pathways are involved in oxygen sensing, oxidative stress,
metabolism, catecholamine biosynthesis, and immune respon-
siveness. The cumulative effect of these processes over time can
undermine cell integrity and functionality (29). In adult individ-
uals, IH-induced oxidative stress may increase predisposition for
metabolic dysfunction by impairing insulin sensitivity and glucose
tolerance (30). IH increases serum and liver fatty acid levels due
to an increase in sterol regulatory element binding protein-1

Frontiers in Pediatrics | www.frontiersin.org May 2015 | Volume 3 | Article 442

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


Serebrovskaya and Xi Effects of intermittent hypoxia on childhood health

(SREBP-1), a transcription factor of lipid synthesis. Endothelin-1
is also an important factor in insulin resistance during IH.

Intermittent Hypoxia and Cognitive
Functions

Hypoxic brain damage is one of the most common perinatal
injuries of the CNS. Different degrees of susceptibility of each
child to damaging factors and stressors would lead to quite vari-
able outcomes in terms of response to IH and its impact on CNS.
Several recent studies indicated perinatal hypoxia as a risk factor
for psychiatric disorders like schizophrenia. It is thought that
hypoxia prior to or during birth may contribute to alterations
leading to the protracted clinical manifestation during young
adulthood. A review on various evidences suggested an adverse
effect of chronic IH on cognition in childhood, more specifically
on development, behavior, and academic achievement (31).

On the other hand, Lima-Ojeda et al. exposed mice during
postnatal day 3–7 to two paradigms of chronic intermittent or
continuous hypoxia (10% ambient O2) (32). They found that nei-
ther intermittent nor continuous perinatal hypoxia-induced long-
term behavioral alterations. It seems that more severe hypoxic
conditions and/or the presence of additional factors (such as
genetic risk factors) are necessary for generating long-term behav-
ioral abnormalities. Amore recent study by Guo et al. revealed the
impact of chronic asthma-induced hypoxia on cognitive function
in children using an ovalbumin-induced chronic asthma model
in immature mice (33). They reported that chronic asthmatic
hypoxia impaired learning and memory ability.

On the other hand, Urschitz and co-workers assessed the
association of snoring and IH with poor academic performance
in 1,144 of third grade school children (34, 35). A significant
relationship between snoring and poor academic performance
was found in children without IH, whereas IH did not show an
independent association with poor academic performance.

Cai et al. have shown in developing rats that chronic IH
exposures across 2 and 4weeks led to more reference, work-
ing, and total memory errors in the 8-Arm radial maze task,
and other negative consequences (36). Endoplasmic reticulum
stress-related enhancement of neuronal apoptosis was implicated
as one of the underlying mechanisms of cognitive dysfunction
induced by chronic IH. In pediatric patients, Kirkham and Datta
prospectively recorded overnight oxyhemoglobin saturation in 18
children with intractable epilepsy, 6 of whom were currently or
recently in minor status epilepticus (i.e., a seizure goes on for
30min ormore) (37). Childrenwithminor status weremore likely
to have an abnormal sleep study often with desaturation of blood
oxygen.

Effects of Chronic Intermittent Hypoxia on
Development in Neonatal Mammals

Despite the fact that chronic IH seems to exert much less impact
on the physical growth of animals and humans than chronic
constant hypoxia, some evidence suggested that severe IH can also
adversely affect the function and development of the organism. In
2008, Farahani et al. reported differential effects of chronic IH and

chronic constant hypoxia on postnatal growth and development
in mice (38). The postnatal day 2 mice were exposed to constant
hypoxia (11% O2 in isobaric chamber constantly) or IH (cycles
of 4min 11% O2 with 4min intervals) for 4weeks. They found
that themost severe developmental delay observed under constant
hypoxia. Slower weight gain resulted in a 12 and 23% lower body
weight in the mice exposed to chronic IH and constant hypoxia,
respectively, by postnatal day 30. The decrease in liver, kidney,
and brain weight were greater in the constant hypoxia group than
IH group. By contrast, the heart weight from chronic constant
hypoxia and IH groups was 13 and 33% greater than control
(P< 0.05), respectively, which was associated with increased size
of cardiomyocytes by 12 and 14% (P< 0.001) for constant hypoxia
and IH mice (38). Similarly, Row et al. (39) exposed rat pups to
either room air or IH beginning at postnatal day 10 until day
30 (39). The pups exposed to IH displayed significant spatial
learning impairments and increased locomotor activity, which
indicated that exposure to IH at postnatal age could induce sub-
stantial learning impairment and gender-dependent behavioral
hyperactivity in the juvenile rats (39).

Human fetus develops in a profoundly hypoxic environment,
which exerts a distant effect on human tolerance to hypoxia
that promotes survival advantage under severe hypoxemic stress.
The phenomenon and potential mechanisms of neonatal hypoxia
tolerance are the subjects for extensive investigations (40, 41).
Among the main theories, using a new form of body plethys-
mograph Cross et al. measured respiratory volume and rate of
the newborn infants and first described a positive relationship
between body weight and respiratory volume (42). The immatu-
rity of respiratory control in early ontogenesis leads to disruption
of metabolic processes in children under hypoxia, which triggers
a more ancient way of energy production – anaerobic glycolysis as
an adaptive response for surviving in hypoxic conditions (43). In
addition, as early as 1921, Benedict and Talbot reported that the
daily metabolism adjusted for body surface increases from birth
to 1 year of age by 1.6 times. Other researchers have subsequently
found that the coincidence in time between the attainment of
maximum intensity of respiration and the formation of ther-
moregulatory mechanism (44). During hypoxia, many newborn
mammals, including the human infant, decrease metabolic rate,
therefore adopting a strategy common to many living creatures,
but usually not adopted by adult humans (45). In 1996,Hochachka
and colleagues proposed a biochemical basis for the response of
hypoxia-tolerant systems to hypoxia that includes defense and res-
cue phases (46). The first lines of defense against hypoxia include
a balanced suppression of both ATP-demand and ATP-supply
pathways, leading to a new steady state even though ATP turnover
rates are greatly declined. The ATP demands of ion pumping and
protein synthesis are downregulated by channel and translational
arrests. In hypoxia-tolerant systems, these arrests activate the
gene-based metabolic reprograming “rescue” mechanisms under
hypoxia (46).

The development of respiratory lung function in ontogeny is
uneven and heterochronic (i.e., a developmental change in the
timing of events, leading to changes in size and shape, depend-
ing on morphological rearrangement of the lungs and chest and
improvement of regulatory mechanisms. The most important
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stages in the development of respiratory lung function are: neona-
tal period, up to 1 year, 2–4, 6–7, and 10–11 years. Differentiation
of lung tissue is completed by 8–12 years and the growth of tra-
cheobronchial tree endswith the termination of body growth (47).
Because of continuous decreasing of specific entropy production,
the relative values of lung ventilation and gas exchange (adjusted
with body weight or surface) decrease with age (48). One time
period of exception is from birth to 1 year, when gradual decrease
is not observed, on the contrary, the specific rate of gas exchange
and lung ventilation increases (49).

Changes in respiratory reactivity concur with cardiovas-
cular reactivity in young children. In both longitudinal and
cross-sectional studies, most investigators found developmental
changes with increasing age in heart rate and respiratory sinus
arrhythmia – a cardiac index of activation in the parasympa-
thetic branch of the autonomic nervous system (50, 51). Over-
all, resting HR decreases from infancy to young adulthood and
respiratory sinus arrhythmia increases. Autonomic measures at
4 and 8months of age showed that older infants had more
sympathetic activation and less parasympathetic withdrawal in
response to stressors than younger infants. On the other hand, a
cross-sectional study of older children ages 8–10 and 15–17 years
showed no age differences in sympathetic and parasympathetic
reactivity (52). There is apparently a slowing of age-related
changes in autonomic reactivity as children move developmen-
tally closer to adolescence and adulthood.

Measurement of the ventilatory responses to inhaled hypoxia
in children is usually quite difficult due to its methodological
and ethical problems. Very few reports are available. It has been
known that the carotid chemoreceptors of sino- and cardio-aortic
areas are formed in humans at sixth week of fetal life and begin
to function before birth. During the first hours of neonatal life,
infants are able to increase their ventilation when blood oxygen
tension drops. At different stages of ontogenesis, the increase
of ventilation in response to hypoxia is provided by unequal
changes in breathing modes (53). In contrast to the adult, hypoxic
ventilatory response (HVR) in newborns is short and unstable
(54). An early investigation from our group in 1977 revealed
that inhalation of gas mixture with 14.5% O2 for 12min resulted
in an increase in lung ventilation (VE) during the first minute
by 18% in adults and 24% in children of 4–5 years, indicating a
stronger initial response in children than those in adults (49).
Whereas adults demonstrated a classical biphasic HVR pattern
with a subsequent maintain of ventilation at elevated level, the
primaryHVR in childrenwas short-term and followed by a subse-
quent reduction of ventilation below baseline and a concomitant
decrease in gas exchange, indicating a less pronounced ability to
maintain homeostasis of ventilation in young children.

Effects of IH on HVR in developing mammals were well
described by Gozal’s group (3). They suggested that despite sub-
stantial differences in the acute HVR between adult and immature
mammals, IH-induced modifications of HVR are qualitatively
similar between immature and adult. Short durations of IH expo-
sures elicit increases in the magnitude of HVR and an attenuated
HVR occurs over time if IH exposures are prolonged. However,
the neural structures, neurotransmitters, and downstream signal-
ing pathways underlying such biphasic changes in HVR induced

by IH are unknown. Using an immature rat model simulating
OSA, Moss et al. investigated effects of chronic IH (12% O2, 7 h
daily) on rats frompostnatal day 17 (representing early childhood)
through day 33 (representing adolescence) and day 47 (adult) (55).
They reported that chronic IH produced long-lasting attenuation
in respiratory responsiveness to subsequent acute hypoxia.

It is noteworthy that when assigning hypoxic stress on child and
adolescent, it is necessary to first determine their individual HVR
for better safety. Such rare cases in HVR were seen in our previous
studies. For example, among 20 pairs of monozygotic twins of
10–15 years old whom we tested, there was one male twin who
demonstrated complete absence of HVR (56, 57) and the father of
the twins had similar defect of sensitivity to hypoxia.

Another early study of our group was conducted on respiration
and gas exchange in pediatric patients with chronic pneumo-
nia (58). A significant increase in physiological dead space and
reduction of ratio between alveolar and lung ventilation (VA/VE)
were observed. In the older children (10–14 years), these patho-
logical changes were well compensated by significant hyperven-
tilation that resulted in maintenance of PaO2 and gas exchange
at the levels of healthy children. However, in the younger chil-
dren (6–8 years), the compensatory increase in ventilation was
not observed, whereas in 4–5 years old patients with protracted
pneumonia of stage II, hypoventilation was noted and PaO2 was
reducedwith significantly lower gas exchange rate than age norms.
The development of these sick children was also retarded (58).
A more recent work showed that HVR during exercise differs
between children and adults (59). However, when corrected for
body weight, children and adults have similar values for lactic
acidosis threshold and maximal oxygen consumption (VO2max)
during normoxia. Hypoxia significantly lowered lactic acidosis
threshold and VO2max in both children and adults. Metabolic
efficiency was similar among the two age groups and unaffected
by hypoxia.

Intermittent hypoxia during development has also been impli-
cated as a potent inducer of respiratory plasticity (60). The altered
ventilatory pattern induced by IH is distinct from other stimuli
and elicits markedly different responses in the developing mam-
mal as compared to the adult. Exposures to either hypoxia or
hyperoxia during early postnatal life may lead to significant mod-
ifications of neural function during adulthood. For example, sup-
pression of peripheral arterial chemoreceptor activity via exposure
to hyperoxia (60% inspired oxygen) during the first month of rat
life led to significant reduction in the number of unmyelinated
axons in the carotid sinus nerve and petrosal ganglion in the adult
rat that are accompanied by substantial attenuation of the HVR
at 3–5months of age but not at 15months. By contrast, when
adult rats are exposed to hyperoxia, no changes in HVR char-
acteristics occur, indicating that the persistent plasticity changes
in the pathways underlying HVR are unique to the interaction
between environmental stimulus and a critical developmental
window (61).

Furthermore, Paton et al. reported in 1989 that both hyper-
capnic and hypoxic responses during wakefulness were defective
in pediatric patients, 6–11 years of age, with congenital central
hypoventilation syndrome (CCHS). These sick children had no
subjective sensation of dyspnea or discomfort, but no significant
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change was found from the baseline levels of ventilation in
response to either stimulus. The researchers speculated a defect
caused by CCHS in central integration of the central and periph-
eral chemoreceptor signals (62). Thus, long-lasting plasticity of
neural networks underlying respiratory control is more likely
to occur during early and more plastic stages of development.
Application of IHduring these critical stages of development likely
regulates adaptive processes that could be used to our advantage
for preventive or therapeutic purposes as we further elaborate in
the following sections.

Therapeutic Uses of Intermittent Hypoxia
in Pediatric Practice

Hypoxic training or conditioning can be traced back from the tra-
ditional medical remedy used in ancient time. For example, in the
Carpathian mountain region, children who suffered from asth-
matic bronchitis were ranged on foot, during 7 days successively,
on a highmountain with ingestion of high-altitude herbal tea. The
children had recovered. Similarly, a common yogic treatment of
various diseases in India, so called “nisshesha rechaka pranayama,”
involves breath holding at residual volume, which produces brief
IH that triggers the adaptive mechanisms (63). Nevertheless, the
scientific basis for the observed beneficial effects of the so-called
intermittent hypoxic training/therapy (IHT) on human organ-
ism remains elusive despite the extensive investigations over the
past five decades (4, 5). In the following sections, our discus-
sions focus mainly on the abundant experience and evidence
of IHT implementation in pediatric practice, which have been
almost exclusively reported by Ukrainian and Russian physicians
and researchers since 1970s (58, 64–67). Based on these studies,
various highly specialized IHT equipment and portable devices
such as “Hypoxicator” (68) have been invented and developed,
including those for pediatric patients, although there are still a
number of remaining issues related to the complexity and non-
standardization of various IHT protocols reported in different
studies. In addition, further thorough risk-versus-benefit evalu-
ations of IHT will address some fundamental ethical concerns on
the IHT practice in pediatric patients.

Bronchial Asthma
Most abundant information for the therapeutic use of IHT has
been found in the treatment of bronchial asthma (BA). For exam-
ple, a study by Anokhin et al. (64) applied IHT with a normobaric
hypoxic stimulation with four sessions of 5min 12-15% O2, fol-
lowed by 5min normoxic interval, for 10 days in 200 children
aged 4–14 years who suffered from asthma (64). Positive effects
were seen in 85% of subjects in the IHT group and only in 25%
of the sham control group. In children with mild BA, a complete
discontinuance of asthma attacks was observed and a significant
improvement was also observed in patients with moderate to
severe forms of BAwithoutmedication (64). The beneficial effects
lasted for an average of 4months after IHT. By contrast, in patients
with the severe form of BA, only small or no improvement was
found. In the hormone-dependent formof BA, efficacy of IHTwas
also unsatisfactory (69).

Such therapeutic effects of IHT were subsequently confirmed
by several other research groups in Ukraine and Russia (64, 67, 70,
71). Among these works, in 1990, Meerson and co-workers stud-
ied the effects of adaptation to IH on immune status and neuro-
humoral regulation in pediatric and adult patients with BA, aller-
gic dermatoses, and autoimmune thyroiditis (66). They reported
that the IH adaptation facilitated normalization of humoral values
of immunity in allergic and autoimmune disorders and led to
increased serum levels of immunoglobulins, while the level of cir-
culating immune complexes reduced. These beneficial changes of
the immune systemwere associatedwith an increase of the reserve
potency of the hypothalamo-hypophyseal-adrenal and sympa-
thoadrenal systems as well as a reduction in blood histamine
levels.

In recent years, there was a revitalized interest in the use of IHT
in children with BA. For example, researchers from Brazil studied
48 adolescents (12–14 years of age) under three conditions: mild
intermittent asthma; mild persistent asthma; and control (72).
They concluded that adolescents withmild persistent asthma have
a greater capacity to adapt to hypoxia than do those with other
types of asthma. In addition, Serebrovskaya et al. used IHT for
treatment of children (aged 9–13 years) with persistent atopic BA
in moderate form without the signs of respiratory insufficiency.
The subjects in experimental group underwent IHT alone with
regular drug treatment and the control group received the same
medical treatment, but not IHT (73). Before and next day after
the 2-week session of IHT, individual cardio-respiratory reac-
tions to hypoxia were investigated where normobaric hypoxia
was administered with a portable device “Hypoxotron–Complex,”
a modified closed spirometer with CO2 absorption (68). The
initial inspired gas was atmospheric O2 (20.9%) and inspired
O2 fell to 12% after 60–90 s of rebreathing, and then O2 was
added gradually to the device to maintain inspired O2 at 12%
for the remaining 3.5–4min with a final arterial O2 saturation
(SaO2) typically 89–92%. All children easily tolerated the hypoxia
periods without any untoward effects. Each IHT session consisted
of four 5–7min hypoxic periods, followed by 5min interval with
room air inspiration. A significant decline in breath shortness
and feelings of chest congestion were noted in the patients of
IHT group, with other symptoms such as cough and attacks of
asphyxia diminished or disappeared. No significant changes in
airway conductance before and after IHT. By contrast, significant
differences in hypoxic ventilatory sensitivity were found as a
result of IHT, suggesting that adaptation to IH caused consid-
erable augmentation in ventilatory response to hypoxia, likely
due to both central and peripheral mechanisms as previously
proposed (74, 75). Meanwhile, the heart rate response to hypoxia
became less pronounced and SaO2 fell less at 12% O2, indicating
IHT improved efficiency of cardiovascular system in supporting
oxygen supply during hypoxia (73).

Since the development of inflammatory process in lungs is
usually associated with activation of free radical oxidation and
decline of antioxidant enzymes activity (76), the role of antiox-
idant enzymes in adaptation to IHT has been a key subject for
investigation in pediatric BA patients. Nesvitalova et al. exam-
ined the effect of a 10-day IHT on the mRNA expression and
protein content of antioxidant enzymes such as Cu,Zn-superoxide
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dismutase (Cu,Zn-SOD), catalase (CAT), and glutathione-S-
transferase (GST) in blood leukocytes of asthmatic children (77).
They reported that following IHT, Cu,Zn-SOD protein con-
tent in leukocytes did not change significantly, but Cu,Zn-SOD
mRNA expression increased by 33%. Conversely, GST protein
synthesis increased by 90%, but its mRNA expression was invari-
able. Both protein content and mRNA of CAT increased by 37
and 13%, respectively. Furthermore, IHT altered mitochondrial
enzymes such as succinate dehydrogenase (SDG) and alpha-
glycerophosphate dehydrogenase (GPDG) in asthmatic children.
In 2002, Kurhaliuk et al. demonstrated a strong correlation
between the individual hypoxic sensitivity and mitochondrial
enzymes activities of GPDG in rats (78). In 2012, Serebrovskaya
et al. have shown that in children with decreased HVR, ele-
vated basal SDG and GPDG activities were observed and greater
increase was found after IHT (73). Similarly, they measured
SDG and GPDG activities in peripheral lymphocytes of asth-
matic children (9–13 years old). Both SDG and GPDG activities
significantly increased under IHT by 78 and 42%, respectively.

Brain Function
There are few clinical observations made by Ukrainian and Rus-
sian researchers regarding the effects of IHT on CNS in children.
Among the recent studies, Yatsenko et al. investigated the effects
of IHT on CNS function and cerebral circulation in pediatric
patients with cerebral palsy (79). The 87 sick children (ranged
from 9months to 12 years of age) were examined before and
immediately after the IHT course via inhalation of normobaric
hypoxic gas mixture (12% O2). Each cycle included 15min of
hypoxia alternated by 5min of normoxia. The number of IH cycles
gradually increased fromone to three per day and the entire course
of IHT lasted 10 days on average. The authors observed stable
positive effects of IHT on the motor status in 94% of the patients
and positive dynamics of spectral EEG components were seen in
70% of the patients. Doppler-detected brain hemodynamics was
also normalized in 85% of the children who underwent IHT (79).

Borukaeva recently reported a study on brain bioelectrical
activity, mental fitness, coordination of movements among 250
healthy young individuals (8–21 years of age) (80). The subjects’
EEG was recorded while breathing air or hypoxic gas mixture via
“Bio Nova 204” hypoxicators made in Russia. They found that
the changes in bioelectric activity of the brain under short-term
hypoxia (manifested with the increased index and amplitude of
alpha, theta, and delta waves of EEG) were similar among the
groups of children (8–12 years), adolescents (13–16 years), and
young adults (17–21 years). In the children group, the changes in
alpha and theta waves were more sensitive indicators of hypoxia
than other EEG waves. These data suggested an increased cortical
impact on the background of increasing limbic system activity.
On the other hand, the adolescents showed a greater reduction
in mental performance and motor coordination during hypoxic
exposure as compared with the other age groups. They showed
an increased time for the maze passage, the number of touches
and goes beyond the maze, decreased concentration and irradia-
tion of excitatory and inhibitory processes, breach of their forces
and mobility (80). These results suggest that under hypoxia the
children or young adults usually have increased cortical activity,

whereas the adolescents have enhanced activity of subcortical
structures. The age dependent-influence on CNS should be taken
into account when designing IHT protocols with the most opti-
mal condition, in order to prevent any undesirable complica-
tions of IHT.

In addition, a recent study demonstrated that IHT (5-min
episodes of 10.5% O2 with 5min normoxic intervals, three expo-
sures per week for 10weeks) upregulates pro-plasticity molecules
without evidence forCNSpathology in adult rats (81). The authors
suggested that IHT can be a useful therapeutic tool in treating
disorders that cause respiratory insufficiency, such as spinal injury
or motor neuron disease (81). However, it remains to be deter-
mined whether such beneficial effects of IHT can be reproduced
in immature bodies.

Metabolic Effects
The therapeutic use of IHT in treatment of metabolic disorders
such as obesity had not been investigated until recent years. For
instance, in 2014, Wang et al. designed and initiated a new ran-
domized controlled trial to assess the effectiveness of a 4-week
IH exposure plus conventional exercise training and diet interven-
tion for inducing short- and long-term weight loss in obese ado-
lescents (Clinical trial registration No. ChiCTR-TRC-14004106)
(82). They planned to allocate 40 obese boys and girls (11–15 years
old) into control group (sleep in normal conditions) and hypoxia
group (sleep in a normobaric hypoxia chamber, simulating the
“sleep high and train low” IHT mode). Results obtained from
this study would potentially provide important evidence for the
potential use of IHT in a weight loss intervention program among
obese children and adolescents. Clarification of the mechanisms
leading to weight loss in “sleep high and train low” protocol such
as appetite regulatory effects could provide new information for
the development of new strategies in combating obesity.

Potential Confounding Factors for
Intermittent Hypoxic Training in Children

Hypoxia-Induced Polycythemia
An increased production of red blood cells (i.e., polycythemia) is
one of the common adaptive responses of the body to hypoxia for
improving oxygen transport capacity from the lungs to the target
organs/tissues. Hypoxia stimulates the secretion of erythropoietin
in kidneys and this hormone in turn stimulates the production
of erythrocytes in bone marrow. It was suggested that erythro-
poiesis is an essential mechanism for long-term acclimatization
to hypoxic condition (83). In fact, polycythemia was observed
in humans following chronic intermittent exposures to hypoxic
environment at high altitude (84–86). A recent study reported
that intermittent mining activity in the Andes at 4000m alti-
tude (i.e., from 4th to 20th day of each month worked at high-
altitude mines followed by a resting period of 14 days at sea level)
stimulates the production of red blood cells in bone marrow
(87). These results in adult humans are in contrast to an ear-
lier study of Quechua Indians children, living at 4200m altitude
(88), which provided no support for the long-held belief that
altitude hypoxia provokes a dramatic compensatory polycythemia
in healthy adults.
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In addition, although polycythemias or erythrocytoses in child-
hood and adolescence at sea level are very rare, the neona-
tal infants who are small for gestational age or affected by
maternal gestational diabetes are at high risk for developing
polycythemia (89). Primary polycythemias are characterized by
acquired somatic or inherited germ-line mutations expressed
within hematopoietic progenitors that cause increased accumu-
lation of red blood cells. Secondary erythrocytoses are driven
by hormonal factors (predominantly by erythropoietin) extrin-
sic to the erythroid compartment (90). With placental insuffi-
ciency, there may be chronic or acute fetal hypoxia resulted from
birth asphyxia and hypothermia, neonatal hypoglycemia, poly-
cythemia, and coagulopathy (91). Lee et al. described a family
case of inherited CCHS, who was accompanied by hypoxia and
hypercapnia and polycythemia with a hematocrit level of 70%
(92). Furthermore, IH resulting from sleep apnea was suspected to
induce polycythemia. However, Solmaz et al. recently suggested
that OSA rarely causes secondary polycythemia (93). Similarly,
King et al. commented that OSA does not lead to clinically sig-
nificant erythrocytosis (94). There is also no published evidence
suggesting development of polycythemia in the children under-
going IHT for therapeutic purposes, which involves intermittent
brief inhalation of hypoxic gas mixtures. Nevertheless, the issue
of polycythemia should be considered as a potential confounding
factor to be monitored in future practice of IHT in pediatric
patients.

Hypoxia-Triggered Disturbance in Carbon
Dioxide Homeostasis
Carbon dioxide (CO2) is an important gaseous molecule that
maintains whole body homeostasis as well as cellular signaling.
CO2 accumulates in the tissues during each episode of airway
obstruction in sleep apnea or breath holding leading to acidemia.
To the contrary, during IHT (e.g., high altitudes, hypobaric cham-
ber, or inhalation of hypoxic gas mixtures), systemic hypoxia ele-
vates pulmonary ventilation leading to hypocapnea and alkalemia.
The physiological consequences of hypocapnea versus hypercap-
nia during IHT remain partially understood. At cellular levels,
such changes in arterial CO2 levels may affect vascular dynamics
via activation or inactivation of vasoactive factors such as nitric
oxide, angiotensin II, endothelin, and bradykinin (95).

On the other hand, Zhang et al. recently investigated experi-
mental hypocapnia and hypercapnia following 14-day sessions of
IHT with 10% inspired O2 and they reported that the repetitive
normobaric IH exposures significantly diminished variations of
cerebral perfusion in response to both hypercapnia and hypocap-
nia without compromising cerebral tissue oxygenation in adult
humans (96). Similar results were also communicated recently by
Fan andKayser (97). Another study by Snow et al. in rats indicated
that hypocapnic but not eucapnic IH increases hematocrit and
causes a more profound increase in right ventricular mass than
those who underwent eucapnic IH (98). Taken together, there
are very limited data on the role of hypocapnia or hypercapnia
in the adaptive process to IH or IHT in adults and virtually no
report in pediatric individuals. Therefore, at the present time,
we cannot give concrete advice on how to manipulate the CO2
levels during IHT for avoiding adverse effects and/or enhancing

therapeutic efficacy of IHT. There is little doubt that the con-
comitant changes in arterial CO2 levels during IH exposures
can have profound impact on the neurologic and other cellu-
lar outcomes (detrimental or beneficial), considering the crit-
ical regulatory role of CO2 homeostasis in the body systems.
This important question should be carefully addressed in future
investigations.

Concluding Remarks

Taken together, the above-discussed studies in healthy children
and pediatric patients have indicated that IH can profoundly
trigger either adaptive or maladaptive responses in childhood,
which has impact on the structural and functional development
in multiple body organs and systems. Whereas more severe reg-
imens of IH induce pathological outcomes, the well-controlled
and proper regimens of IHT can produce therapeutic effects
against various chronic diseases in children, including BA, allergic
dermatoses, autoimmune thyroiditis, cerebral palsy, and obesity.
Many interesting emerging fields of IH research such as stem
cell biology should be further explored. For example, Bhaskara
et al. recently reported that IH enhanced stem-like characteris-
tics and suppressed differentiation propensities in neuroblastoma
cells (84). Serebrovskaya et al. have shown that IH mobilizes
hematopoietic progenitors and augments cellular and humoral
elements of innate immunity in adult men (85).

It is noteworthy that the different stages of child develop-
ment and various degrees of maturity have great impact on the
individual response to IH. Such an age-dependence is not fully
characterized in this review due to the lack of published evidence.
The short- and long-term effects of IH on the modulation of
neurotransmitter release, receptor binding and expression, intra-
cellular signaling cascades, transcriptional regulation, and gene
expression as a function of animal maturity are almost completely
unknown. As Waters and Gozal pointed out that the responses to
IH vary according to the point within the sequence of a single
response where the stimulus interruption occurs (99). An inter-
mittent stimulus may be seen as “continuous” if the recurrence
frequency exceeds a certain threshold, whereas application of
slower cycles below such threshold may elicit discordant recruit-
ment of the compensatory responses. Further delineation of such
complex responses to IH may permit the formulation of interven-
tional strategies aiming at reducing the overall vulnerability of the
young infant and child to apnea and sudden death (3).

Finally, it is also important to emphasize that clinical research
involving young children and infants should be considered sep-
arately from that of adults and require the highest ethical stan-
dard for the researchers, because the pediatric subjects are often
lack of complete understanding and cannot give informed con-
sent to any procedure. Such ethical issues should be a primary
concern for those who conduct IH research with infants and
young children (100). The pediatric patients’ safety and wel-
fare should always be the top priority of our research involving
hypoxic stimulus. A proper choice of IHT regimens for children
should take into account uneven and heterochronical develop-
ment of different functions, in order to avoid the previously
described negative effects of IH while maximizing its therapeutic
potential.
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