
July 2015 | Volume 3 | Article 611

Review
published: 27 July 2015

doi: 10.3389/fped.2015.00061

Frontiers in Pediatrics | www.frontiersin.org

Edited by: 
Antonio Francesco Corno,  

Glenfield Hospital, UK

Reviewed by: 
Yves Durandy,  

Centre Chirurgical  
Marie-Lannelongue, France  

Tsvetomir Loukanov,  
University of Heidelberg,  

Germany  
Attilio A. Lotto,  

University Hospital Leicester, UK

*Correspondence:
 Ryan Robert Davies,  

Nemours Cardiac Center, Nemours/A.I.  
duPont Hospital for Children, 
Wilmington, DE 19806, USA  

Ryan.Davies@nemours.org

Specialty section: 
This article was submitted to 

Pediatric Cardiology, a section of the 
journal Frontiers in Pediatrics

Received: 31 March 2015
Accepted: 21 June 2015
Published: 27 July 2015

Citation: 
Davies RR and Pizarro C (2015) 
Decision-making for surgery in  

the management of patients 
with univentricular heart.  

Front. Pediatr. 3:61.  
doi: 10.3389/fped.2015.00061

Decision-making for surgery in the
management of patients with 
univentricular heart

 

Ryan Robert Davies 1,2* and Christian Pizarro 1,2

1 Nemours Cardiac Center, A. I. duPont Hospital for Children, Wilmington, DE, USA, 2 Thomas Jefferson University, 
Philadelphia, PA, USA

A series of technical refinements over the past 30 years, in combination with advances 
in perioperative management, have resulted in dramatic improvements in the survival 
of patients with univentricular heart. While the goal of single-ventricle palliation remains 
unchanged – normalization of the pressure and volume loads on the systemic ventricle, 
the strategies to achieve that goal have become more diverse. Optimal palliation relies on 
a thorough understanding of the changing physiology over the first years of life and the 
risks and consequences of each palliative strategy. This review describes how to optimize 
surgical decision-making in univentricular patients based on a current understanding of 
anatomy, physiology, and surgical palliation.

Keywords: univentricular heart, congenital heart disease, palliation, single ventricle, aortopulmonary shunt, 
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introduction

Over the past 30  years, there has been a dramatic improvement in the survival of patients with 
univentricular heart (1, 2). The development of innovative techniques for surgical palliation – including 
the Fontan (3) and Norwood procedures (4) – has been followed by surgical refinement and advances 
in perioperative management. The list of technical refinements is long, including: the use of staged 
palliation, branch pulmonary artery banding, the hybrid procedure, comprehensive second stage 
palliation, and various technical modifications to both the Norwood procedure and the superior and 
total cavopulmonary connections (TCPC).

The ultimate goal of staged univentricular palliation is to normalize the volume and pressure work of 
the functional ventricle while pumping blood fully saturated with oxygen, regardless of the underlying 
cardiac anatomy (5). However, the elevated pulmonary vascular resistance (PVR) present in the early 
post-natal period means that attainment of this long-term goal must be delayed, resulting in the need 
for a staged management strategy in most cases. Accordingly, post-natal palliation requires that the 
pulmonary and systemic circulations remain in parallel, while pulmonary blood flow is controlled, 
allowing for the proper development and maturation of the pulmonary vascular bed. Subsequently, 
the conversion to a cavopulmonary connection allows the transition to a circulatory arrangement with 
the circulations connected in series. In this context, appropriate decision-making relies on a thorough 
understanding of the anatomy and physiology of the univentricular heart at each stage of palliation, as well 
as a comprehensive knowledge of the advantages and disadvantages of the various management strategies.

Perinatal Management

Early perinatal management of patients with univentricular heart is focused on identification of the 
anatomy (which may constitute an immediate risk to the patient after birth) and on stabilization with 
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the usual measures to control the volume and pressure load to the 
ventricle while enabling adequate systemic delivery of oxygen. 
These goals must be achieved regardless of the underlying anatomic 
substrate (whether hypoplastic left heart syndrome, an unbalanced 
atrioventricular septal defect, or tricuspid atresia). Attention 
should be paid to the delicate and dynamic balance between the 
systemic and PVR ratio, leading to ongoing re-evaluation and 
adjustments in management as the PVR falls (6).

Evaluation of the neonate with single ventricle is directed at 
identifying answers to the following questions: (1) is there a reliable 
source of systemic blood flow? (2) is there a reliable source of 
pulmonary blood flow? (3) Is there any impediment to pulmonary 
venous return? and (4) Is there an appropriate balance between 
the systemic and pulmonary circulations? (7). Non-invasive echo-
cardiography is most commonly able to provide these answers; 
cardiac catheterization is rarely required.

Ductus Arteriosus
In cases when there is a significant impediment to pulmonary or 
systemic circulations, the ductus arteriosus can be used to provide 
a reliable source of pulmonary or systemic blood flow. Patients in 
whom a patent ductus arteriosus is necessary may be divided into 
those with ductal-dependent pulmonary circulation (e.g., pulmo-
nary atresia with intact ventricular septum, or tricuspid atresia) and 
those with ductal-dependent systemic circulation (e.g., hypoplastic 
left heart syndrome). In either case, maintenance of ductal patency 
is critical to providing adequate systemic oxygen delivery.

Since, initially described by Olley and colleagues in 1976 and 
later by the Green Lane Unit (8, 9), prostaglandin E (PGE 1) 
remains the mainstay of medical treatment to maintain patency 
of the ductus arteriosus. While treatment with PGE 1 has trans-
formed the early management of neonates with ductal-dependent 
lesions, it is not without side effects (10). Particularly concerning 
among single-ventricle patients are apnea and the potential for 
compromise of gastrointestinal perfusion (11, 12). These side 
effects are dose-dependent; therefore, the dose should be titrated 
to the lowest level required to maintain ductal patency (11). In 
fact, in nearly all patients, a dose of 0.01 mcg/kg/min should be 
adequate for continued ductal patency while limiting the risk of 
significant side effects (11).

Balancing Systemic and Pulmonary Blood Flow
In cases where the pulmonary and systemic circulations are 
connected in parallel, blood leaving the functional ventricle may 
enter either the pulmonary artery or the systemic circulation. 

The underlying anatomy, and in particular, the presence of either 
pulmonary or systemic outflow obstruction will have an important 
influence on the relative balance between pulmonary and systemic 
blood flow (Table 1). In the absence of obstruction, the relative 
blood flow to each circulatory component depends predominantly 
on relative balance between pulmonary and systemic vascular 
resistances. This is particularly important when the ductus 
arteriosus remains patent. In this scenario, there is potential for 
continuous diastolic runoff away from the systemic and into the 
pulmonary circulation, making this balance even more chal-
lenging, with the potential for dramatic effects on hemodynamic 
stability and systemic oxygen delivery. In cases with significant 
right or left outflow obstruction, an earlier surgical palliation may 
be required when non-surgical manipulations are inadequate to 
overcome the resulting imbalance in circulation or to prevent the 
need for a prolonged administration of PGE1 and the potential 
adverse effects and consequences associated with it.

Balancing the distribution of cardiac output is especially 
important in those patients with a circulation connected in 
parallel at the arterial level, which commonly leads to excessive 
pulmonary blood flow and pulmonary over circulation. This is 
even more critical in the presence of ventricular dysfunction, 
atrioventricular valve regurgitation, or rhythm disturbance. 
Through manipulations in inspired respiratory gases, the balance 
between systemic and pulmonary circulations can be modified. 
Oxygen is a pulmonary vasodilator, while hypercarbia is a potent 
pulmonary vasoconstrictor, and also a cerebral vasodilator (13) 
Respiratory gas mixtures low in oxygen and those with added 
carbon dioxide have been used to increase PVR and decrease 
the Qp/Qs. In fact, the addition of carbon dioxide to the inspired 
gas mixture increases PVR, decreases the volume load on the 
ventricle, and improves systemic cardiac output (13, 14). Similar 
vasoconstriction has been observed using sub-atmospheric 
inhaled oxygen concentrations to induce alveolar hypoxia; how-
ever, this method lacks the cerebral vasodilatory effect (13). In 
some cases, mechanical ventilation and paralysis may be required 
in order to provide precise control over pCO2 and pO2; but the 
manipulation of respiratory gas exchange is often sufficient to 
provide balanced pulmonary blood flow in the early post-natal 
period (13).

Challenges in early Management
Patients presenting with ventricular dysfunction, obstructed 
pulmonary venous return, significant atrioventricular valve regur-
gitation, or non-cardiac disease (e.g., sepsis or gastrointestinal 

TABLe 1 | Categorization of pulmonary and systemic outflow obstruction and its consequences in the univentricular heart.

Systemic 
outflow

Pulmonary 
outflow

examples ventricular 
volume load

Pulmonary 
blood flow

Consequences

Unobstructed Unobstructed Unbalanced atrioventricular 
septal defect

↑↑↑ ↑ Congestive heart failure due to pulmonary overcirculation as pulmonary 
vascular resistance falls

Obstructed Unobstructed Hypoplastic left heart 
syndrome

↑↑ ↑↑↑ Severe congestive heart failure due to pulmonary overcirculation as the 
pulmonary vascular resistance falls. inadequate systemic cardiac output

Unobstructed Obstructed Tricuspid atresia with 
pulmonary atresia

↑ ↓↓ Progressive and severe cyanosis due to inadequate pulmonary blood 
flow

Adapted from Walker et al. (7).
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anomalies) present important challenges. The presence of atrio-
ventricular valve regurgitation results in an additional volume load 
on the already loaded ventricle. This commonly leads to congestive 
heart failure and not infrequently a gradual and progressive onset 
of ventricular dysfunction. Early control of pulmonary blood flow 
to reduce additional volume loading is essential. Not infrequently – 
particularly among patients with a single right ventricle or those 
with a common atrioventricular valve – control of pulmonary 
blood flow can be associated with a significant reduction of the 
valve regurgitation (15, 16). In this scenario, an intervention 
should be performed without delay.

The presence of ventricular dysfunction can be associated with 
late diagnosis or intrinsic myocardial dysfunction. Commonly, the 
dysfunctional ventricle is unable to meet the work requirements 
of the single-ventricle circulation, leading to circulatory failure 
and end organ dysfunction. As stated previously, early attention to 
reducing the volume and pressure load on the ventricle is critical. 
If obstruction to systemic blood flow is present, an unobstructed 
pathway must be secured with the use of PGE1 or with an interven-
tion. While manipulation of respiratory gas exchange in combina-
tion with inotropic support may be sufficient, some patients will 
require early surgical control of pulmonary blood flow. Depending 
on the underlying anatomy, this may be performed using either a 
main pulmonary artery band or, if patency of the ductus arteriosus 
is necessary, branch pulmonary artery banding (see below). In 
all patients, this will reduce the Qp/Qs, volume load, ventricular 
work, and usually will lower the end-diastolic pressure over time. 
Moreover, in those with ductal-dependent circulations (such as 
HLHS), it may have the added benefit of augmenting systemic 
diastolic pressure and enhancing coronary perfusion.

In contradistinction, obstructed pulmonary venous return 
is often a serious and frequently insurmountable problem. The 
timing of intervention varies, from emergent in the case of intact 
atrial septum to semi-elective in the case of moderate obstruction 
or less. Alternatively, if the anomalous pulmonary venous drainage 
is unobstructed, control of pulmonary blood flow may reduce the 
pulmonary venous gradient. Repair can then be deferred to a later 
date – ideally the second-stage procedure (17).

Although an atrial septectomy or repair of total anomalous 
pulmonary venous connections may resolve an anatomic obstruc-
tion (18), fetal development of the pulmonary vasculature in the 
setting of obstructed pulmonary venous drainage is associated 
with irreversible alterations in pulmonary vascular structure (19). 
This results in elevated PVR, which is associated with significant 
morbidity and mortality following cavopulmonary connection. 
Thus, overall outcomes among patients with single ventricle and 
obstructed pulmonary venous return are poor, especially in the 
setting of heterotaxy syndrome (18, 20–22). In the recent years, 
although novel attempts to relieve pulmonary venous obstruction 
during fetal life have been associated with improved early survival, 
this has commonly been associated with important morbidity and 
mortality during follow up (18).

Finally, the management of single-ventricle patients with non-
cardiac congenital anomalies or with postnatal illness (particularly 
sepsis) remains difficult. In this scenario, caution should be utilized 
when choosing conventional treatment measures. While systemic 
vasoconstrictors may be essential for maintaining blood pressure 

in septic patients, in univentricular heart patients, they can 
lead to disproportionate increases in SVR resulting in the rapid 
development of pulmonary overcirculation, volume overload, 
and poor oxygen delivery. In hypotensive patients, clinical and 
ecocardiographic evaluation should assist in identifying the 
underlying mechanism: vasodilatation, poor cardiac function, or 
maldistribution of cardiac output. In the case of sepsis, epineph-
rine provides the most effective support. The use of dopamine in 
single-ventricle patients is controversial; as it has been shown to 
increase the systemic oxygen demand offsetting any improvement 
in systemic oxygen delivery (23). Pure vasoconstriction agents 
have a significant risk of increasing the systemic more than PVR, 
resulting in systemic hypoperfusion and cardiac volume overload 
(1). In addition, the presence of a systemic inflammatory response 
and poor oxygen diffusion in the lungs may suggest the need for 
supplemental oxygen; however, this can result in pulmonary vaso-
dilation and heart failure. These patients will commonly require 
early surgical palliation to control pulmonary blood flow as well 
as invasive monitoring in order to allow for optimization of the 
circulatory physiology and treatments directed at the non-cardiac 
pathology.

initial Surgical Palliation

The goals of initial palliation are to provide unobstructed systemic 
blood flow, well-balanced pulmonary and systemic circula-
tions with controlled pulmonary blood flow, and unobstructed 
pulmonary and systemic venous return (including unrestricted 
atrial level mixing of venous returns). Although the long-term 
goals include normalization of the ventricular volume load and 
provision of normal systemic oxygen delivery, the elevated PVR 
characteristic of the newborn period requires a staged approach 
to achieve these long-term goals. As part of the initial surgical 
palliation, relief of any systemic outflow tract and pulmonary 
venous obstructions must also be undertaken. Thus, the precise 
procedure to accomplish the goals will depend on the underlying 
anatomy but may include the creation of a reliable and controlled 
source of pulmonary blood flood through a systemic–pulmonary 
shunt, limitation of pulmonary blood flow via main pulmonary 
banding, repair of aortic coarctation and aortic arch hypoplasia, or 
a combination of these (including the Norwood procedure). Relief 
of any pulmonary venous obstruction by either reconstruction of 
stenotic anomalous pulmonary venous connections or a complete 
atrial septectomy should be performed as needed.

Timing of initial intervention
The timing of the initial intervention directed at regulating the 
pulmonary blood flow (Qp) is determined by the severity of the 
baseline flow imbalance. In patients with reduced pulmonary 
blood flow and low Qp, the degree of cyanosis is the best indica-
tion for when to proceed with surgical palliation. Creation of 
a reliable and effective source of pulmonary blood flow with a 
shunt procedure (see below) should be undertaken when severe 
cyanosis (O2Sat <70%) is present (24). As part of the preoperative 
evaluation, other sources of cyanosis, including reversible lung 
disease, anemia, and obstruction to pulmonary venous flow need 
to be ruled-out (24).
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In contradistinction, in patients with excessive pulmonary 
blood flow, the onset of signs and symptoms consistent with 
volume overload and occasionally congestive heart failure 
(growth failure, tachycardia, tachypnea, the need for mechanical 
ventilation) suggest the need for pulmonary banding. Signs will 
usually worsen as the PVR falls postnatally. Occasionally, there is a 
reasonable balance between systemic and pulmonary circulation, 
while the pulmonary vascular bed is protected from high pressure 
and high flow. In some cases, these patients can exhibit growth 
and development in the first months of life, while the pulmonary 
vascular bed matures and develops. In this scenario, patients may 
then proceed directly to a superior cavopulmonary connection at 
an appropriate age.

Control of Pulmonary Blood  
Flow–Pulmonary Artery Banding
In patients with excessive Qp and signs of heart failure, control 
of pulmonary blood flow is essential to permit somatic growth 
and eliminate the volume load to the ventricle while the normal 
post-natal decrease in PVR takes place (6, 25). Most commonly, 
this is performed using a band on the main pulmonary artery, 
although patients with ductal-dependent systemic blood flow may 
undergo a hybrid procedure involving branch pulmonary artery 
band placement (see below).

It should be noted, that in patients with single-ventricle and 
discordant ventriculo arterial connection, pulmonary artery 
banding can lead to significant systemic outflow obstruction. In 
these patients, systemic outflow is dependent on flow through 
the ventricular septal defect (bulboventricular foramen) and the 
hypoplastic outflow chamber. In this scenario, pulmonary artery 
banding is usually associated with significant myocardial hyper-
trophy, leading to outflow obstruction in as many as 70–100% of 
patients (26, 27). Moreover, if surgical reconstruction is necessary 
to alleviate this issue, the risk is particularly high (27–30). Based 
on this experience, a Damus–Kaye–Stansel (DKS) or a modified 
Norwood procedure (with pulmonary blood flow provided by 
a systemic-to-pulmonary shunt) has been shown to provide a 
reliable systemic outflow, and avoids the need for subsequent 
reinterventions (31). Nevertheless, other reports still suggest 
acceptable outcomes with a strategy of arch reconstruction and 
pulmonary artery banding (29, 32–34). If this strategy is chosen, 
close surveillance to evaluate early development of restriction 
is mandatory, and a low-threshold for DKS anastomosis either 
before or at the superior cavopulmonary connection is critical. In 
the long-run, failure to recognize subaortic obstruction and the 
consequent ventricular hypertrophy may result in compromised 
Fontan candidacy (35, 36).

Augmentation of Pulmonary Blood Flow
Among patients with inadequate pulmonary blood flow (either 
preoperatively or as the result of initial palliation as in the Norwood 
procedure), augmentation of pulmonary blood flow through the 
use of a systemic-to-pulmonary shunt may be necessary. Multiple 
techniques are of primarily historical importance, including the 
classic Glenn, the classic Blalock–Taussig, the Waterston, and the 
Potts shunts. In current practice, nearly all shunts are a modified 

Blalock–Taussig shunt (mBTS) consisting of a PTFE graft connect-
ing the proximal innominate artery and the right pulmonary artery.

In most cases, the shunt is performed via a median sternotomy 
with the variable use of cardiopulmonary bypass. This incision has 
several advantages over the traditional lateral thoracotomy, includ-
ing the ability to ventilate both lungs, more central placement 
on the pulmonary arteries (minimizing the risk of lobar branch 
compromise), access for ligation of the arterial duct, and the ease 
of cannulation for cardiopulmonary bypass where required (24). 
In addition, avoidance of a thoracotomy mitigates the development 
of systemic-to-pulmonary artery collaterals and prevents morbid-
ity related to the lung parenchyma or the pleural space, which 
could have a deleterious effect on Fontan candidacy. In general, 
post-procedural arterial oxygen saturation of 75–85% indicates an 
appropriate sized shunt with a Qp:Qs approaching 1:1.

The diameter of the PTFE shunt is the primary determinant 
of its resistance. Alterations in the length of the tube or in its 
position on the arterial tree play a smaller, but still important role. 
In neonates weighing 3.5 kg, a 3.5-mm shunt is usually appropriate. 
In slightly larger infants or those with smaller pulmonary arteries, 
placing the shunt more proximally within the systemic circula-
tion may provide additional flow without the dramatic decrease 
in resistance apparent with a step-up to a 4-mm shunt. However, 
shunts originating in locations other than the innominate artery 
may have a higher early mortality risk, although confounding 
with morphologic variation preventing the use of the innominate 
artery may play an important role (37). Despite the popularity of 
the 3.5-mm standard, there is growing evidence that the use of 
smaller shunts may improve outcomes – both for patients with 
hypoplastic left heart syndrome and tricuspid atresia (Figure 1) 
(37, 38). However, this may be associated with a higher incidence 
of thrombosis and need for reintervention (39). Unfortunately, 
there is no mathematical formula to define the optimal shunt size 
in a specific patient. Several factors will determine pulmonary 
blood flow including the site of insertion and the diameter of the 
shunt, PVR, and the technical skill and experience of the surgeon 
in obtaining a 3.5-mm opening using a 3.5-mm graft (24).

The use of aspirin following the placement of a systemic-to-
pulmonary shunt (especially with PTFE) is a common practice 
but based primarily on observational data. A retrospective 
observational study by Li and colleagues suggests a beneficial 
impact of aspirin in preventing shunt thrombosis and improving 
survival in shunted patients (40). More recently, a randomized, 
controlled trial failed to show a benefit of clopidogrel over placebo 
in transplant-free survival, but nearly 90% of patients in the trial 
were on aspirin, suggesting that the message is really that clopi-
dogrel and aspirin is no better than aspirin (41). In fact, post hoc 
analysis of that population suggested a benefit with the use of 
aspirin in this population, with a 40% relative risk reduction in 
the incidence of the primary outcomes (death, transplantation, or 
shunt thrombosis) (41). Based on our own experience, aspirin does 
not appear important in preventing shunt thrombosis (personal 
communication). Thrombotic complications are common in these 
patients, and may influence mortality even in the presence of a 
patent systemic-to-pulmonary shunt (42). A randomized trial 
would be valuable in confirming the utility of aspirin in preventing 
these complications.
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Preservation of antegrade pulmonary flow may lead to pul-
monary overcirculation and volume overloading. This can be 
particularly deleterious among patients with atrioventricular valve 
regurgitation, in whom maintaining pulmonary arterial patency is 
associated with worsening regurgitation and higher risk of early 
mortality (37). Not infrequently, antegrade pulmonary blood flow 
is preserved based on the notion that it can improve survival in case 
of shunt thrombosis; however, this has never been demonstrated. 
More importantly, due to the presence of competitive blood flow, 
the presence of antegrade pulmonary blood flow has been associ-
ated with trends toward increased shunt thrombosis and mortality 
in multiple studies (43, 44).

Although rare in univentricular patients, the presence of a 
dynamic component to pulmonary flow limitation increases the 
complexity of early postnatal management. In the patient with a 
single functional ventricle, hyper cyanotic spells may result in a 
rapid deterioration of ventricular function, myocardial ischemia, 
and death. However, preservation of the native pulmonary blood 
flow at the time of insertion of a systemic-to-pulmonary artery 
shunt in order to provide adequate Qp during episodes of dynamic 
obstruction may lead to a extremely challenging management of 
excessive Qp at baseline. In these cases, it seems preferable to ligate 
and divide the main pulmonary artery, relying instead on a single 
and fixed source of pulmonary blood flow.

Obstruction to Systemic Outflow
Provision of a reliable and unobstructed systemic outflow pathway 
represents one of the main tenets in the management of single-
ventricle patients. Failure to relieve systemic outflow obstruction 

FiGURe 1 | Smaller systemic-pulmonary arterial shunt size resulted in 
decreased mortality and increased transition rates to BDCPA. (A) Use of 
3-mm shunt resulted in 85% of patients having BDCPA by 1 year, 10% still in 

palliated state, and only 5% of dead. (B) Use of larger 5-mm shunt resulted in 
much slower transition rate and slightly increased rate of death without BDCPA 
[from Karamlou et al. (37)].

during initial palliation has several deleterious consequences. If 
the outflow obstruction is distal to the source of pulmonary blood 
flow (subaortic obstruction in a patient with a PA band, or a 
coarctation in a patient with an mBTS, aortic stenosis in a patient 
with an RV–PA conduit), the result will be increased pulmonary 
blood flow and lower systemic output. This leads to pulmonary 
overcirculation, inadequate protection of the pulmonary vascular 
bed associated with the elevation of PVR, and ultimately increased 
volume load on the single ventricle. Most importantly, the outflow 
obstruction results in an important pressure load on the ventricle 
with consequent hypertrophy, increased myocardial stiffness, and 
elevation in end-diastolic pressure. At the time of conversion to 
a cavopulmonary connection (and the loss of the systemic blood 
pressure as a driving force for pulmonary blood flow), elevations 
in end-diastolic pressure increased PVR and may preclude Fontan 
completion or result in early Fontan failure and poor survival 
(36, 45–47).

The most common procedures used in the relief of systemic 
outflow tract obstruction are the DKS and Norwood procedures. 
In both cases, the main pulmonary artery is used as the main 
pathway for the systemic outflow. In cases when the systemic 
outflow obstruction is associated with aortic arch hypoplasia 
and/or coarctation of the aorta, then Norwood procedure is the 
procedure of choice (4).

As noted above, the threshold for performing either a DKS 
or a Norwood procedure in patients with a univentricular heart 
and potential or mild systemic outflow obstruction is a matter 
of controversy. If creation of a DKS is considered, placement of 
a pulmonary band should be tempered by the distortion of the 
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pulmonary (neo-aortic) root and valve, which can be associated 
with neo-aortic insufficiency at the time of DKS. The negative 
feedback loop initiated by the presence of ventricular outflow 
obstruction stimulates myocardial hypertrophy leading to worsen-
ing outflow obstruction and the potential for long-term myocardial 
alterations as the result of early pressure loading of the ventricle. 
Given these considerations, the threshold for performance of a 
procedure to relieve outflow obstruction should be low with the 
goal to provide a durable and reliable solution that would avoid 
the need for repeated reinterventions. Evidence-based guidelines 
would require a prospective trial.

Stage 1 Norwood Procedure
The Norwood procedure is commonly performed among patients 
with univentricular hearts and systemic outflow obstruction. In 
spite of nearly three decades of experience, little consensus exists 
regarding the most appropriate source of pulmonary blood flow, 
techniques of intraoperative management, and cerebral protection, 
and whether hybrid or conventional procedures provide the most 
appropriate palliation.

Choice of shunt
Since initially described, the source of pulmonary blood flow has 
evolved over time, including a direct RV to PA conduit, central 
shunt, and modified BT shunt (48–50). The RV–PA conduit has 
the advantage of eliminating the systemic diastolic run-off into the 
pulmonary circulation that causes reversal of flow in the ascend-
ing aorta and coronary arteries among patients palliated with an 
mBTS (51). This flow reversal places patients at-risk for coronary 
ischemia and has been theorized to contribute to interstage mortal-
ity (52, 53). However, concern still exists about the impact of the 
ventriculotomy on late ventricular dysfunction and its use has 
been associated with a higher number of interventions prior to 
subsequent palliation (54).

In order to answer these questions, a multi-center rand-
omized trial was undertaken to compare the two shunt types 
(53). Although there was a 10% reduction in mortality at 1 year 
with the use of a right ventricle to pulmonary artery conduit, no 
significant difference was observed in transplant-free survival 
at 2 years following Norwood procedure (Figure 2) (53). This 
early difference in mortality is consistent with the physiologic 
advantages of the RV–PA conduit: elimination of diastolic run 
off with a resulting less precarious circulatory balance during the 
early post-operative period. However, patients with an RV–PA 
conduit underwent more interventions on the pulmonary 
artery (53, 55). A more detailed analysis of this cohort revealed 
that the use of an RV to PA conduit offered a significant initial 
improvement on transplant-free survival among those patients 
with an atretic aortic valve who were 2.5 kg or bigger (Figure 3) 
(20). Beyond that, it appears that surgeon and institutional 
familiarity with a particular strategy (whether mBTS or RV–PA 
conduit) may be the most important determinant of institutional 
outcomes. However, it is likely that centers with less familiarity 
with the Norwood procedure may have more stable immediate 
post-operative courses and improved survival with the use of the 
RV–PA conduit (53).

Our current practice is to prefer the RV–PA conduit in 
patients with aortic atresia where the risk of coronary ischemia 
is particularly high in the absence of antegrade aortic blood flow. 
Otherwise patients receive an mBTS due to our concerns regard-
ing the need for additional interventions and long-term impact 
on ventricular function. Importantly, ongoing modifications of 
the RV–PA conduit, including the use of ring reinforced grafts 
and dunking of the graft into the ventricle (56), may decrease the 
need for interventions and mitigate the negative aspects of this 
shunt. Continued evaluation of the optimal strategy is important 
as further technical modifications are introduced.

Hybrid versus traditional procedure
The combination of stenting of the ductus arteriosus and banding 
of the branch pulmonary arteries as initial palliation for hypoplas-
tic left heart syndrome was initially described by Gibbs et al. in 
1993 (57). It was thought that moving the complex cardiac surgical 
procedure out of the high-risk neonatal period would enable both 
improved survival and improved neurodevelopmental outcomes 
(58–61). Although an increasing number of hybrid procedures 
have been performed, an attendant improvement in outcomes, 
including neurodevelopmental function has not been realized 
(59, 60, 62–64). In spite of these results, enthusiasm for its use 
among high-risk patients continues and few centers have adopted 
the use of the hybrid for all patients (62). In theory, waiting for 
definitive palliation until patients are beyond the critical neonatal 
period might mitigate the risk associated with low birth weight, 
early gestational age, aortic atresia – all factors known to increase 
mortality following stage 1 Norwood procedures – and provide the 
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FiGURe 3 | (A) Parametric survival curve by anatomic subtype of subjects 
undergoing RVPAS. (B) Parametric survival curve by anatomic subtype of 
subjects undergoing MBTS [from Tweddell et al. (20)].

FiGURe 4 | Competing risks analysis of patients after: (A) Norwood 
operation; (B) removal of bilateral pulmonary arterial banding (bPAB). 
Cumulative incidence of three competing outcomes is shown: death (solid 
black line), intervention (dashed black line), and alive without intervention 
(dotted black line). Comparison of cumulative incidence between groups: 
death (p = 0.057), intervention (p = 0.15) [from Davies et al. (66)].
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time to address significant associated conditions (20, 65). Several 
centers have applied the hybrid procedure selectively to patients 
in these categories (63, 66–72).

However, with additional follow up, it has become apparent that 
the hybrid procedures can mitigate only some of the risk associ-
ated with these factors. Consistent with broad results in surgery 
among patients with low birth weight (73), it does not appear that 
the months of potential growth prior to surgical palliation result 
in improved outcomes. Furthermore, the placement of branch PA 
bands in infants <2 kg has significant technical challenges. Small 
changes in the diameter of the band may result in large alterations in 
the relative intraluminal diameter. Ideal band tightness and balanced 
pulmonary blood flow are difficult to achieve. Similarly, patients with 
aortic atresia continue to have a high-risk for mortality both in the 
interstage period and following the comprehensive second stage pal-
liation (63). This may reflect the ongoing risk of myocardial ischemia 
as a result of coronary arterial dependence on retrograde arch flow 
between the hybrid procedure and the comprehensive second stage 
(61). Even in the absence of clinically evident preductal coarctation, 
ongoing subclinical ischemia may result in a myocardium less able to 

tolerate the long period of myocardial ischemia at the comprehensive 
second stage. While the use of the reverse BT shunt may mitigate 
some of this risk, it adds to the complexity of a procedure whose 
strongest argument is its simplicity (74).

Finally, it is clear that patients undergoing hybrid palliation 
are affected by the obligatory distortion of the central pulmonary 
arteries and pulmonary arterial growth, resulting in an increased 
rate of pulmonary arterial interventions (Figure 4) (59, 61, 66). 
Although the need for pulmonary arterial interventions may be 
related to technical aspects of the comprehensive second stage, 
our data would suggest that the duration of bPAB influences the 
risk of intervention. Patients with branch PABs in place for longer 
than 90 days have higher rates of pulmonary arterial intervention 
(66). However, Fontan candidacy seems to be unaffected by the 
use of the hybrid procedure (61, 63), so it remains unclear whether 
these additional pulmonary arterial interventions have the feared 
negative long-term consequences.
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Given the potential morbidity of the hybrid procedure and the 
inability to demonstrate a significant improvement in outcomes, 
its usefulness remains a matter of controversy. The use of branch 
PABs for the temporary control of pulmonary blood flow seems 
particularly advantageous in the setting of initial hemodynamic 
instability refractory to usual medical management, reversible 
risk factors, or need for an immediate non-cardiac surgical inter-
vention (TE fistula, duodena atresia) (63, 67, 70, 75, 76). In the 
setting of reversible risk factors, such as, late diagnosis with end 
organ dysfunction infection, NEC, sepsis, etc., branch pulmonary 
artery bands allow for the control of pulmonary blood flow and 
the optimization of systemic cardiac output and coronary perfu-
sion while allowing time for the resolution of these important 
co-morbidities, which are known risk factors for poor outcome. 
Following clinical improvement, patients can be palliated with a 
traditional stage 1 Norwood, also known as rapid stage I Norwood, 
avoiding the challenges of either long-term branch PA banding 
or the subsequent comprehensive second stage procedure (66, 
75). Controversy still surrounds the role for hybrid palliation 
among centers with less experience with the traditional Norwood 
procedure. As previously shown, both center and surgeon volume 
influence outcomes following the Norwood procedure (77); it 
remains unclear whether hybrid mortality is influenced by insti-
tutional HLHS volume (62); thus, low-volume centers may benefit 
from the use of hybrid procedures as an interim management 
option when transfer to a higher volume center is not available 
or would be delayed.

Superior Cavopulmonary Connection

The superior cavopulmonary connection (SCPC, bidirectional 
Glenn or hemi-Fontan) has a significant salutary effect on cardiac 
function. The second-stage procedure relieves the volume load on 
the single ventricle while maintaining systemic oxygen delivery 
(78). This results in ventricular work-load approximating that 
of the systemic ventricle in biventricular circulation (79, 80). 
One of the critical features of the second-stage procedure is the 
opportunity for the ventricle to have enough time for ventricular 
remodeling following the removal of the volume load prior to 
Fontan completion (24). In addition, the use of an intermediate 
SCPC provides the opportunity to address other anatomic and 
physiologic abnormalities (including atrioventricular valve regur-
gitation, pulmonary artery distortion) therefore optimizing the 
chances of a successful Fontan completion. Overall, the advantages 
of performing a second-stage palliation are felt to outweigh its 
disadvantages, and most centers perform a three-stage palliation 
for the univentricular heart rather than proceeding directly to 
Fontan completion.

In light of these physiologic advantages, and aiming to reduce 
the inter-stage mortality among patients with a systemic-to-
pulmonary artery shunt, the timing of the SCPC has been shifted 
toward an earlier age than the usual 5–6 years (81–83). The high 
PVR of the early neonatal period clearly precludes the use of a 
cavopulmonary connection in early life and when performed in 
the first 2 months of age is likely to result in elevated cavopulmo-
nary pressures and cyanosis (24). Notably, the SCPC has been 
performed in some special circumstances as early as 8–10 weeks of 

age with reasonable outcomes but significantly increased resource 
utilization (84).

Alternatively, patients who have a reliable and controlled source 
of pulmonary blood flow have the innate advantage of having a 
pulmonary vascular bed that is protected from high pressure 
and flow, while affording appropriate oxygen saturations. In this 
case, the option of a primary SCPC should be considered after 
10–12 weeks of age (24).

Choice of Superior Cavopulmonary Connection: 
Hemi-Fontan or Bidirectional Glenn
The type of superior cavopulmonary connection is of little 
importance, as it does not appear to influence long-term outcomes 
(85). While the hemi-Fontan operation facilitates a subsequent 
lateral-tunnel Fontan, this procedure is technically more complex. 
However, it minimizes the dissection and therefore theoretically 
may reduce the risk of bleeding, lymphatic disruption, or phrenic 
nerve injury, but no definitive data exist to support these theo-
retical advantages (86, 87). Although immediate post-operative 
sinus node dysfunction appears to be more common with the 
hemi-Fontan, this is a transient phenomenon and subsequent 
outcomes are equivalent (85). Therefore, the decision regarding 
which superior cavopulmonary connection to perform should be 
based primarily on the planned Fontan procedure.

Additional Pulmonary Blood Flow at  
Second-Stage Palliation
Controversy continues to exist regarding the management of 
additional pulmonary blood flow at the time of SCPC. Additional 
pulmonary blood flow may be provided by either leaving a previous 
systemic–pulmonary shunt intact at the time of SCPC, or by leav-
ing antegrade flow through a banded or stenotic native pulmonary 
artery (88, 89). Theoretically, the potential benefits of maintenance 
of additional pulmonary blood flow include: (1) higher oxygen 
saturation levels between superior and total cavopulmonary con-
nection procedures (88–94) and (2) improved pulmonary arterial 
growth (88, 91, 94, 95), and (3) lowering of PVR due to the salutary 
effects of pulsatile blood flow (96, 97). In addition, as a result of 
pulsatile flow and higher oxygen levels, there may be a decreased 
stimulus for the development of pulmonary arteriovenous malfor-
mations and systemic-to-pulmonary collateralization (96).

However, there is no convincing evidence to support these 
benefits. Because of both the increase in venovenous collaterals 
and somatic growth, the higher oxygen saturations may not persist 
through Fontan palliation (95, 98, 99). There is no conclusive data 
to validate the notion of increased growth and development of 
the pulmonary arterial vasculature (92, 100), or normalization of 
pulmonary arterial size (88, 101).

Furthermore, preservation of additional pulmonary blood 
flow has the potential for significant side effects, predominantly 
related to the persistent volume load on the single ventricle (81). 
This is especially true of cases in which the additional pulmonary 
blood flow occurs through a shunt. The ongoing volume load may 
result in either worsening of atrioventricular valve regurgitation 
or ventricular function; although, conflicting data exist and some 
reports have demonstrated the maintenance of both valvular and 
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TABLe 2 | The “Ten Commandments” of the ideal Fontan candidate.

Age older than 4 years
Sinus rhythm
Normal systemic venous return
Normal right atrial volume
Mean pulmonary artery pressure <15 mm Hg
Pulmonary arteriolar resistance <4 Wood units/m2

Pulmonary artery–aorta ratio more than 0.75
Left ventricular ejection fraction more than 0.60
Competent mitral valve
Absence of pulmonary artery distortion
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ventricular function following SCPC with preservation of native 
antegrade flow through the pulmonary artery (88, 91, 94, 98). In 
addition, the higher pressure in the superior cavopulmonary con-
nection (89, 91, 93–95) has been associated with a higher incidence 
of prolonged pleural drainage (89, 93, 94, 102, 103), increased 
length-of-stay (102), and possibly an increase in the incidence of 
superior vena caval syndrome (88). In the long-run, these higher 
pressures also lead to increased venovenous collaterals (94, 95). 
Finally, volume-loading remains a concern for Fontan candidacy 
and long-term cardiac function, especially since older age at the 
time of volume unloading is associated with decreased exercise 
performance in adolescence (104).

It does not appear that either strategy increases the likelihood of 
Fontan candidacy (89, 94, 99). Patients with additional pulmonary 
blood flow may tolerate a longer delay until Fontan completion 
(99), but the long-term advantages of such a strategy are not clear. 
Some (89, 102) – though not all (88, 91, 94, 98) – series report 
higher mortality among patients with additional pulmonary blood 
flow. It seems clear that, among patients with elevated PVR or 
hypoxia despite an unobstructed SCPC, preservation of pulmonary 
blood flow may allow for partial improvement in the volume 
loading of the ventricle with the possibility of Fontan candidacy 
in the future. In fact, some have advocated the use of an SCPC 
with preserved pulmonary blood flow as an alternative to Fontan 
palliation (103, 105). However, given the restrictive (through either 
banding or native stenosis) antegrade blood flow, most patients 
will eventually outgrow the pulmonary blood flow and become 
cyanotic. Subsequent late Fontan conversion among patients 
developing worsening cyanosis is associated with high mortality 
(106), suggesting that it is not the best strategy in patients who 
are Fontan candidates.

Care should be exercised in situations where the native pulmo-
nary outflow tract is ligated. In these cases, the native pulmonary 
artery stump has the potential to act as a nidus for thrombus 
formation (107–109). Various surgical techniques may be used 
to eliminate the supravalvar area of stasis in the main pulmonary 
artery. These include the creation of a DKS anastomosis in patients 
at-risk for later systemic outflow tract obstruction, resection of 
pulmonary valve leaflets at the time of SCPC, or closure while 
oversewing the valve (106).

Total Cavopulmonary Connection –  
The Contemporary Fontan Procedure

Physiology of the Total Cavopulmonary 
Connection
Initially, the Fontan procedure was described for the treatment 
of tricuspid atresia and was intended to use atrial contractions 
as a “pulmonary ventricle” (110–112). However, it subsequently 
became clear that the contractions of the atrium were insufficient 
(and unnecessary) to provide energy to propulse the blood 
leaving the systemic capillary beds to perfuse the lungs (113). 
In the current single-ventricle staging process, the benefits of 
the Fontan procedure include near normalization of systemic 
oxygen saturations and elimination of the risk of paradoxical 
embolization. Unfortunately, this benefit comes at the expense 

of, chronic passive congestion within the systemic venous system 
and the liver (114, 115), limited cardiac output reserve both at 
rest and during exercise (111, 112), and a higher afterload on the 
ventricle (114).

Nevertheless, in many situations, a TCPC provides the best 
long-term palliation for patients with a complex cardiac defect 
not amenable to biventricular repair. Alternatively, it has been 
suggested that an SCPC (with or without additional antegrade 
pulmonary blood flow) could be the final palliative stage in patients 
with unsuitable hemodynamics for Fontan completion or as a 
means to avoid the long-term ill effects of chronic passive con-
gestion (103, 105). Although currently very little evidence exists 
to guide the long-term choice of palliation strategy in individual 
patients, in most centers, the Fontan remains the palliation strategy 
of choice (24, 115).

Fontan Candidacy and Timing
In 1977, Choussat and colleagues published the criteria for an 
ideal Fontan candidate (Table  2) (116). Since then, these have 
been refined based on a better understanding of the anatomic 
and physiologic variables that are indispensable to create a sound 
and efficient Fontan physiology, and a recognition that certain 
imperfections can be corrected prior to Fontan completion (110, 
117–121). Most importantly, it remains critical that the resistance 
across the pulmonary capillary bed remains low. Excessive PVR 
is a clear contraindication to a Fontan because PVR provides 
the primary limitation to cardiac output in patients without 
a prepulmonary pump (111, 112), and non-pulsatile flow may 
result in long-term poorly adaptive remodeling (97, 122). While 
mean pulmonary artery pressures >15 mm Hg are associated with 
Fontan failure (117, 118), precise cutoffs have been difficult to 
identify (in part because few centers will attempt a Fontan in the 
setting of a Rp >3 or 4) (24, 115). Pulmonary arterial size itself does 
not appear to present a contraindication to Fontan completion 
because it is not well correlated with PVR (123), but enlargement 
of hypoplastic pulmonary arteries should be considered prior to 
Fontan completion.

Both ventricular dysfunction and atrioventricular valve regur-
gitation also result in a higher risk of Fontan failure (117, 118). In 
this setting, a lower threshold for intervening on outflow and arch 
obstructions among Fontan candidates is likely necessary (119). 
Even mild elevations in afterload and the consequent develop-
ment of ventricular hypertrophy associated with an increase in 
end-diastolic pressures may have important long-term negative 
consequences (124). Thus, early atrioventricular valve repair may 
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be indicated prior to the Fontan procedure (15). Generally, given 
the physiologic challenges resulting in conversion to a TCPC, 
optimization of the circulation should be performed during 
second-stage palliation to minimize the operative insults of the 
Fontan procedure itself.

Choice of Total Cavopulmonary Connection: 
extracardiac Conduit or Lateral Tunnel
The Fontan procedure has been considerably modified since the 
description of a direct atriopulmonary connection in a patient 
with tricuspid atresia by Fontan (3). A variety of atriopulmonary 
connections were promulgated, but over the long-term significant 
complications ensued, including right atrial dilatation, thrombosis 
within the Fontan circuit, compression of the right pulmonary 
veins, atrial dysrhythmias, and obstruction of the atriopulmonary 
connection (125). Currently, nearly all “Fontan” procedures are 
performed as TCPC (126). Most are either the lateral tunnel 
[initially described by deLeval (127)] or the extracardiac conduit 
[described by Marcheletti (128)]. Unfortunately, as with many 
aspects of the Fontan palliation, clarity as to the optimal type of 
TCPC in all patients (or even in specific subsets) remains elusive. 
Although the lateral-tunnel technique was widely adopted initially, 
concerns about the development of sinus node dysfunction and the 
potential development of atrial dysrhythmias associated with the 
segment of atrial wall exposed to higher systemic venous pressure, 
led to a gradual shift toward adoption of the extracardiac conduit 
(121, 129).

Approximately, 2/3 of all TCPC procedures performed in the 
United States are extracardiac conduits and the remainder are 
predominantly lateral tunnels (121). The procedures are different, 
but it remains largely a matter of speculation as to whether and how 
the theoretical benefits of each translate into alterations in long-
term outcomes. A recent report from the STS Congenital Heart 
Surgery database identified the use of the extracardiac conduit 
as a risk factor for early mortality (121). Given the retrospective, 
observational, large dataset used, it is difficult to know whether 
this reflects differences in the procedure itself or differences in 
unmeasured covariates influencing the choice of procedure at 
many centers.

Among the advantages of the lateral tunnel are the potential for 
pathway growth enabling early Fontan completion, often between 
12 and 30 months of age (121), as well as both theoretical (130, 
131) and observed (132, 133) minimization of power loss through 
the Fontan circuit. In theory, decreasing the power loss through 
the circuit may improve the functional and exercise capacity in 
lateral tunnel patients (133), although direct comparisons have 
shown an advantage to the extracardiac conduit contrary to these 
predictions (134). Differences between theory and practice may 
be related to deviations over time and with growth from the ideal 
tubular structure (138). While earlier Fontan completion may have 
benefits in reducing the stimulus for aortopulmonary collateral 
formation by normalizing oxygen saturations, studies have not 
demonstrated a resultant long-term advantage in survival or 
functional status (135).

Alternatively, the extracardiac conduit TCPC must be per-
formed at an older age due to the lack of growth potential in the 

conduit. Some perceived advantages to the procedure include: no 
need for myocardial ischemia or even cardiopulmonary bypass 
(135), and smaller suture lines and a reduction in foreign material 
within the right atrium (135–139). Additionally, multiple varia-
tions of the typical procedure have been advocated, including the 
use of a pericardial tube, “Y”-graft modifications, and a combined 
intra/extracardiac conduit, among others (140–144).

Overall, the variability in diagnosis, operative technique, and 
perioperative management as well as limited long-term follow-up 
continues to plague studies attempting to identify a significant 
advantage of one technique or another. Whether hybrid approaches 
to Fontan completion (generally requiring a hemiFontan as the 
second stage procedure) will ultimately result in better early and 
late outcomes remains unclear (140, 141).

Use of a Fenestration
In the current era, the majority of Fontan procedures are per-
formed with “fenestration” (121, 129). There is evidence including 
a prospective randomized trial (145) that fenestration decreases the 
incidence of prolonged post-operative effusions (145–147), reduce 
post-operative lengths of hospital stay (146, 148, 149), and lessen 
the need for early reinterventions (145, 146); however, conflicting 
views are supported by more recent but non-controlled studies 
(117, 150–156). The impact of fenestrations on survival and Fontan 
take-down is less clear (135, 155, 157–163). Early studies appeared 
to suggest a lower mortality among fenestrated Fontan patients 
(146, 147, 157, 164), but more contemporaneous series have not 
identified a higher risk of early mortality associated with the lack 
of a fenestration (117, 155, 165, 166).

Most centers performing lateral-tunnel Fontans routinely 
perform fenestrations (155, 158), some do not (159). Technical 
modifications of the Fontan procedure, including the avoidance 
of cardiopulmonary bypass and myocardial ischemia, have been 
pursued in a few centers with attempting to decrease the morbid-
ity after Fontan procedure, but has not been demonstrated (135). 
While some centers have retreated from the use of a fenestra-
tion (166), others are using it with increasing frequency (167). 
Arguments against routinely leaving incomplete atrial partitioning 
include: ongoing hypoxemia with a potential continued impetus 
for collateral formation (168), risk for paradoxical embolus (169), 
decreased exercise tolerance (170), and the potential for conduit 
thrombosis following interventional fenestration closure (171, 
172). However, many of these risks are only theoretical, and no 
studies have demonstrated a statistically significant increase in 
the most important complications including stroke and conduit 
thrombosis (148, 167).

Closing of fenestrations has not resulted in improvement in 
exercise capacity (173), and there is no data demonstrating a 
decreased risk for thromboembolic complications in the absence 
of a fenestration. Despite objective evidence that support the use 
of a fenestration to decrease the incidence and duration of pleural 
effusions, relative agreement about its use only exists in patients 
considered at high-risk for post-operative morbidity (24). This 
includes patients with elevated Fontan conduit pressures, extensive 
systemic-to-pulmonary collateral flow, decreased ventricular func-
tion, and elevated PVR (174, 175).
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Long-Term Complications of 
Univentricular Physiology

The long-term complications of circulatory physiology lacking 
a pulmonary pump are manifested. As noted above, transition 
to the TCPC from atriopulmonary connections has ameliorated 
some of the complications associated with Fontan’s original 
technique, but has not eliminated them (127, 128). Even with 
a well-functioning circuit and low PVR, patients with a TCPC 
have decreased exercise tolerance as a result of limited ability to 
increase cardiac output, due to the dependency of cardiac output 
on pulmonary resistance rather than loading or inotropy (111, 
112). In addition, cardiac rhythm disturbances are common 
(176–179), and loss of sinus rhythm may have important deleteri-
ous hemodynamic effects (184). Protein-losing enteropathy and 
plastic bronchitis are thought to be related to chronic exposure 
to elevated central venous pressures, low cardiac output, and 
lymphatic congestion (180–182). They constitute two of the most 
important and debilitating chronic sequelae of the Fontan physi-
ology and are commonly associated with significant mortality 
(124). It has become increasingly obvious that chronic elevation 
of central venous pressures is associated with variable levels of 
hepatic congestion, fibrosis, and even cirrhosis (180). Finally, 
thromboembolic complications, while more common with 
atriopulmonary connections, remain an important long-term 
source of morbidity and mortality in patients with TCPC (124, 
183). Thromboembolic disease is likely multifactorial and related 
to circulatory stasis and alterations in the coagulation system 
(184). Optimal anticoagulation in these patients remains unclear, 
although recent retrospective analyses have found reduced 
morbidity and mortality among patients receiving antiplatelet or 
warfarin therapy (124). Options include both antiplatelet therapy 
and anticoagulation with either warfarin or heparin; no specific 
therapy provides clear benefit in all patients (183).

Transplantation for Patients with 
Univentricular Heart

Due to limitation in donor availability, cardiac transplantation can-
not provide a comprehensive treatment option for those patients 
with single-ventricle physiology, but has become the bail-out 
strategy for selected patients with a failed palliative strategy either 
with or without preserved ventricular function. Nevertheless, it 
should be understood that this does not constitute a cure but rather 
a more manageable form of palliation, which may be associated 
with a better quality of life (185). In the early era of hypoplastic 
left heart syndrome treatment, Loma Linda pioneered and popu-
larized the use of transplantation as the primary treatment for 
these patients (186–188). Outcomes were excellent, and outcomes 
following transplantation among infants with univentricular heart 
remain excellent (189, 190). However, these outcomes rely on 
children reaching transplantation quickly enough to avoid waitlist 
mortality and to avoid clinical decline or the need for palliative 
procedures that would alter post-transplant mortality. Given the 
relative paucity of donor allografts available, transplantation of all 
patients with univentricular heart is not practical.

Alternatively, transplantation can improve outcomes by 
eliminating the risk factors, which commonly lead to high 
mortality among patients with palliated univentricular circula-
tion. For example, severe atrioventricular valve regurgitation or 
ventricular dysfunction significantly increases the risk of single-
ventricle palliation (15), but unless PVR was affected (191), these 
would have little impact on outcomes following orthotopic heart 
transplantation. In contrast, low birth weight and early gestational 
age are risk factors for palliation that would not be eliminated by 
transplantation and would influence post-transplant outcomes (67, 
192, 193). Similar consideration may be given to patients with right 
ventricular-dependent coronary circulation pulmonary atresia 
with intact ventricular septum. Within the confines of the current 
availability of donor allografts for children, a selective strategy of 
transplantation in these patients is likely to offer the best chance 
at long-term survival in all patients.

Even the “perfect” Fontan has a recognized attrition rate over 
time (194). The exact definition of Fontan failure is imprecise, 
but should include both functional and hemodynamic evaluation 
(195). Transplantation provides an important option for Fontan 
failure, but remains a high-risk procedure, especially in adults 
(196–200). Precise criteria for listing and the optimal timing of 
transplantation in patients with declining functional status remain 
unclear (198, 201). Patients with anatomic issues that lead to energy 
loss or rhythm disturbances may benefit from Fontan revision or 
conversion, or atrial arrhythmia surgery (178, 195). While patients 
with impaired ventricular function appear to benefit from trans-
plantation, patients with Fontan failure in the setting of preserved 
ventricular function have poor outcomes independent of trans-
plantation (201). Whether this represents inappropriate timing of 
transplantation (where earlier transplant would have resulted in 
better outcomes) or the fact that ongoing alterations in pulmonary 
vascular and hepatic function in particular are not improved with 
pump replacement remains unclear. The need for simultaneous 
liver transplantation is also an area of active investigation with no 
clear threshold for when hepatic dysfunction should be considered 
irrecoverable. Mechanical circulatory support in Fontan patients 
also remains challenging and the optimal strategy of support to 
patients with a TCPC will likely depend on the type of failure 
(circuit failure versus ventricular pump failure) (201–203). The 
increasing number of adults with imperfect Fontan circulations is 
leading to active investigation to answer these questions in order 
to improve the survival and functional outcomes in these patients 
with or without transplantation.

Univentricular vs. Biventricular Circulation

Despite the binary nature of the surgical decision regarding 
univentricular palliation, “univentricular” lesions represent a 
spectrum of anatomic subtypes, which – at the milder end – may 
be amenable to a two-ventricle repair. The definition of “milder 
end” and the determination of whether a borderline anatomy is 
adequate to pursue a biventricular circulation remain challeng-
ing. Different level of obstruction in these borderline cases makes 
the evaluation difficult and the surgical intervention to address 
them a challenge. While obstruction at the aortic level and even 
at the level of the systemic outflow can be effectively solved, it 
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is often the inflow in the ventricular cavity (size of the mitral 
or atrioventricular valve) that presents the greatest challenge to 
determine the feasibility of a two-ventricle repair. However, the 
decision about which patients may benefit from a two-ventricle 
repair remains highly dependent on the specific lesion and the 
institutional expertise to accomplish these complex repairs with 
acceptable morbidity and mortality.

HLHS
Patients with left heart anomalies represent a wide spectrum of 
anatomy and physiology. The decision-making is fairly clear at 
ends of the spectrum, but becomes more difficult when patients 
fall in the so-called borderline category. Despite extensive studies 
(204–208), there are currently no definitive criteria to identify 
which patients are likely to benefit from a single or a biventricular 
strategy. Obstruction to systemic cardiac output may occur 
at multiple levels within the left-sided circulation: including 
the mitral valve, the left ventricular chamber (through both 
underdevelopment and presence of endocardial fibroelastosis), 
the left ventricular outflow tract, the aortic valve, and the aorta 
itself. Each level needs to be examined to determine whether 
reconstruction is necessary and if so, whether the obstruction 
can be relieved. While data from the CHSS1 may provide guid-
ance to determine the optimal strategy based on preoperative 
criteria including aortic diameter, tricuspid regurgitation, LV 
size, and the presence of EFE, there remains significant cross-over 
between the predicted best management and actual management 
(206–208).

In most cases, aortic atresia, mitral atresia, and extremely small 
left ventricles (left ventricular end-diastolic volume z-score <−5) 
are clear indications for single-ventricle palliation. While some 
centers have had success with staged left ventricular recruitment in 
patients with left-sided structures with z-scores as low as −5, this 
is a technically challenging process requiring multiple procedures 
and the long-term results compared to single-ventricle palliation 
are uncertain (209). Based on CHSS data, the need for early 
re-intervention in patients selected for a biventricular strategy 
predicts poor outcomes, suggesting that in borderline cases, 
univentricular palliation may be the safer strategy – at least in 
the early to mid-term follow-up (207).

When left ventricular outflow obstruction is present, multiple 
procedures to enlarge the systemic outflow and/or to address the 
aortic valve can be performed, including surgical or balloon aortic 
valvuloplasty, the Ross–Konno procedure (174, 210–212), and the 
Yasui operation (212, 213). Similarly, resection of endocardial 
fibroelastosis can have a favorable effect not only in ventricular 
compliance and function but also in growth (209, 214, 215). In 
the absence of precise definitions of an adequate LV outflow, 
a multitude of criteria are used to predict the adequacy of the 
left heart to support the systemic circulation. These include an 
LV outflow tract dimension greater than the patient’s weight in 
kilograms (216), aortic annular diameter >4.5  mm, or z-score 
>−5 (205), It is the mitral (or left-sided AV valve in the case of 

1 Online calculator available at: http://www.chssdc.org/content/chss-score-neonatal- 
critical-aortic-stenosis

unbalanced AV canal) that constitutes the greatest challenge when 
deciding toward a two-ventricle reconstruction in borderline cases. 
In this scenario, the unanticipated need for a mitral valve repair/
replacement following a Ross–Konno procedure can be associated 
with a significant increase in mortality (174, 175).

Pulmonary Atresia/intact ventricular Septum
In patients with pulmonary atresia and intact ventricular 
septum, it is the size of the tricuspid valve that provides the 
best guidance toward an appropriate management pathway. 
Outcomes following a biventricular strategy (transannular patch 
and systemic–pulmonary artery shunt) are significantly worse 
when the tricuspid valve z-score is below −4, supporting the 
notion that the tricuspid valve size provides the most reliable 
indicator of the adequacy of the right heart for biventricular 
repair (217–220). However, the deleterious effect of aggressively 
pursuing a biventricular strategy can extend beyond the early 
follow up, as mid-term functional outcomes are worse when 
patients with a small tricuspid valve z-score are forced down to 
a biventricular management pathway (221). When it is evident 
that the right heart cannot manage the entire cardiac output, 
significant enthusiasm exists about the possibility of maintaining 
antegrade pulmonary blood flow form the inferior vena cava 
while avoiding the exposure of the hepatic circulation to the 
higher venous pressures of the Fontan circulation in a so-called 
11/2 ventricle repair (superior cavopulmonary connection while 
leaving antegrade pulmonary flow through the pulmonary valve). 
Although it has been postulated that this physiology would be 
associated with an improved functional status, follow-up studies 
suggest that these patients have exercise capacities and cardiac 
reserves similar to univentricular patients (222). Patients with 
larger tricuspid valve (z-score >−2.5), a tripartite right ventricle, 
and a patent pulmonary valve can undergo an initial biventricular 
repair with excellent results although a systemic–pulmonary 
shunt is not infrequently needed to provide adequate pulmonary 
blood flow in the neonatal period (217).

A particularly challenging group is the one comprised by 
patients with PA/IVS and right ventricular dependent coronary 
circulation, in whom single-ventricle palliation carries a very 
high risk, not only initially but during subsequent palliation 
(217, 223). This is especially true in the presence of a vessel 
decompressing the coronary circulation into the pulmonary 
artery and during the construction of a systemic-to-pulmonary 
artery shunt (223). Although there is no clear data demonstrating 
which management pathway is best in these challenging patients, 
primary transplantation appears to be the preferred option in 
many centers (224).

Unbalanced Atrioventricular Septal Defect
Surgical decision-making regarding the pursuit of a biventricular 
circulation in patients with unbalanced atrioventricular septal 
defects is particularly difficult and depends on the adequacy of the 
AV valve inflow. Detailed analysis of echocardiographic variables 
aimed to identify which patients would have a successful biven-
tricular repair has been facilitated by the creation of the modified 
atrioventricular valve index (AVVI, an echocardiographic measure 
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of the relative area of the left atrioventricular valve in relation to 
the entire AV valve) (225). While a modified AVVI between 0.4 
and 0.6 identified the balanced range of the spectrum, patients 
with an AVVI between 0.2 and 0.4 (slightly unbalanced with right-
dominance) exhibited heterogeneity of management strategies 
associated with a cluster of poor outcomes, which illustrates the 
difficulty of this decision (225). Additional analysis has identified 
that the inflow angle between the right and left AV valves and the 
septum [right ventricle/left ventricle inflow angle (226)] may be 
important in guiding early operative decision-making. However, 
there is a paucity of data validating any of these individual 
measures.

Making the Decision for Univentricular or 
Biventricular Reconstruction
While case series may provide evidence of what can be done by 
a specific surgical team, they do not necessarily provide data 
to support a particular pathway at all centers. In this context, 
multi-institutional studies, such as those from the CHSS (206, 
207, 221, 225, 226), may provide the most broadly applicable data. 

Ultimately, the decision to pursue a univentricular or biventricular 
strategy must be based on the experience of the individual surgeon 
and center.

Summary

Despite the advances in the operative and perioperative manage-
ment of patients with univentricular heart, morbidity and mortality 
remain high. Decisions made in the early post-natal period may 
have important consequences for both early survival and long-term 
morbidity. In particular, the surgical strategy chosen – whether 
univentricular palliation or biventricular repair, hybrid versus 
traditional procedures, choices regarding the most appropriate 
pulmonary blood flow – will affect management throughout a 
patient’s life. Unfortunately, there is lack of conclusive data to guide 
these choices. Further studies are required in many areas to identify 
determinants of the optimal surgical strategy in individual patients. 
In the absence of definitive data, surgical decisions must rest on 
subjective assessment grounded in a thorough understanding of the 
anatomy, physiology, and potential consequences of each strategy.
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