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How do prenatal exposures to various stimuli impact postnatal development for the duration of a 
person’s life? To answer this, the tripartite challenge is biological, medical, and technological. The 
biological challenge is to understand the plethora of effects causing trajectory shifts. The medical 
and technological challenges are to identify and follow fetuses and babies at risk for diseases in later 
life. Systems to accomplish this must be deployable across variably equipped healthcare settings at 
a reasonable cost.

Many researchers believe that such challenges can be tackled with complex signals bioinformatics. 
This research topic attracted articles on fetal heart rate (FHR) monitoring during labor, optimization 
of technologies for pediatric ventilation and the impact of the developing neonatal microbiome on 
health over the life span. How do these topics connect? They all share a clinical and translational 
demand for integrating relatively large amounts of spatio-temporally distributed data from various 
modalities to reveal patterns not clearly discernible to the human eye, with the goal of optimizing 
medical decision-making.

The right idea has to arrive at the right time to be met by a technology that can implement it, to 
be taken up by practitioners, and to produce change in health outcomes (1–3). Although technology 
seems at hand, a paradigm shift is required for practitioners to embrace this challenge. We can 
no longer afford to rely on human perception alone to detect patterns in the twenty-first century’s 
onslaught of multi-modal and multi-dimensional data streams reflecting human health in acute and 
chronic care settings (4). Such data streams are commonly referred as Big Data.

Big data can be defined with three Vs: “high-volume, high-velocity, and high-variety information 
assets that demand cost-effective, innovative forms of information processing for enhanced insight and 
decision making” (5).

In this research topic, Durosier et al. show that sampling rate affects the ability of FHR monitoring 
to detect acidemia as it occurs during human labor (6). Acquiring ~250 times more data points 
per  second than currently practiced in delivery rooms worldwide improves accuracy. New tech-
nologies, some re-discovered form the early 1980s, are now coming to market to address this need, 
although their indication for use in delivery rooms is not yet fully exploiting their potential (7–11). 
As current computing capacity no longer limits the sampling rate possibilities for online monitoring, 
“bigger” data are becoming a logical next step in improving health care (12). One challenge is the 
integration of live streams into electronic medical records to facilitate retrieval for diagnostic and 
research purposes and for medical decision-making in real time.

The common thread connecting Durosier’s work to the next study in the research topic is the 
notion of unveiling physiological variability using higher temporal resolution of data acquisition 
and modalities of human–machine interaction that account for the natural biological variability. In 
the case of fetal monitoring, this variability is contained in the subtle temporal FHR fluctuations that 
remain hidden to human eye when acquired with the conventional tools at a 4-Hz sampling rate.
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Baudin et  al. explore how biological variability is impacted 
by the various mechanical ventilation regimes when it comes 
to monitoring breathing patterns in infants requiring machine 
support (13, 14). Intuitively, machine ventilation algorithms that 
are most closely attuned to the physiological respiratory pattern 
produce breathing signals that most closely resemble those of the 
control infants. Although larger prospective studies are neces-
sary to understand the differential impact of ventilatory modes 
on cardio-respiratory variability and their effect on clinical 
outcomes, this study shows the possibility of deploying off- or 
online tools to quantify the physiological variability in respiration 
from bedside pediatric data streams. In the long term, this might 
help to fine-tune the ventilation parameters beyond the current 
possibilities, accounting for the non-linear nature of respiratory 
patterns. Again, the theme of how biological variability can be 
usefully monitored in real time emerges.

Munyaka et al. explore early postnatal maturation of immune 
regulation as a function of the exposure to gut microbiome (15). 
The human gut houses up to 1014 bacteria, exceeding by ~10-fold 
the number of host cells. Microbiome–host immune system inter-
actions appear to have a profound and life-lasting impact on the 
host’s health status beginning well before the baby is born (16–21). 
We are faced with the challenge of quantifying microbial diversity 
in space and time, which approximates at least two of the above “3 
Vs” definition of the big data, variety, and volume. Although the 
previous manuscripts represent intuitive approaches to temporal 
profiling and pattern analysis of streaming data, embodying all 
three Vs, current approaches to microbiome analysis need to 
catch up to the third V (velocity) to provide higher spatiotem-
poral resolution (microbiome in different organs at various time 
points). Meanwhile, current studies are cross-sectional in nature, 
sometimes with multiple sampling of the same cohort over time. 
They can offer population-level insights into changes in the 
microbiome due to various exposures, but with low temporal or 

spatial resolution to gage intra- and interindividual microbial 
dynamics.

Sorani et al. provided an early proof-of-principle for creation of 
multivariate pattern recognition within physiological time series 
commonly acquired in an intensive care unit setting (22). Heat 
maps in which genes are displayed across the top row and related 
genes cluster together are commonly used in genetics. In their 
neurocritical care heat map, Sorani et al. replaced genes by physi-
ological variables that cluster on the basis of association within 
and across patients into three groups of patients. Surprisingly, 
intracranial pressure (ICP) and fraction of inspired oxygen were 
clustered, leading to the identification of previously unrecognized 
ICP elevations during bedside suctioning. As a perinatal example 
of unexpected connections, multi-dimensional properties of 
fHRV encode signatures of inflammation (23–26) or progressive 
labor acidemia (10, 11, 27) and may relate to EEG parameters (28, 
29). Modern machine learning will help to integrate microbiome 
indices and continuous bedside acquisition of multi-modal data 
to elucidate clinically relevant patterns and optimize treatment (4, 
22). Data intelligence is the next logical step in evolution of health 
monitoring (2, 3, 30).

Focusing machine learning approaches on clinical questions 
that arise in perinatal medicine is needed as relatively little pro-
gress has been made in the past decades in regard to monitoring 
and translation into clinical practice, with the notable exception 
of the HeRo score monitors (31, 32). Recent advances in artificial 
intelligence have brought the vision of data-driven case identifi-
cation and decision-making closer to reality (33–37).
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