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In the neonatal period, the clinical use of oxygen should be taken into consideration for 
its beneficial and toxicity effects. Oxygen toxicity is due to the development of reactive 
oxygen species (ROS) such as OH• that is one of the strongest oxidants in nature. 
Of note, generation of ROS is a normal occurrence in human and it is involved in a 
myriad of physiological reactions. Anyway an imbalance between production of oxidant 
species and antioxidant defenses, called oxidative stress, could affect various aspect 
of organisms’ physiology and it could determine pathological consequences to living 
beings. Neonatal oxidative stress is essentially due to decreased antioxidants, increased 
ROS, or both. Studies have demonstrated that antioxidant capacity is lower in preterm 
newborns than term babies. This well-known deficiency of antioxidant factors is only a 
piece of a cohort of factors, which can be involved in the neonatal oxidative stress and 
the increased production of ROS may be a main factor. Mechanisms of ROS generation 
are: mitochondrial respiratory chain, free iron and Fenton reaction, inflammation, hypoxia 
and/or ischemia, reperfusion, and hyperoxia. Oxidative stress following hyperoxia has 
been recognized to be responsible for lung, central nervous system, retina, red blood 
cell injuries, and possibly generalized tissue damage. When supplemental oxygen is 
needed for care, it would be prudent to avoid changes and fluctuations in SpO2. The 
definition of the safest level of oxygen saturations in the neonate remains an area of 
active research. Currently, on the basis of the published evidences, the most suitable 
approach would be to set alarm limits between 90 and 95%. It should allow to avoid 
SpO2 values associated with potential hypoxia and/or hyperoxia. Although the usefulness 
of antioxidant protection in the neonatal period is still under investigation, the risk of 
tissue damage due to oxidative stress in perinatal period should not be underestimated.
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iNTRODUCTiON

Oxygen is essential for aerobic life, but it can be considered a double-edged sword in perinatal 
period having both positive biological benefits and toxicity effects (1–3). Oxygen toxicity is due to 
the development of reactive oxygen species (ROS), such as the superoxide anion ( )O2

− , hydrogen 
peroxide (H2O2), lipid peroxide (LOOH), peroxyl radicals (RO•), electron delocalized phenoxyl 
radical (C6H50), nitric oxide (NO), and the hydroxyl radical (OH•) (4). OH• is a potent oxidant in 
biological fluids and may damage tissues, through reaction with lipids, proteins, DNA, amino acids, 
and several other molecules (5).
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Despite their well-known harmful effects on cells, ROS 
reactions are also implicated in a myriad of physiological 
reactions, cell fate decisions, and signal transduction pathways. 
They have a key role in various cellular processes such as 
energy metabolism, gene expression, protein import, or folding, 
and they are produced in response to a variety of ligands 
including growth factors, cytokines, and G protein coupled 
receptors (6, 7).

Shift in redox potential may favor beneficial or detrimental 
consequences according to various factors. Both high levels 
of ROS and excessive low levels of ROS can alter the balance 
between pro-oxidant and antioxidant elements, which is essen-
tial for biologic processes (8). An imbalance between oxidants 
and antioxidants is called oxidative stress and that is a potential 
cause of damage (9). If oxidative stress is mild, cell defenses may 
increase by a mechanism, which generally involves enhanced gene 
expression of ROS scavenging activities (10). On the other hand, 
severe oxidative stress is generally followed by lipid peroxidation 
that alters membrane structure, disrupts membrane permeability 
properties, and alters cellular components. Abnormalities in cell 
membrane proteins due to high levels of ROS can also induce 
functional consequences including, for instance, alteration in 
recognition of cells in the immune response (11), apoptosis, and/
or necrosis (12).

Oxidative stress in the newborn may result from decreased 
antioxidants, increased ROS, or both. Antioxidant capacity is 
lower in the newborn and particularly the premature infant in 
comparison to term newborn (13, 14). The level and activity 
of the most-relevant antioxidant enzymes, such as superoxide 
dismutase (SOD), catalase (CAT), and glutathione peroxidase 
(GPX), change dynamically during development and mature 
in the last weeks of gestation, preparing the fetus for lung res-
piration (15–17). Non-enzymatic antioxidant factors, such as 
α-tocopherol and reduced glutathione (GSH), are low in the fetus 
and newborns (18, 19). Therefore, premature infants are espe-
cially prone to oxidant injury, being unprepared for hyperoxic 
challenge of extrauterine life. It is demonstrated that a 30  min 
exposure to 100% O2 at birth can cause a significant increase in 
lipid peroxidation in live newborn sheep (14).

The deficiency of antioxidant factors, that is characteristic 
of the neonate, is only a piece of a cohort of factors which can 
be involved in the neonatal oxidative stress and the increased 
production of ROS may be an additional factor. Some studies 
demonstrated that, in the immature lung of preterm newborn, 
the main sources of ROS could be ischemia, reperfusion, phago-
cytosis, and hyperoxia (20–22).

The various pathways of ROS generation should be considered 
and it is necessary to take into account the complexity of redox 
equilibrium and, therefore, correctly interpreting the origin of 
oxygen toxicity in newborn.

This review focuses on the mechanisms of ROS production 
and ROS-induced toxic effects following oxygen administration 
in newborns, by considering both short- and long-term conse-
quences of oxidative stress exposure. Furthermore, it deals with 
the recent research on the definition of the safest level of oxygen 
saturations in the neonatal period and the state of knowledge on 
oxygen use in clinical practice.

ROS: BiOCHeMiSTRY AND BiOLOGY

Molecular oxygen (O2) has two unpaired electrons in separate 
orbitals in its outer electron shell. This chemical structure 
enhances ROS generation (23).

In general, the principal endogenous sources of ROS in human 
and, in particular, in newborn are mitochondrial metabolism, 
increased free circulating transition metals, inflammation 
through NADPH oxidase (NOX) reactions, hypoxia–reoxygena-
tion (through hypoxanthine–xanthine oxidase reaction), hyper-
oxia, and paradoxically hypoxia (24–29). These mechanisms will 
be discussed in turn.

Mitochondrial Respiratory Chain
Mitochondrial respiratory chain is the main source of ROS. 
Mitochondria play a key role for the ATP production in eukaryotic 
cells. The sequence of events involved in oxidative phosphoryla-
tion, which takes place in mitochondria, leads to ATP formation 
as a result of the transfer of electrons from NADH to O2, by a 
series of electron carriers (30).

Initially, electron donors can convert O2 to O2
− . Dismutation 

of O2
−  by superoxide dismutase (SOD) produces H2O2 that 

in turn  may be fully reduced to water (H2O) by glutathione 
peroxidase (GSH-Px) and catalase (CAT) or, alternatively, 
partially reduced to the OH• in the Fenton–Haber Weiss reac-
tion, catalyzed by reduced transition metals, particularly iron, 
but also copper and zinc (24). Under physiologic conditions, 
approximately 98% of O2, undergoes a complete reduction to 
form H2O2, whereas 2% of electrons will leak, causing a partial 
reduction of the oxygen and producing ROS. ROS generation 
by mitochondria is mainly dependent on complexes I and III 
and is highly dependent on metabolic conditions and on the 
intra-mitochondrial balance between oxidative and antioxidative 
factors (6, 31).

Free iron and Fenton Reaction
Iron could be considered a two-edged sword for living organisms 
and, in particular, for newborns (32). It is an essential transition 
metal for the proper growth and normal neurologic development 
but it is toxic when unbound. Under conditions of body iron 
overload, plasma transferrin becomes fully loaded with iron, 
and chelatable forms of iron escape sequestration in biological 
systems. They become available to react with reduced oxygen, 
finally generating the toxic OH• (33). Non-protein bound iron 
easily enters in the Fenton–Haber Weiss reaction: H2O2 generated 
by dismutation of O2

− can break down, in presence of ferrous ion, 
to produce the most damaging of the oxygen free radicals, the 
OH• (25), and to form ferric ion (34).

inflammation
Respiratory burst of phagocytic cells by NOX is a known source of 
ROS production in mammalian cells (12). While the most relevant 
generation of ROS by NOX occurs in phagocytes after activation 
upon exposure microbes, microbial products, or inflammatory 
mediators (8), ROS are produced via NOX in a variety of cell 
type and in response to normal physiological signals such as 
insulin, angiotensin II, growth factors, and various classes of 
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receptors, such as formylpeptide receptors and toll-like receptors 
(35, 36). Furthermore, NOX-dependent ROS generation has been 
suggested to trigger adaptive response of a variety of stressors 
(36). Opsonization and activation of phagocytes are also known 
to occur as consequences of hypoxia, hypoxanthine–xanthine 
oxidase reaction, and hypoxia–reoxygenation (37). However, 
NOX-induced ROS generation can activate the NF-E2 related 
factor 2 pathway, which increases antioxidant protection during 
inflammation (38).

Hypoxia and/or ischemia
Metabolic conditions and O2 levels modify the rate of ROS genera-
tion (39). Hypoxia and/or ischemia results in increased electron 
leakage, and the interaction of various activated signals with 
residual oxygen produces superoxide. In animal models, several 
studies have demonstrated that hypoxia increases lipid peroxida-
tion by peroxynitrite production and decreases Na+, K+-ATPase 
activity leading to cellular membrane dysfunction. Moreover, 
hypoxia induces modification of the N-methyl-d-aspartate 
receptor-ion channel complex, leading to increased intracellular 
Ca2+. Intracellular calcium activates several enzymes, such as 
proteases, potentiating free radical generation and resulting in 
hypoxic cell injury (40).

Furthermore, during hypoxia, redox signals to and from 
mitochondria are activated. In particular, the respiratory chain 
increases ROS production stimulating the signaling pathway to 
induce hypoxia-induced factor (HIF)-dependent gene expres-
sion. HIF-1 is an important protein causing a shift from aerobic to 
anaerobic metabolism and also reducing mitochondrial oxygen 
consumption. Thus, it seems that the byproducts of oxidative 
phosphorylation play a role as signaling molecules, conveying 
cellular oxygen availability (41).

Reperfusion
Reperfusion is the second phase of ischemia/reperfusion (I/R) 
injury, and it is characterized by the generation of ROS when 
circulation is restored. In this phase, the reestablishment of blood 
supply to ischemic tissues causes the delivery of blood-borne ele-
ments (platelets and leukocytes) that are activated by and release 
ROS. ROS may induce cell damage and death by interacting with 
NO, fatty acids, or non-protein bound iron to generate more toxic 
free radicals such as peroxynitrite, peroxyl radicals, and hydroxyl 
radicals. Moreover oxygen free radicals facilitate the inflam-
matory response to reperfusion, by making oxidant-dependent 
pro-inflammatory mediators (11, 31).

A third stage of I/R injury constitutes the reparative phase. 
ROS promote angiogenetic growth factors, vascular remodeling, 
activation of matrix metalloproteinases that contribute to fibrosis, 
and formation of scar tissue (31).

Hyperoxia
Hyperoxia could be defined as a state of excess supply of O2 
in tissues and organs. The inhalation of a high level of oxygen, 
has been reported to be followed by membrane bound NOX 
activation, free radical generation, and DNA damage with 
apoptosis (42). At birth, blood oxygen content and oxygen 
availability sharply increase to their adult values, eliciting 

the production of a flood of ROS (43, 44), which may act as 
signaling molecules in specific metabolic pathways, in response 
to oxidative stress (45, 46).

In animals, exposed to high oxygen concentration, a 
modification of nuclear membrane function has been reported 
as consequence of high nuclear Ca2+ influx, activation of Ca2+/
calmodulin-dependent protein kinase pathway, and CREB 
protein-mediated apoptotic proteins (47).

Furthermore, hyperoxia is involved in activation of a panel 
of pro-inflammatory cytokines, including IFNγ and macrophage 
inflammatory protein 2, that, in turn, could finally develop ROS.

OXYGeN TOXiCiTY

In the clinical settings, ROS generation following hyperoxia 
has been recognized to be responsible for lung, central nervous 
system, retina, and red blood cell injuries as well as generalized 
tissue damage, which can be reported both in the neonatal period 
and in the adult life.

Focusing on neonatal period, the following paragraphs explain 
the mechanisms of both the short- and the long-term toxic effects 
of oxygen administration and hyperoxia on various organs and 
body systems.

Short-term Adverse effects
Lung
Hyperoxia is particularly harmful for the lungs and the mecha-
nism of damage is complex. Chronic oxygen toxicity may dam-
age the pulmonary epithelium and inactivate the surfactant, 
form intra-alveolar edema and interstitial thickening, and later 
fibrosis, leading to pulmonary atelectasis (48). Lung injury 
is demonstrated to be caused directly by ROS production in 
response to hyperoxia and indirectly by ROS due to phagocyte 
activation and inflammation. The two mechanisms seem to be 
integrated (49). In vitro and in vivo exposures to hyperoxia result 
in downregulation of peroxisome proliferators-activated recep-
tor gamma and in increase transdifferentiation of pulmonary 
protective lipofibroblasts to myofibroblasts (MYFs) (50,  51). 
Epithelial cell growth and differentiation is not adequately 
supported by MYFs. This results in a disturbed alveolarization, 
characterizing bronchopulmonary dysplasia (BPD) (52). High 
level of neutrophils, IL-8, and leukotrienes in alveolar fluid of 
BPD infants clearly support the role of inflammation and ROS in 
the development of this oxidative damage (53).

Retina
The exposure to hyperoxia is also associated with higher risk for 
severe retinopathy of prematurity (ROP), due to susceptibility of 
the phospholipid-rich retina to ROS (54).

The peripheral temporal portion of the retina is the last to 
be vascularized, and it is still immature even at term (55). With 
exposure to excess oxygen, the developing retinal endothelial 
cells activate various transcription factors, including HIF-1α and 
vascular endothelial growth factor, which, in turn, cause both 
cessation of retinal vessel growth and loss of some existing retinal 
vessels (56). These mechanisms finally lead to abnormal retinal 
vascular proliferation and the formation of a ridge, which places 
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traction on the retina and increases the risk of detachment, as 
seen in ROP (57).

Red Blood Cells
Newborn erythrocytes are more prone to damaging effects of 
oxidative stress and to have higher content of free iron than 
those of adults. In this context, free radical damage is involved 
in neonatal hemolytic anemia and particularly of the preterm 
(58, 59). Furthermore, prolonged exposure to hyperbaric oxygen 
leads to changes of erythrocytes shape, as a consequence of toxic 
effects of oxygen on the erythrocyte membranes. In an animal 
model, various forms of abnormal red blood cells are observed 
after exposure to high oxygen concentration, and in particular 
echinocyte shape was dominated (60).

Long-term effects
Exposure to hyperoxia at birth can also be related to long-term 
pathological effects. Oxygen exposure in the neonatal period has 
been demonstrated to affect lungs of mice by increasing airway 
reactivity and persistent inflammation with alteration in the 
innate immunoregulatory pathways that contribute to “poorer 
resistance” to respiratory viral infections in adulthood (61, 62). 
Furthermore, the exposure of newborn mice to hyperoxia may 
lead to long-term cardiac abnormalities, such as left ventricular 
dysfunctions (63), and neurodevelopmental impairments in 
adult life, as demonstrated by abnormal behavior, deficits in spa-
tial and recognition memory, small hippocampal dimensions, in 
the absence of intracranial pathology such as intraventricular 
hemorrhage or periventricular leukomalacia in the neonatal 
period (64).

In conclusion, experimental studies and clinical observations 
demonstrated high susceptibility of the fetus and newborn to 
oxidative stress. Increased release and decreased detoxification 
in the newborn appear to be negatively correlated with the 
gestational age.

STATe OF KNOwLeDGe OF OXYGeN USe 
iN NeONATAL CARe

Avoidance of conditions, such as infections, asphyxia, retinal light 
exposure, iron supplementation, and, in particular, hyperoxia, 
reduces oxidative stress.

Recent studies, that have been accomplished, have revised the 
concept of the optimal oxygenation in newborns, children, and 
adults.

Chow et  al. reported the experience of a tertiary neonatal 
center, where oxygen administration was tritated to optimize 
neonatal care. To reduce the incidence of ROP, authors rec-
ommended to avoid any fluctuation of FiO2 and to maintain 
oxygen saturation within “acceptable” limits, setting up oxygen 
alarms below 85% and above 93% in newborns <32  weeks 
of gestation (65). Tin and Gupta compared two populations 
of high risk newborns kept at O2 saturations of 88–98% and 
70–90%. They found a decrease of incidence of ROP in the 
group treated with lower O2 saturation without any differences 
in mortality and morbidity (66). Neonatal outcomes showed 
that newborns treated with higher level of oxygen had more 

cognitive disabilities than those treated with lower oxygen, after 
10  years (66). A report from the Oxford Vermont Network, 
in extremely low birth newborns, demonstrates less chronic 
lung disease and ROP incidence in babies with a target oxygen 
saturation of <95% than those with oxygen saturation more 
than 95% (67).

The first two randomized controlled trials (RCT), performed 
to answer the question of what is the range of optimal saturation 
by pulse oximetry in preterm infants receiving supplemental 
oxygen, were the Supplemental Therapeutic Oxygen for 
Prethreshold Retinopathy Of Prematurity (STOP-ROP) study 
(68) and the Benefits of Oxygen Saturation Targeting (BOOST) 
I (69). In  the first, the authors concluded that there was no 
significant difference in the rate of progression to threshold ROP 
in group of newborns cared for with lower O2 saturation range 
(89–94%) vs. the higher group (96–99%). But, as secondary 
outcome, they showed an increased incidence of chronic lung 
disease and a longer duration of hospitalization, both in the 
higher group. In the BOOST I, no differences were found in the 
primary outcomes, defined as growth and neurodevelopmental 
measures at a corrected age of 12  months, in the two groups 
(91–94% vs. 95–98%). In the high-saturation group (babies kept 
at 95–98% of O2 saturation), the newborns required oxygen for a 
longer period, had a higher dependence on oxygen at 36 weeks 
of postmenstrual age and need for home oxygen therapy with 
higher frequency, despite babies of low-saturation group, kept 
at 91–94% of O2 saturation.

More recently, five large multicenter, masked, RCT were 
conducted with a similar design and outcome measures to col-
lect data from 5,000 preterm newborns with less than 28 weeks 
postmenstrual age; they were the Surfactant Positive Pressure and 
Pulse Oximetry Randomized Trial (SUPPORT) (70), the BOOST 
II United Kingdom, Australia, and New Zealand (71), and the 
Canadian Oxygen Trial (COT) (72). Thanks to these data, it was 
possible to conduct a prospective meta-analysis, NeOProM (73) 
study, with a primary outcome defined as a composite of death 
and disability at 18–24 months of corrected age.

The three studies were performed with the same target ranges 
of oxygen saturation in the two groups: 85–89% in the lower 
group vs. 91–95% in the higher group.

In the SUPPORT, the primary outcome was a composite of 
severe ROP, death before discharge from the hospital, or both. 
The study showed no significant differences in the primary out-
come, but the use of a lower range of oxygen saturation results in 
a decrease of occurrence of severe ROP and an increase of death 
before the discharge. The SUPPORT was conducted by pulse 
oximetry systems, with an older software algorithm, despite the 
other two trials. In the BOOST II and COT, the software algo-
rithm of the oximetry systems changed about at the midpoint of 
the studies.

The data from the BOOST II showed that a restrictive use of 
oxygen, with target range of saturation below 90%, is associated 
with a higher risk of death and necrotizing enterocolitis despite 
of a reduction of incidence of ROP, significantly increased in the 
higher group saturation.

The COT study, with a primary outcome defined as death 
before 18  months of corrected age or survival with one or 
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more disability, do not showed significant differences in the 
mortality or other outcome, but only a reduction of duration 
of O2 therapy.

Based on these five RCT, the 2013 European Consensus 
Guidelines on the Management of Neonatal Respiratory Distress 
Syndrome in Preterm Infants suggested that SpO2 should be 
targeted at 90–95%, in infants with gestational age <28  weeks 
until 36 weeks (74).

However, there are more unanswered questions and the opti-
mal oxygen saturation range for low birth weight preterm infants 
remains elusive.

This is mainly due to the several different clinical conditions of 
preterm newborns. Some authors indicate that 50 and 70 mmHg 
(75) is the optimal oxygen tension, but it is noteworthy that 
pulse oximetry ability remains controversial. Oxygen saturation 
of more than 90% should be carefully considered because to 
be found related with an arterial oxygen tension of more than 
80 mmHg (76).

In clinical practice, the continuous monitoring of oxygen 
saturation is mandatory to titrate oxygen therapy as better as 
possible and the routine use of pulse oximetry systems can be 
considered a very useful approach for the neonatologists, in order 
to reach this goal. However, the optimal target range for oxygen 
saturation in the sick newborns and, above all, in the extremely 
preterm babies is not clear.

The challenge for the clinicians is reaching a balance in the 
oxygen administration, to avoid the damage and negative out-
comes, associated with either hyperoxemia or hypoxemia.

Based on all the actually available evidence and considering 
the lack of evidence about the influence of many factors such as 
transfusional status, different gestational ages and underlying 
diseases, the most careful approach is to avoid both hypoxia and 
hyperoxia in infants requiring oxygen supplementation. In order 
to maintain an intended optimal range of SpO2 90–95%, it has 

been suggested to set the acoustic signals at 91 and 96%, with a 
delay time not longer than 20 s (77). It is essential to control the 
low limit as well as the upper limit to prevent excessive fluctua-
tions of oxygen saturation (78, 79).

CONCLUSiON

Hyperoxia and hypoxia are deeply involved in the development 
of several neonatal diseases, and the mechanisms are complex 
and not yet fully understood. However, evidences suggest that 
both the generation of oxidant species (i.e., free radicals and ROS) 
and the deficiency of antioxidants may play a role. Hyperoxia and 
inflammation as well as the episode of hypoxia–reoxygenation 
and free iron appear to be sources of increased ROS release, which 
may cause tissue injury either by direct effect or as consequences 
of endothelium dysfunction and gene alteration, particularly in 
preterm newborns.

Understanding the effects of O2 administration is important 
for the management of oxygen therapy in newborns, in order to 
prevent inadvertent cellular and tissue damage caused by hyper-
oxia, in the patients requiring supplemental oxygenation.
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