
June 2017 | Volume 5 | Article 1381

Review
published: 19 June 2017

doi: 10.3389/fped.2017.00138

Frontiers in Pediatrics | www.frontiersin.org

Edited by: 
Robert P. Woroniecki,  

State University of New York, 
United States

Reviewed by: 
Litwin Mieczysłąw,  
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The surfaces of the human body are heavily populated by a highly diverse microbial 
ecosystem termed the microbiota. The largest and richest among these highly hetero-
geneous populations of microbes is the gut microbiota. The collection of microbes and 
their genes, called the microbiome, has been studied intensely through the past few 
years using novel metagenomics, metatranscriptomics, and metabolomics approaches. 
This has enhanced our understanding of how the microbiome affects our metabolic, 
immunologic, neurologic, and endocrine homeostasis. Hypertension is a leading cause of 
cardiovascular disease worldwide; it contributes to stroke, heart disease, kidney failure, 
premature death, and disability. Recently, studies in humans and animals have shown 
that alterations in microbiota and its metabolites are associated with hypertension and 
atherosclerosis. In this review, we compile the recent findings and hypotheses describ-
ing the interplay between the microbiome and blood pressure, and we highlight some 
prospects by which utilization of microbiome-related techniques may be incorporated to 
better understand the pathophysiology and treatment of hypertension.

Keywords: hypertension, dysbiosis, microbiota, lifestyle, blood pressure, short-chain fatty acid, microbial 
metabolites

BACKGROUND

The human microbiota is a mixed community of microorganisms composed of bacteria, viruses, 
archaea, and eukaryotic microbes that coinhabit the human body surfaces (1). The collection of those 
microbes and their genes is named the human microbiome (2).

Multiple studies have shown that each body site is characterized by unique ecological communi-
ties of microbial species (1) and each person has a unique microbiome (3). Those interpersonal 
variabilities are likely related to differences in our genetic background, origin, geographical location, 
age, life style, diet, and early exposure to various microbes, as well as exposure to antibiotics or 
probiotics (3). The microbiome composition is also affected by early life events; including delivery 
mode, gestational age, hospitalization, and the method of feeding (4).

Hypertension is a global public health problem and contributes to the burden of heart disease, 
stroke, kidney failure, premature death, and disability. It is considered the most prevalent modifiable 
cardiovascular disease (CVD) risk factor. High blood pressure affects 1.13 billion people worldwide. 
In the US, 75 million American adults (29%) suffer from high blood pressure, which is around one 
out of three adults (5). It is also estimated that more than 3% of children suffer from hypertension; 
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this number increases in obese children, since the prevalence of 
primary hypertension rises progressively with increases in BMI 
percentile from less than the fifth percentile (2%) to more than 
the 95th percentile (11%) (6). Globally, 42 million preschool 
children were overweight in 2013. The prevalence of obesity in 
the US is about 17%; it affects about 12.7 million children and 
adolescents (7, 8). It is important to mention that while obesity 
is associated with increased prevalence of hypertension, not all 
obese children are hypertensive.

Recently, multiple animal and human studies have examined 
the relationship between the gut and the oral microbiome and 
blood pressure (9–11). These studies aimed to explore different 
hypotheses linking the microbiota and its metabolites to blood 
pressure. Here, we provide an overview of the literature and 
discuss the proposed mechanisms. We also discuss potential 
microbiota-altering therapies and lifestyle modifications and 
their effect on blood pressure.

THe MiCROBiOMe iN HeALTH  
AND DiSeASe

Our microbiota is highly dynamic and continuously changing. 
This is in part a reflection of age-related changes like growth 
and development, where the highest variation takes place dur-
ing childhood but later decreases with age (12). Newborns’ and 
infants’ microbiota differentiates and becomes distinct and site-
specific as they grow older (13). The microbiota in infants less 
than 6 months old is different from that of older infants, where 
by the age of 3 years, a child’s microbiome is highly similar to that 
of an adult and is considered relatively stable (14, 15). However, 
the microbiome composition remains subject to changes related 
to any disease, change of diet, use of antibiotics, and in response 
to major life events like pregnancy and puberty (16–18).

Microbiota composition is also determined by the physical 
characteristics and chemical properties of the site that is being 
colonized (19). Therefore, the primary determinant of com-
munity composition is the anatomical location: within the same 
habitat, interpersonal variation is significant (20) and is more 
complex than the temporal variability observed in multiple sites 
within the same individual (21). Those site-specific signatures of 
the microbiome help elucidate the many changes associated with 
health and disease.

Tools Used to Study the Microbiome
Recent breakthroughs in high-throughput Next Generation 
Sequencing techniques, summarized in Figure 1, have leveraged 
our understanding of the composition and the function of the 
microbiome and have substantially advanced our knowledge on 
the crucial role of the microbiome in maintaining host physiology 
and homeostasis (22). Those techniques range from sequenc-
ing of the 16S rRNA-encoding genes, used to characterize the 
microbial phylogenetic composition of a sample collected from a 
specific body site, to the shotgun metagenomic approaches, used 
to identify all the genomes of microbes coexisting in the same 
site along with their biological functions (23–25). In addition to 
genomic sequencing-based analysis, other methods have been 

developed to study the microbial transcriptome, proteome, and 
metabolome, as they provide additional information at successive 
levels of microbial physiology (26). Metabolomics aim to study 
the metabolic functions by which the microbiota contributes to 
the human physiology; those functions include energy harvest, 
bile acid transformations, choline transformation, and the pro-
duction of short-chain fatty acids (SCFAs), vitamins, and amino 
acids (27).

Those tools have tremendously contributed to our current 
knowledge about the microbiota and their metabolites (22, 27). 
In recent years, the microbiome was shown to constitute a unique 
“fingerprint marking” that may play a role in interindividual phe-
notypic variation in disease presentation, prognosis, progression, 
and even response to treatment (15, 20).

The Gut Microbiome
Colonization of the human gut with a wide variety of microbes 
takes place just before birth as evident from the diverse microbial 
composition of the meconium (28). Maternal microbiota contrib-
utes to the formation of the first microbial inoculum, and then 
soon after birth, the microbial diversity increases and converges 
toward an adult-like microbiota by the end of the first 3–5 years of 
life (29). The ecosystem of an adult human gut contains a complex 
array of microbes with more than 100 trillion microbial cells and 
more than 1,000 bacterial species (30). The composition of the 
gut microbiota is highly variable between subjects, as each subject 
harbors a unique set of microbial species, which is in general 
highly stable over time in healthy individuals (31). A healthy 
human adult gut is dominated by the Gram-positive Firmicutes 
and the Gram-negative Bacteroidetes (31). Most nutrients con-
sumed through a diet are processed by an array of various human 
enzymes before being absorbed by the small intestine; however, 
the gut microbiota contributes to the metabolism of dietary fibers 
that are not usually digested by those enzymes (32). In the large 
intestine, a group of microbes including clostridial clusters IV, 
XIVa, Lactobacillus, and Actinobacteria (Bifidobacterium spp.) 
contribute to the fermentation of dietary plant polysaccharides or 
fibers, indigestible oligosaccharides, non-digested proteins, and 
intestinal mucin in order to produce SCFAs (acetate, propionate, 
and butyrate) (33). In addition to its role in food digestion, the 
gut microbiota plays a vital role in inhibiting pathogen-invasion 
by creating colonization resistance, it also contributes to the 
education and stimulation of the immune system, maintenance 
of the intestinal epithelial homeostasis and integrity, synthesis 
of vitamin B and vitamin K, as well as the enhancement of the 
motility and function of the gastrointestinal tract (GIT) (31).

The Oral Microbiome
The oral cavity is considered one of the most highly dynamic 
ecosystems in the human body (34–36). 16S rRNA gene sequenc-
ing estimated 50–100 billion bacteria in the mouth, comprised 
of nearly 700 identified bacterial species (36–38). Up to 80% of 
oral bacteria are dominated by about 200 species of Firmicutes 
and Proteobacteria, along with Bacteroidetes, Actinobacteria, and 
Fusobacteria totaling upwards of 95% of all identified oral micro-
biota (36–38). Further diversity exists between the varied niches 
of the mouth (34), such as the tooth surface, gingiva, hard and 
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FiGURe 1 | Methodologies used to study the human microbiome. The human body harbors large amounts of microbes that vary from one site to another. From 
each specific site, microbes can be studied in various ways depending on the samples isolated. Those tools range from metagenomics, metatranscriptomics to 
metaproteomics and metabolomics. Based on the approach and platform used, results include composition of the microbial communities, microbial genes function, 
gene expression or proteins levels, and metabolites activities.

3

Al Khodor et al. Microbiome–BP

Frontiers in Pediatrics | www.frontiersin.org June 2017 | Volume 5 | Article 138

soft palate, and even regionally on the tongue (34). Within this 
complexity, an ever-growing number of specific microbial taxa 
have been associated with both oral and systemic diseases (39). 
For instance, saccharolytic (sugar metabolizing) bacteria, such as 
Streptococcus and Lactobacillus, have been associated with dental 
caries, while proteolytic (protein metabolizing) bacteria, such as 
Prevotella and Porphyromonas, have been associated with peri-
odontitis and halitosis (40). Presence of Porphyromonas gingivalis 
is shown to be associated with atherosclerosis (41), smoking (42), 
and several cancers (43).

Microbial Dysbiosis and Disease
Dysbiosis is defined as the change in the composition and 
structure of the human microbiota of a given site, a change 
that may help explain why some individuals are more likely to 
develop certain diseases or develop a more severe form of the  
illness (44).

Although the relationship between microbial composition 
and stability to disease predisposition is not a cause-and-effect 

relationship, the microbiome is a contributor in many disease  
states, a link that has been previously overlooked. In fact, 
changes in the microbiome are increasingly linked to the 
development of several non-communicable diseases, includ-
ing diabetes (45, 46), obesity (47), CVD (48, 49), cancer  
(50, 51), inflammatory bowel disease (IBD) (52, 53), asthma (54), 
and others. Recently, researchers have examined the relationship 
between kidney disease and the human microbiome, summa-
rized in Ref. (55). Studies have shown a bidirectional relationship 
between chronic kidney disease and the gut microbiome; where 
microbiota-derived metabolites contribute to the progression 
of CKD and the state of chronic kidney disease and inflamma-
tion contributes to changes in the diversity and richness of the 
microbiota. Other studies showed differences in IgA disease 
progression and the gut microbiota composition, SCFA (derived 
from the microbiota) to modulate renal dysfunction in states of 
acute kidney injury via their anti-inflammatory properties, and 
kidney transplantation and immunosuppressive medications to 
significantly impact the gut microbiota composition.
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It is, therefore, essential to understand the interface between 
the microbes and the host in any disease condition, as this may 
help uncover possible disease etiologies and pathogenesis. It 
may also be possible to use any novel microbial factors or host-
related inflammatory markers as diagnostic and therapeutic 
targets for prediction, prevention, and treatment of some com-
mon diseases. Deciphering the possible interindividual varia-
tions in the microbial composition in various body sites and 
identifying the changes in site-specific microbiota composition 
during onset or progression of various diseases will help to pave 
the way toward developing microbiota-driven personalized 
medicine.

While large-scale studies addressed the role of the microbiome 
in some conditions including cancer, IBD, obesity, and diabetes, 
only fewer studies describing the role of the microbiome in 
regulating blood pressure have been published (10, 11, 56). 
Those studies suggested that hypertension is directly and/or 
indirectly linked to microbial dysbiosis, and that some microbial 
metabolites contribute to the regulation of blood pressure (10, 11, 
56). Therefore, understanding the nature of hypertension-related 
microbial aberrations in various body sites may enable us to bet-
ter understand the pathophysiology of high blood pressure and 
possibly develop personalized microbiome-based diagnostics for 
individuals at risk.

In this review, we discuss potential mechanisms by which 
the microbiota contributes to our blood pressure regulation and 
describe the link between dysbiosis and hypertension.

HYPeRTeNSiON AND THe MiCROBiOMe

Blood pressure regulation is complex. Multiple physiological sys-
tems interact, influenced by the environment and genes, to main-
tain blood pressure (57). These include but are not limited to: the 
renin–angiotensin–aldosterone system, the sympathetic nervous 
system (SNS), the nitrate–nitrite–nitric oxide signaling pathway 
(NO), uric acid, endothelin, the vasopressin system, natriuretic 
peptides, vasodilator peptides, the tissue kallikrein–kinin system, 
the immune system, the adipose tissue, and adipokines (58).

Recently, multiple animal and human studies have examined 
the relationship between the oral and gut microbiome and blood 
pressure; they demonstrated a significant decrease in microbial 
richness and diversity in the presence of hypertension. In addi-
tion, studies have demonstrated an altered microbial composition 
and modified metabolite profiles, suggesting a role for microbial 
dysbiosis and microbial metabolites in hypertension (11). In a rat 
model of hypertension, the number of cecal “good bacteria” from 
the phylum Bacteroidetes is reduced, which is accompanied by a 
proportional increase in the number of “bad bacteria” from the 
phylum Firmicutes (11). Studies have also shown that transplant 
of cecal microbial content from donor hypertensive animals can 
reproduce hypertension in previously normotensive recipient 
animals (56). A third set of studies demonstrated a beneficial 
effect for microbial mass reduction using antibiotics on blood 
pressure (11). Furthermore, absence of gut microbiota was found 
to protect mice from angiotensin II (AngII)-induced arterial 
hypertension, vascular dysfunction, and hypertension-induced 
end-organ damage (59).

The relationship between the microbiota and blood pressure 
is a complex one. Researchers have identified multiple possible 
hypotheses to link dysbiosis and hypertension. Many of which are 
indirect links that contribute to the metabolic syndrome and the 
overall increased cardiovascular risk. It is also important to point 
out that most of the studies were conducted in animal models, 
and many examined newly proposed hypotheses which yielded 
results that have yet to be reproduced. Some hypotheses focused 
on the association between microbial species in the microbiota 
and their relationship to blood pressure, whereas other hypotheses 
examined the role of dysbiosis in the pathogenesis (e.g., increased 
SNS activity), sustenance (e.g., inflammation), and worsening/
progression of hypertension (e.g., endothelial dysfunction and 
vascular remodeling). Here, we provide an overview of the 
proposed hypotheses linking the microbiota to blood pressure, 
Figure 2.

Microbial SCFA Metabolites Regulate 
Blood Pressure via Olfactory Receptors
Researchers have described a less rich and diverse microbiota 
in hypertensive compared to control subjects (11). SCFAs are 
products resulting from fermentation of various nutrients by the 
gut microbiota and are later absorbed into the blood stream (60). 
Members of the olfactory signaling pathway are expressed in the 
human kidneys. Olfr78 is an olfactory receptor that mediates renin 
secretion after stimulation by SCFAs (61). Other SCFA receptors 
including Gpr41 and Gpr43 (also called free fatty acid receptor 
3 or FFAR3 and FFAR2, respectively) are also expressed in the 
renal vasculature. Propionate administration to Gpr41-deficient 
mice induced blood pressure elevation, suggesting that Gpr41 is 
needed to counterbalance the pressor response to SCFA (10).

increased Risk of Atherosclerosis from 
Microbiota-Generated Trimethylamine-N-
Oxide (TMAO)
Another indirect connection between the gut microbiome 
composition and hypertension derives from the role of the gut 
microbes in the metabolism of choline and phosphatidylcholine 
to trimethylamine (TMA), which is further metabolized to the 
pro-atherogenic species, TMAO (62). Koeth and colleagues 
showed that the metabolism of dietary l-carnitine, a TMA 
abundant in red meat, by the intestinal microbiota results in 
the production of TMAO and accelerates the development and 
progression of atherosclerosis in mice (62). Recently, a study in 
a healthy human volunteer showed that microbiota in the small 
intestine generated the phosphatidylcholine breakdown product 
TMA (63). The resulting TMAO was suppressed by topical-acting 
antibiotics (63). It is important to point out that this link is with 
atherosclerosis and not directly to hypertension.

Microbiota-induced Neuroinflammation 
and increased Sympathetic Activity
Vagal nerve stimulation and blocking sympathetic derive prevent 
breakdown of the intestinal lumen–blood barrier and enhance 
epithelia cell barrier function (64, 65). Santisteban and colleagues 
hypothesized that hypertensive stimuli (such as Ang II, salt, and 
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5

Al Khodor et al. Microbiome–BP

Frontiers in Pediatrics | www.frontiersin.org June 2017 | Volume 5 | Article 138

stress) trigger autonomic neural pathways resulting in increases 
in sympathetic and dampening of the parasympathetic activities 
which in turn contribute to the overall increase in blood pressure 
(66). Increased sympathetic nervous activity to the gut could result 
in increased gut permeability, gut inflammation, and dysbiosis, 
leading to an imbalance in the microbial-derived metabolites in 
the plasma, possibly contributing to chronic inflammation and 
sustained hypertension.

Modulation of Blood Pressure  
via the effects of the Microbiota  
on the immune System
Researchers have proposed a brain–gut–bone marrow axis in 
which sympathetic activity to the bone marrow induces mobi-
lization of hematopoietic stem cells (66). In this hypothesis, 
hematopoietic stem cells may migrate to the brain or to the gut 
and contribute to local inflammation and immune responses. 
This may further increase the sympathetic activity and contribute 
to blood pressure elevation. On the other hand, SCFAs, such as 
acetate and butyrate, have been shown to have anti-inflammatory 
effects on myeloid and intestinal epithelial cells (67). Recently, 

Kim and colleagues reported marked decreases in microbial 
richness and diversity in hypertensive patients and also observed 
marked differences in circulating inflammatory cells in hyperten-
sive individuals compared to controls (68); T-helper 17 cells were 
particularly relevant because activation of these cells is regulated 
by gut-intrinsic mechanisms, and their increase may be a result of 
dysbiosis in hypertension (68). In germ-free mice, the absence of 
gut microbiota seems to protect the animals from AngII-induced 
arterial hypertension, vascular dysfunction, and hypertension-
induced end-organ damage. This protection appears to be 
mediated by inhibiting the accumulation of the inflammatory 
myelomonocytic cells in the vasculature and altered cytokine 
signaling (59).

Role of the Microbiota in the 
enterohepatic Circulation of Steroids
Another intriguing hypothesis involves the role of the gut micro-
biota in the enterohepatic circulation of steroids. Using antibiotic 
therapy, the bacterial flora of rats was modified to interrupt the 
enterohepatic circulation of steroids excreted in bile. Antibiotic 
and corticosterone were administered simultaneously to these 
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animals. After 5 days, rats receiving both steroids and antibiotics 
had an average elevation of 9.2 mmHg in their blood pressure 
compared with 24.6  mmHg in rats given steroid alone. These 
findings are consistent with the possibility that metabolites of 
steroids, when reabsorbed in the enterohepatic circulation, con-
tribute to the physiological response to exogenous steroids (69). 
Further studies are needed to examine the role of gut-derived 
steroids.

inhibition of Angiotensin  
1-Converting enzyme
Nakamura and colleagues (70) reported a significant decrease 
in the systolic blood pressure in rats fed sour milk (contains the 
two tripeptides Val–Pro–Pro and Ile–Pro–Pro). Research on the 
health effects of pasteurized sour milk, which is fermented by a 
starter culture containing Lactobacillus helveticus as the predomi-
nant microorganism, indicated that antihypertensive effects and 
angiotensin-I converting enzyme inhibitory peptides are present 
in sour milk (71, 72). On the other hand, researchers have shown 
ACE2 has a RAS-independent function, regulating intestinal 
amino acid homeostasis, expression of antimicrobial peptides, 
and the ecology of the gut microbiome (73).

electrolyte Transport via influencing 
Gastrointestinal Transmitter Production
The gut microbiota can influence the ability of the gastric and 
intestinal enterochromaffin cells to produce serotonin, dopamine, 
and norepinephrine. These transmitters have been found to influ-
ence Na–K ATPase and electrolyte transport in the intestine (74). 
It is still unclear whether enterochromaffin cell-derived transmit-
ter effects are clinically significant in blood pressure regulation. 
Further studies are needed to examine the role of gastrointestinal 
transmitter production on blood pressure regulation.

elevated Cholesterol Levels via  
Regulating the expression of RXR and 
Suppression of CYP7A1
Cholesterol is the precursor to bile acids synthesis in the liver. 
Bile acids are further metabolized by the gut microbiota into 
secondary bile acids. In the ileum and liver, nuclear farnesoid  
X receptor (FXR) plays a key role in the bile acid synthesis; when 
activated, it exerts negative feedback to control bile acid synthesis 
(75). Gut microbiota may indirectly play a role in the increased 
risk of atherosclerotic disease by increasing cholesterol levels; 
this may be attributed to its role in reducing the levels of tauro-
beta-muricholic acid, a FXR antagonist, as well as by suppressing 
the rate-limiting enzyme CYP7A1 in bile acid synthesis from 
cholesterol (75). It is important to point out that this link is with 
atherosclerosis and increased cholesterol levels and not directly 
to hypertension.

Under the influence of the Host  
Genome, Microbiota May Contribute  
to Salt Sensitivity
Mell and colleagues hypothesized that the interaction between 
the host and the gut microbiota influences the development of 

salt-sensitive hypertension (76). They reported differences in the 
gut (cecal) microbiota composition between the salt-sensitive (S) 
and the salt-resistant (R) Dahl rats. After a single bolus of R rat 
cecal content to S rats, they showed exacerbated hypertension in 
high salt-fed S rats, with systolic blood pressure to be consistently 
and significantly elevated during the rest of the recipient rat life, 
which also had a shorter lifespan. They speculated that this effect 
may be mediated via SCFAs, as both acetate and hetanoate were 
higher in the R to S transfer group (76).

Modulation of endothelial-Derived  
Nitric Oxide (NO)
It is also worth mentioning that the nitrate–nitrite–nitric oxide 
signaling pathway involved in the pathogenesis of hypertension 
is highly affected by microbial diversity through the formation 
of nitrite, NO, and other bioactive nitrogen oxides (77). NO is an 
endogenously produced, lipophilic, and diffusible molecule that 
exerts a diverse array of critical autocrine and paracrine signal-
ing activities. NO acts directly on smooth muscle cells to pro-
mote relaxation and inhibits both platelet function and vascular 
smooth muscle cell proliferation and migration (78). Formation 
of nitrite and propagation of its downstream NO-signaling 
effects depend on the oral bacterial reduction of inorganic 
nitrate by a set of bacterial nitrate reductase enzymes that are 
largely absent from the human genome (77, 79, 80). Studies 
in Sprague-Dawley rats (77) and normal human volunteers 
(81) showed that depletion of oral bacterial nitrate reductases 
by chlorhexidine mouthwash correlated with a 90% decrease 
in oral nitrite levels in humans, along with a 25% decrease in 
plasma levels (p = 0.001), and 2–3.5 mmHg increase in blood 
pressure (81). Several studies in hypertensive, overweight, and 
other patient populations have been performed, all revealing 
predictable acute or chronic blood pressure reduction with 
varying types of nitrate supplementation (82), this beneficial 
effect is abolished both acutely and chronically by antimicrobial 
mouthwash use [reviewed in Ref. (83, 84)].

State of Chronic inflammation
Dysbiosis, gut wall inflammation, and increased gut wall perme-
ability have been shown to contribute to the state of chronic 
systemic inflammation. Endotoxemia has been linked to the 
development of low-grade systemic inflammation and vascular 
inflammation via toll-like receptor-dependent mechanisms (85). 
In obese individuals, intestinal microbiota composition was asso-
ciated with local and systemic inflammation (elevated C-reactive 
protein) (86).

Microbiota-Derived Hydrogen Sulfide (H2S)
Microbiota, like many mammalian cells and tissues, also pro-
duce H2S (87). Microbes exploit this gaseous molecule as an 
antioxidant defense mechanism, for energy production, and 
for cell cycle regulation. It is estimated that 50% of fecal H2S 
is derived from bacteria, thus the total plasma H2S pool varies 
depending on the individual’s microbiota milieu in the gut. 
H2S plays a crucial role in a variety of physiological functions, 
including smooth muscle relaxation, oxidant regulation, inflam-
mation, and angiogenesis (88). Hydrogen sulfide is synthesized 
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primarily from the amino acids cysteine and homocysteine. H2S 
biosynthesis deregulation, particularly in the renal vasculature, 
may play a role in hypertension or possibly contribute to existing 
high blood pressure (89). Although theoretically plausible, it is 
unknown to what extent does microbiota-derived H2S contribute 
to blood pressure regulation in humans? This area is still in need 
of further research.

HYPeRTeNSiON eFFeCTS ON  
THe MiCROBiOTA COMPOSiTiON  
AND FUNCTiON

While the focus of most studies was to examine how the micro-
biota at different body sites can modulate blood pressure, a few 
studies looked at the other direction of this relationship, that is, 
can hypertension affect our microbiota composition and cause 
dysbiosis? Is dysbiosis a target organ injury due to hypertension? 
And does dysbiosis precede, accompany or result from hyperten-
sion? It is important to point out that the majority of published 
studies were cross-sectional and were designed to examine 
associations and not to determine cause-and-effect relationships. 
Hypertensive animals and humans were found to have decreased 
microbial richness, diversity, and composition (11). Santisteban 
and colleagues tested the hypothesis that increased sympathetic 
drive to the gut in hypertensive animals is associated with 
increased gut wall permeability, increased inflammatory status, 
and microbial dysbiosis (90). Changes in gut pathology were 
present and were associated with alterations in microbial com-
munities relevant to blood pressure control. However, whether 
gut permeability and dysbiosis played a role in the pathogenesis 
of hypertension or were a consequence of hypertension is still 
not clear. It is very well possible that the relationship between 
dysbiosis and hypertension is bidirectional or an amplifying one. 
Further studies are needed to decipher this relationship.

ANTiHYPeRTeNSive MeDiCATiONS:  
GUT MiCROBiOTA-MeDiATeD DRUG 
iNTeRACTiONS

The hepatic enzyme system is the key player when it comes 
to drug metabolism; however, the gut bacteria also exert a 
variety of metabolic changes to orally ingested drugs, including 
reductive and hydrolytic reactions. Researchers have reported 
gut microbiota-mediated drug interactions between multiple 
medications and antibiotics (91). Those interactions were medi-
ated by alterations in the gut microbiota. The drug amlodipine’s 
plasma concentration area under curve was increased by up to 
133% in ampicillin-treated rats. This increase in its bioavailability 
was attributed to the reduction of gut microbiota that usually 
contributes to amlodipine metabolism (92). The authors went on 
to caution clinicians regarding the use of antibiotics in patients 
treated with amlodipine. On the other hand, antibiotic treatment 
alone using minocycline was able to “rebalance” the microbiota 
and was associated with blood pressure reduction (11). Another 
aspect to the interaction between antihypertensive medications 
and the microbiota was described by Santisteban and colleagues 

(90). In their study, they found increased permeability and 
stiffness of the gut barrier, decreased levels of tight junction 
proteins, increased gut fibrosis, thickening of the gut muscularis 
layer, decreased villi length, and goblet cell loss in spontaneously 
hypertensive rats and in rats with AngII-induced hypertension. 
Treatment of SHR with captopril reduced gut permeability and 
completely restored fibrosis levels and thickness of the muscularis 
layer and only partially restored villi length (90). Some studies 
are underway (clinical trial NCT02188381), and more are needed 
to further examine the microbiota interaction and its role in the 
metabolism of different antihypertensive medications, as well as 
the effect of concomitant antibiotic treatment.

ReSTORiNG THe BALANCe: CURReNT 
AND POTeNTiAL iNTeRveNTiONS

Lifestyle changes and dietary interventions are key modifiable 
factors in the management of hypertension. Recently, research-
ers have started to examine changes in blood pressure as they 
manipulate the microbiome by introducing dietary and lifestyle 
changes.

Lifestyle Modifications and Their effect  
on Hypertension and the Microbiome
Sufficient sleep is vital for maintaining physical and mental 
health. Chronic sleep deficiency is related to a wide variety of dis-
eases, including CVD and metabolic disease (93). Epidemiologic 
studies have established the best amount of sleep for adults as 
approximately 7 h and that this range correlates best with a lower 
prevalence of CVD and reduced risk of hypertension (94). Lately 
an intricate, bidirectional relationship between sleep, circadian 
rhythms, and the composition of the microbiome in mice was 
described (95, 96). Benedict et al. showed that sleep deprivation 
induced changes in microbial families of bacterial gut species 
in humans (97). Furthermore, Durgan et  al. established a link 
between gut dysbiosis and the development of obstructive sleep 
apnea-induced hypertension (56). On the other hand, Zhang 
et al. reported that sleep restriction over several consecutive days 
does not overtly influence the composition of the microbiome of 
either rats or humans (98). Further studies are needed to examine 
the triangular relationship between sleep (duration and quality), 
blood pressure, and the microbiome.

Sedentary lifestyle is linked to poor health, increased car-
diovascular, and metabolic disease risk (99). On the other hand, 
exercise offers a protective effect; it has a positive effect on body 
composition, immunity, and cardiovascular health (94, 99). 
Exercise affects the gut microbiome composition (100). Athletes 
have a more diverse gut microbiota; Clarke and colleagues showed 
that a positive effect exists between physical activity, increased 
dietary protein, and the diversity of the gut microbiome (101). 
Furthermore, Allen and colleagues demonstrated that different 
exercise modalities (forced and voluntary) can evoke changes in 
richness and evenness in the microbiome at varying body sites 
(102). It remains unclear whether the effect of physical activity on 
the microbiome is independent of any accompanying adjustment 
of dietary intake (mainly protein) (100).
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Diet and its effect on Hypertension  
and the Microbiome
Multiple dietary components have been shown to affect blood 
pressure (103), and various studies have examined the effect of 
manipulating those components on the blood pressure (104). The 
Dietary Approaches to Stop Hypertension (DASH) diet is one of 
the interventions used to reduce blood pressure (98). This diet 
is rich in fruits and vegetables, as well as low-fat dairy, and at 
the same time has a low content of saturated and total fat (105). 
DASH-sodium trial demonstrated significant dose–response 
decreases in blood pressure when the DASH diet and sodium 
restriction were combined (105, 106). This reduction in blood 
pressure was accompanied by 30 and 20% risk reduction of CVD 
after a long-term follow-up for 15–20 years, respectively (107). It 
is possible that components (high fiber, dairy) of such interven-
tions alter the microbiota in favor of a more balanced one and 
contribute to its blood pressure-lowering effects (70).

Food Supplements and Their effect  
on Hypertension and the Microbiome
Prebiotics
Prebiotics are non-digestible food ingredients that escape diges-
tion in the upper part of the GIT, only to be available for breakdown 
and fermentation by the gut microbiota within the lower parts 
of the GIT (108). Most prebiotics are derived from plants. Their 
role in lowering the CVD risk has been attributed to their abil-
ity to lower serum lipid and cholesterol levels (109). Population 
studies indicate that higher dietary fiber intake was significantly 
associated with a lower risk of obesity and hypertension (110). 
Another possible mechanism by which prebiotics could regulate 
blood pressure is through the attenuation of insulin resistance 
(111). Additionally, prebiotics have also been reported to reduce 
the risk of hypertension by improving the absorption of minerals 
such as calcium in the GIT (112).

Probiotics
Probiotics are living microorganisms that confer a health 
benefit on the host when administered in sufficient amounts 
(113). Some probiotic strains exhibit antihypertensive effects: 
for example, consumption of a dairy product mixture, includ-
ing Enterococcus faecium and two strains of Streptococcus 
thermophiles, for 8 weeks lowered systolic blood pressure (114). 
Administration of Lactobacillus plantarum 299v for 6 weeks was 
also found to reduce systolic blood pressure in heavy smokers 
(115). Furthermore, consumption of probiotics-fermented 
potato yogurt could reduce hypertension-induced cardiac myo-
cyte apoptosis in hypertensive rats and, therefore, can promote 
cardiac protection against hypertension (116). Lactobacillus 
casei and Streptococcus thermophilus TMC 1543 were also proven 
to lower systolic blood pressure and risk factors that caused 
ischemic heart disease (117).

Synbiotics
Synbiotics are nutritional supplements containing both pro-
biotics and prebiotics in a form of synergy (118). Synbiotics 
improved survival and distribution of microbial supplements 

within the GIT by facilitating selective stimulation and activa-
tion of growth and metabolism of probiotics (118). Just like 
prebiotics and probiotics, synbiotics can modulate the gut 
metabolic activities without modifying the overall structure. 
Predominant strains of probiotics used in synbiotic preparations 
include Lacbobacilli, Bifidobacteria species, Saccharomyces 
boulardii, and Bacillus coagulans, whereas Oligosaccharides, 
inulin, and other dietary fibers from natural sources form the 
basis of the prebiotic component. It is worth mentioning that 
an animal study examining the role of the synbiotic dietary 
supplement of Lactobacillus plantarum HEAL19 together with 
fermented blueberry was not effective in lowering blood pres-
sure in hypertensive rats (119). To our knowledge, there are no 
human trials evaluating the effects of synbiotics on hyperten-
sion, such trials are warranted.

Xenobiotics
Xenobiotics are chemicals or substances that are foreign to an 
organism or biological system. They are not nutrients and enter 
the body through ingestion, inhalation, or dermal exposure 
(120). Xenobiotics have the potential to induce gut dysbiosis and 
influence disease states. Previously published reviews elegantly 
shed the light on potential mechanisms that link the human gut 
microbiome to the efficacy and toxicity of xenobiotics (drugs, 
dietary compounds, and environmental toxins), even after short 
periods of exposure (121, 122). However, more research is needed 
to understand the interactions between xenobiotics, blood pres-
sure, and the gut microbiome.

Fecal Microbiota Transplants (FMT)
In FMT, the fecal matter is collected from a tested donor, then 
blended with saline or other solutions, filtered, and drained and 
later administered to the recipient via colonoscopy, endoscopy, 
sigmoidoscopy, or enema.

As the use of FMT in the management of severe or recur-
rent Clostridium difficile infection is becoming well established  
 (123, 124) and its use in the treatment of IBD, especially ulcerative 
colitis, is being intensely studied (125), FMT is being increasingly 
evaluated for use in other areas. Vrieze and colleagues reported 
improved insulin sensitivity by transfer of microbiota from lean 
donors to individuals with metabolic syndrome (126). This result 
gives hope that FMT may become part of treatment regimens for 
metabolic syndrome and resistant hypertension in the future. 
Studies have also shown that transplant of cecal microbial content 
from donor hypertensive animals can reproduce hypertension in 
previously normotensive recipient animals (56); whether this can 
be reproduced in humans and whether reverse transplantation 
will achieve blood pressure reduction in hypertensive subjects 
remain to be tested.

More work is required to establish the effect of FMT in resist-
ant hypertension. This will include careful evaluation, screening 
and donor selection, transplant composition, as well as mode 
of delivery of the transplant (127, 128). Also, it is not known 
whether the microbiota manipulation can be sustained without 
continuous application or the need for a concurrent change in 
dietary or lifestyle habits.
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CONCLUSiON

Studies have described how dysbiosis may modulate blood 
pressure and contribute to CVD. While most studies were 
performed using animal models, a few studies were conducted 
in adult hypertensive subjects and none were conducted in 
children. Given the differences in the gut microbiota composi-
tion between children and adults, there is a pressing need for 
more studies in the pediatric population; it is necessary to 
characterize the microbiome profile in hypertensive and obese 
hypertensive children compared to their siblings and their 
healthy counterparts.

Understanding the nature of hypertension-related microbial 
aberrations in various body sites, may enable future development 
of personalized microbiome-based diagnostics and therapies 
for individuals at risk. Identifying specific microbial signatures 
associated with the high-risk population may potentially serve as 
a biomarker to develop non-invasive diagnostics tools. Multiple 
promising interventions have been described to restore a more 
balanced microbiome; such treatments need to be further exam-
ined in a systematic way to evaluate their potential in lowering 

blood pressure through modulation of the microbiota. It is worth 
mentioning that clinical trial NCT02188381 is currently recruit-
ing participants to study gut microbiota involvement in the 
neuroinflammation-mediated initiation and establishment of 
resistant hypertension, as well as the possible beneficial role of 
minocycline therapy on outcomes in resistant hypertension.

Large, prospective clinical trials to establish a more definitive 
relationship between dysbiosis and high blood pressure and to 
identify specific microbial signatures in hypertensive subjects are 
needed before deploying any therapies targeted at altering the 
microbiota composition.
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