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Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common 
genetic disorders worldwide. In recent decades, the field has undergone a revolution, 
starting with the identification of causal ADPKD genes, including PKD1, PKD2, and the 
recently identified GANAB. In addition, advances defining the genetic mechanisms, 
protein localization and function, and the identification of numerous pathways involved 
in the disease process, have contributed to a better understanding of this illness. 
Together, this has led to a better prognosis, diagnosis, and treatment in clinical prac-
tice. In this mini review, we summarize and discuss new insights about the molecular 
mechanisms underlying ADPKD, including its genetics, protein function, and cellular 
pathways.
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inTRODUCTiOn

Polycystic kidney disease (PKD) is a heterogeneous group of monogenic disorders characterized by 
the bilateral formation and progressive expansion of renal cyst that lead to end stage renal disease 
(ESRD) (1). Several Mendelian diseases including autosomal dominant polycystic kidney disease 
(ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and atypical forms of PKD can 
be grouped under this pathological entity.

Autosomal dominant polycystic kidney disease is the most common inherited kidney disease 
affecting ~1/400–1/1,000 individuals (2). The hallmark characteristic of ADPKD is the progressive 
development and expansion of cysts in the kidney leading to ESRD. It can be associated with several 
extrarenal manifestations including hypertension, symptomatic extrarenal cysts, and subarachnoid 
hemorrhage from intracranial aneurysms (3–5). The vast majority of the patients develop the disease 
between the ages of 20–40 s, but there have been sporadic cases that range in onset from late to 
childhood (“early onset,” before 15 years old) or even in utero (“very early onset”) (6).

GeneTiCS OF THe ADPKD

Autosomal dominant polycystic kidney disease is genetically heterogeneous and associated with 
mutations in PKD1 (responsible of ADPKD-Type I), PKD2 (-Type II), and GANAB. PKD1 is a com-
plex gene mapping to chromosome 16 (16p13.3) (Figure 1A). Its genomic structure has a number 
of features that complicate its evaluation (7, 8): (a) it is highly GC-rich with a large number of 
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FiGURe 1 | Chromosome localization and genomic structure of PKD1, PKD2, and GANAβ genes and structure of polycystin-1 (PC1) and polycystin-2 (PC2).  
(A) Schematic representation of chromosomes and genomic structure for the genes. (B) Representation of PKD1 and PKD2 protein products: PC1 and PC2.  
*GIIα (encoded by GANAβ) is not included because the tertiary structure of the protein is not available in the bibliography or protein date bases.
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CpG dinucleotides, (b) 70% of PKD1 is duplicated multiple times 
throughout chromosome 16 with high sequence fidelity (95% 
identity) (9), and (c) it contains a 2.5 kb polypyrimidine tract in 
intron 21 (the largest in the human genome) (10). In contrast to 
PKD1, the PKD2 gene is located on chromosome 4 (4q21) and has 
simpler features and structure (11) (Figure 1A). Approximately, 
80–85% of ADPKD families were associated with PKD1 mutations, 

and 15–20% to PKD2 mutations in the literature (12). Recently, 
Porath and colleagues identified causal mutations in GANAB, a 
gene on chromosome 11q12.3 (Figure 1A), in ADPKD patients 
that are negative for PKD1 and PKD2 mutations. They report that 
GANAB accounts for ~0.3% of total ADPKD and it is associated 
with a milder manifestation of PKD and autosomal dominant 
polycystic liver disease (ADPLD) (5).
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DiAGnOSiS OF ADPKD

The diagnosis of ADPKD is dependent on the stage of the disease. 
When the disease is fully established, the diagnosis is clinically 
based on patient’s history and physical examination (13, 14). 
However, definitive diagnosis can be difficult due to other dis-
orders having overlapping symptoms. Therefore, complementary 
approaches such as diagnostic imaging or genetic tests are neces-
sary to confirm the diagnosis. Imaging techniques, including 
ultrasound, computed axial tomography, or nuclear magnetic 
resonance, allow for the detection of cysts in the kidney, liver, 
or pancreas (15). The magnetic resonance technique has proven 
to be more sensitive than ultrasound, allowing measurements of 
height-adjusted total kidney volume (htTKV) and better defini-
tion of the cysts without the use of contrast agents. However, these 
imaging tests are expensive (16) and are often not performed 
on a subset of the ADPKD population including those who are 
young individuals at risk or patients with atypical or de novo renal 
cystic disease (13) for whom complementary genetic tests is the 
method for definitive diagnosis. Direct DNA sequencing (DS) 
could offer a molecular diagnosis; however, the genetic analysis 
of the PKD1 (responsible for most ADPKD cases) is complicated.  
The 5′-region of the gene (exon 1–34) is replicated in at least six 
highly homologous copies on chromosome 16 (7, 9, 17). To date, 
direct sequencing based on a Long-Rage PCR strategy with spe-
cific primers has been the accepted strategy by the ADPKD com-
munity (18). Isolated gene by gene sequencing is laborious and 
expensive, and provides limited amount of information to provide 
a better diagnosis and prognosis for the patients. Moreover, it has 
been described that the main mutation responsible of the disease 
may interact with other PKD or ciliopathy loci modifying the 
phenotype and extending the genetic complexity of the disease 
(18–20). For this reason, ADPKD experts are highlighting the 
necessity to screen all cystic genes in a common strategy to allow 
for a more accurate diagnosis, including those genes responsible 
of atypical forms of PKD. Under this context, next-generation 
sequencing strategies followed by the validation of variants by 
DS have become the recommended methodology allowing for 
faster, more cost-effective, and more reliable genetic diagnosis of 
large ADPKD cohorts (21).

GenOTYPe–PHenOTYPe CORReLATiOnS

It has been described that patients with mutations in PKD1 gene 
have larger kidneys and earlier onset (mean age at ESRD, 53.4 
versus 72.7 years old, respectively) with lower eGFR and higher 
htTKV than PKD2 patients (22, 23). In addition, GANAB muta-
tions seem to be associated with a mild renal phenotype, closer 
to a PKD2 than a PKD1 phenotype, revealing the importance of 
molecular diagnosis (5). Moreover, a strong correlation between 
the type of the mutation and the severity of the disease was 
observed, illustrating the importance of quantifying genetic het-
erogeneity in ADPKD. Truncating PKD1 mutations (frameshift, 
splicing, and nonsense) have a more severe disease prognosis with 
lower eGFR; however. the type of mutation does not correlate 
with htTKV (23, 24). Non-truncating PKD1 mutations (missense, 
inframe deletion/insertion) or mutations in PKD2 are associated 

with a milder form of the disease. In addition, males with trun-
cating PKD1 are associated with larger kidneys and increased 
risk for ESRD, while women with truncating PKD1 have a more 
severe liver phenotype (23, 24). In addition, disease manifesta-
tion in ADPKD patients from the same family, or patients with 
the same mutation, can have varying severity and differential 
disease progression, which may be due to the presence of varia-
tion in a modifying gene. This phenomenon is known as genetic 
interaction and epistasis, and usually aggravates or attenuates the 
phenotype cause by the primary mutation (17, 25).

Based on genetic and clinical data, Cornec-Le Gall and col-
leagues (26) developed a robust prognostic model, the PROPKD 
score (with a range from 0 to 9), to predict survival in ADPKD 
patients. They described critical variables associated with ESRD 
including age of onset (median age reported to be 70.6 years for 
low risk, 56.9 years for intermediate risk, and 49 years for high 
risk) and a scoring system to predict disease progression: sex 
(being male 1 point), need for antihypertensive therapy before 
35  years old (2 points), occurrence of the first urologic event 
before 35 years old (2 points), and genetic status (having PKD2 
mutations: 0 points, non-truncating PKD1 mutation: 2 points 
and truncating PKD1 mutations: 4 points). Three risk categories 
were then defined to describe the putative risk for progression to 
ESRD: low risk (0–3 points), intermediate risk (4–6 points), and 
high risk (7–9 points) (26).

PKD PROTeinS: STRUCTURe AnD 
FUnCTiOn

PKD1 and PKD2 encode the proteins PC1/Polycystin-1 and PC2/
Polycystin-2 or TRPP2, respectively. PC1 is a putative receptor 
for an unidentified ligand which contains a long extracellular 
N-terminal domain, 11 transmembrane domains and a short 
intracellular C-terminal domain (27). PC2/TRPP2 has similar 
characteristics to TRP channel, having six transmembrane 
segments, a pore loop domain (separating the first two trans-
membrane segments), and an N- and C-terminal domains (28) 
(Figure 1B). PC2 is a Ca2+-permeable non-selective ion cation 
channel and together with PC1 forms a receptor–channel com-
plex implicated in the Ca2+ pathway called PC complex (29).

In contrast to PKD1 and PKD2, GANAB encodes the alpha 
subunit of glucosidase II (GIIα) which is the catalytic subunit 
of GII. GIIα together with the regulatory subunit of GII, GIIβ 
(also called hepatocystin) (5) form a functional holoenzyme in 
the endoplasmic reticulum (ER). This holoenzyme is implicated 
in the proper folding and translocation of glycoproteins into the 
ER, and its dysfunction has been reported to be associated with 
maturation and localization defects of PC1 (30).

DiSeASe MeCHAniSM

Two-Hit Model for ADPKD
The human kidney has approximately one million nephrons, and 
an ADPKD patient will develop around a 1,000 cysts (31). ADPKD 
disease progression is highly variable and depends directly from 
the nature of the mutated gene. The “Two-Hit Model,” in which 
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two different mutations affect proper genetic/cellular interactions, 
has been the proposed theory to explain the kidney phenotype 
observed in ADPKD patients. While an individual has inherited 
a germ line mutation (“first hit”), the development of cysts does 
not occur until another mutation (somatic mutations) in either 
PKD1 or PKD2 occurs (“second hit”) (32, 33).

Localization of PKD Proteins: The Role of 
Primary Cilia
There have been a number of different localizations proposed for 
the PC1/PC2, including the ER, apical and basolateral cell mem-
branes, or secreted exosomes (31). However, there is evidence 
supporting their presence in primary cilia based on their central 
role in ADPKD pathogenesis. Cilia are microtubule-based, non-
motile organelles on the apical surface of the cells and play an 
essential role in cellular detection and regulation of external sig-
nals. Dysfunction of this organelle result in a group of disorders 
called the ciliopathies (34). Data from animal models (C. elegans, 
Drosophila, and Mus musculus) support the idea that defects in 
function or structure of primary cilia contribute to the patho-
mechanisms of PKD (35). PKD proteins such as PC1, PC2, and 
polyductin/FPC (encoded from the ARPKD gene, PKHD1) local-
ized to the primary cilium (36–38). These PKD proteins interact 
with each other (17, 29, 36, 39, 40) and form a functional complex 
with common downstream signaling pathways (41). In addition, 
deleted in azoospermia interacting protein 1-like, the protein 
encoded from the recently identified ARPKD gene (DZIP1L), was 
reported to localize to the centrioles and basal bodies of cilia and 
are also associated with ciliary trafficking defects (19).

There has also been additional evidence to support the func-
tional role of PKD proteins within the cilium. Urine flow has been 
linked to an increase in intracellular calcium (42), likely driven 
by the mechanical response of the primary cilium (43). The large 
extracellular domain of PC1 has been proposed to be the flow 
mechanosensor that opens the PC2-channel, allowing calcium 
entry leading to mechanotransduction activation (44). A differ-
ent model proposes that the primary cilia’s role in flow sensing 
is required for proper centrosomal localization that results in 
oriented cell division (OCD). In addition, defects in cilia drive the 
loss of planar cell polarity and consequently abnormal OCD (45); 
however, this model is controversial and remains unclear (46, 47). 
Several observations support the idea of the mechanosensory 
role of polycystins in the primary cilium (48, 49). PC2 directly 
interacts with KIF3A and KIF3B, two essential proteins for cili-
ary assembly and function (37, 50). In addition, PC2 is required 
for the flow-mediated increase of cytosolic Ca2+ (51, 52), and 
mechanical stimuli can induce proteolytic cleavage of the intra-
cellular C-terminal domain of PC1 (53). Interestingly, there have 
been controversial results reporting that mechanosensation does 
not occur via Ca2+ signaling within cilia (54). In spite of this, there 
are some unanswered questions as while Delling and colleagues 
do not exclude the presence of others mechanosensitive elements 
in primary cilia (55) and the cilia seems to increase cytoplasmic 
Ca2+ concentration by diffusion (56).

A very interesting and unexpected finding by Ma and colleagues 
showed that loss of cilia results in a significant reduction of PKD 
severity (57). Authors reported that a simultaneous inactivation 

of polycystins and cilia assembly resulted in the reduction of the 
cystic phenotype associated with polycystins inactivation. These 
findings suggest that the polycystins modulate a pathway involved 
in the cilia signaling, but require intact cilia function (58).

Threshold or Dosage Model
Genetic background influences the phenotypic variability of 
ADPKD. As we previously mentioned, patients with mutations in 
PKD1 have worse prognosis than those with mutations in PKD2 
(59), and those with truncating PKD1 mutations were associated 
with more severe polycystic renal pathology than those with 
non-truncating mutations (60). In addition, unaffected patients 
who carry a missense variant in PKD1 indicate that some alleles 
are incompletely dominant in the disease (61). Similarly, other 
studies suggest that incomplete, penetrant alleles can influences 
disease severity in ADPKD (62).

These data support that a threshold or dosage model could 
explain cystogenesis in ADPKD (63). According to this model, 
cyst initiation and cystic expansion depends on PKD gene 
dosage, starting when the level of functional PC falls below the 
cystogenic threshold (58, 63). Defects in that threshold may occur 
by a combination of one or more factors: the nature of germline 
mutation (“first-hit”), somatic mutations (“second hit”), modifier 
genes or environmental factors such as renal injury or inflamma-
tion (58, 64). Several studies support this: (1) García-González 
and colleagues reported genetic interaction between ADPKD and 
ARPKD genes in a common pathway (17), (2) it has been reported 
that ADPLD genes (Prkcsh and Sec63), ARPKD gene (Pkhd1) and 
ADPKD gene (Pkd1) interact with each other suggesting a central 
role of PC1 in cystogenesis (65), and (3) a developmental window 
for cystogenesis has been identified, suggesting that timing of 
secondary events may influence the severity of ADPKD (66).

A crucial step in the protein maturation of functional PCs is 
also related to the dosage model. Autoproteolytic cleavage of PC1 
at the GPS domain, mediated by larger GAIN [G protein-coupled 
receptor (GPCR)-autoproteolysis inducing] domain which 
includes a GPCR proteolysis site (GPF) motif, is crucial for PC1 
maturation (67, 68). Besse and colleagues have described that 
specific isolated-PLD proteins (encoded by SEC61β, ALG8, and 
GANAβ), from the ER protein biogenesis pathway, are directly 
related to PC1 biogenesis (30). Furthermore, PC1 maturation 
requires PC2 in a dose-dependent manner (69). It is also known 
that mature PC assembles at the PC complex-bearing vesicles in 
the Golgi before trafficking to the ciliary/plasmatic membrane 
(70) (Figure  2). In addition, Cai and colleagues described the 
effect of several mutations in Pkd1 and Pkd2 in the importance 
of PCs trafficking to cilia using in vitro and in vivo models, con-
cluding that altered trafficking and dysfunctional maturation of 
PC complex underlie PKD pathology (71) These facts suggest a 
central role for PC1 in the cystogenesis process and in regulating 
the severity of ADPKD, ARPKD, and ADPLD (72).

Signaling Pathways and Targeted 
Therapies in ADPKD
Several signaling pathways and transcription factors control the 
progression and development of cystogenesis (64, 73). Calcium 
signaling is one of the most studied pathways in the PKD field. 
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FiGURe 2 | Diagram of the localization of the polycystic kidney disease (PKD) proteins, the pathways implicated in its pathogenesis, and putative therapeutic 
targets. The polycystin-1 (PC1) and polycystin-2 (PC2), associated with autosomal dominant polycystic kidney disease (ADPKD), and FPC and DIZP1L, associated 
with autosomal recessive polycystic kidney disease (ARPKD), are ciliary proteins and have functions in relation with the primary cilia. GANAβ [associated with 
ADPKD and autosomal dominant polycystic liver disease (ADPLD)], together with the classical genes of the ADPLD, PRKCSH, and Sec63, is localized in the 
endoplasmic reticulum (ER) and plays a role in the translocation and folding of the protein maturation. PC1 and PC2 form a receptor–channel complex in the cilium 
and is implicated in the Ca2+ pathway. PC2 also regulates intracellular calcium in the ER. PC mutations result in deregulation of Ca2+ leading an increase in cAMP 
and upregulation of the PKA and MAPK pathways. Abbreviations: RyR, ryanodine receptor; IP3R, IP3 receptor; PDE, phosphodiesterase; AC-VI, adenylyl cyclase 6; 
Gs and Gi, guanosine nucleotide-binding proteins; V2R, V2 receptor; cAMP, cyclic AMP; PKA, protein kinase A; MAPK, MAP kinases; SIRT1, sirtuin 1.
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PC2 is a calcium permeable non-selective cation channel that is 
abundantly expressed in the ER and interacts with others calcium 
channel proteins (51). It binds to the inositol 1,4,5-trisphosphate 
receptor (IP3R) regulating Ca2+ homeostasis and the activity of 
ryanodine receptors (74, 75). In contrast to PC2, PC1 acceler-
ates the decay of the intracellular calcium response to ATP by 
increasing ER calcium uptake. All of this suggests a major role of 
polycystins in intracellular calcium hometostasis (76, 77). Cystic 
epithelial cells have an aberrant cross talk between intracellular 
calcium and cAMP signaling as elevated levels of cAMP stimulate 
cyst fluid secretion, enhancing protein kinase A activity (78–80). 

Furthermore, V2 receptor antagonists (Tolvaptan) ameliorate 
the progression of PKD by the inhibition of cAMP signaling 
pathway in both animal models (81, 82) and in clinical trials (83) 
(Figure 2). Importantly, adverse secondary effects could appear 
with Tolvaptan treatment such as polyuria, nocturia, and elevation 
of liver enzymes (84). Taking this into account, Tolvaptan is the first 
therapy approved for indication of ADPKD in several countries.

Alterations to other pathways have been reported to affect 
cystic volume or cystic progression, but to date; attempts to 
completely inhibit cystogenesis have been unsuccessful. The 
mTOR pathway is highly activated in cystic tissues independent 
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of the PKD gene mutation (85). Preclinical trials with sirolimus 
and everolimus blocked cystic progression in a rodent model of 
ADPKD (86, 87). In addition, somatostatin analogs, as octreotide 
and lanreotide reduced hepatic and renal volume expansion in 
ADPKD (88–90). Treatment of PKD animal models, which have 
defective glucose metabolism associated with cystic expansion, 
with 2-deoxyglucose, an analog of glucose, also result in reduced 
cystic progression (91, 92) (Figure  2). Adding to the hunt for 
therapeutics, other alternate mechanisms also exist, such as sirtuin 
1, microRNAs, and MCP1 which have been postulated as possible 
therapies for PKD (93–95) and recently, ongoing Phase-II and 
Phase-I clinical trials of a multi-kinase inhibitor, tesevatinib, are 
ongoing for ADPKD and children with ARPKD (96, 97).

COnCLUSiOn

In the last two decades, there have been significant contributions 
toward our understanding of the genetic, cellular, and functional 
role of PKD genes and proteins, as well as, the identification of 
a number of pathways implicated in the pathogenesis of the 
disease. Nevertheless, several questions remain unresolved 
and controversial in the PKD community. The complexity of 
this disease is reflected along all scientific levels, starting at the 

genetic level with critical refinement of the mutations, followed 
by the study of protein function and dosage to understand the 
spectrum of clinical manifestations in PKD, and finally the study 
of related pathways and modifier mechanisms that all should 
be taken into account for future clinical trials and personalized 
medicine.
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