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Sudden unexpected perinatal collapse is a major trauma for the parents of victims. 
Sudden infant death syndrome (SIDS) is unexpected and mysterious death of an appar-
ently healthy neonate from birth till 1 year of age without any known causes, even after 
thorough postmortem investigations. However, the incidence of sudden intrauterine 
unexplained death syndrome (SIUDS) is seven times higher as compared with SIDS. This 
observation is approximated 40–80%. Stillbirth is defined as death of a fetus after 20th 
week of gestation or just before delivery at full term without a known reason. Pakistan 
has the highest burden of stillbirth in the world. This basis of SIDS, SIUDS, and stillbirths 
eludes specialists. The purpose of this study is to investigate factors behind failure in 
control of these unexplained deaths and how research may go ahead with improved 
prospects. Animal models and physiological data demonstrate that sleep, arousal, and 
cardiorespiratory malfunctioning are abnormal mechanisms in SIUDS risk factors or in 
newborn children who subsequently die from SIDS. This review focuses on insights in 
neuropathology and mechanisms of SIDS and SIUDS in terms of different receptors 
involved in this major perinatal demise. Several studies conducted in the past decade 
have confirmed neuropathological and neurochemical anomalies related to serotonin 
transporter, substance P, acetylcholine α7 nicotine receptors, etc., in sudden unexplained 
fetal and infant deaths. There is need to focus more on research in this area to unveil 
the major curtain to neuroprotection by underlying mechanisms leading to such deaths.

Keywords: sudden infant death, sudden perinatal death, stillbirth, neuropathology, sudden intrauterine death, 
neurochemicals

iNTRODUCTiON

In the first year of life, the most frequent type of death is “Crib death,” “Cot death” commonly 
termed as “sudden infant death syndrome” (SIDS). Among every 1,700–2,000 births approximately, 
one baby gets affected (1). Numerous inherited abnormalities, such as morphological substrates 
for SIDS–sudden intrauterine unexplained death syndrome (SIUDS), were detected, mainly 
represented by variations of cardiac conduction system just like accessory pathway, abnormal 
resorptive degeneration, and hypoplasia/agenesis of the vital brainstem structures. The National 
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FigURe 2 | Few neurotransmitters in normal fetus and infants.
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FigURe 1 | Sudden infant death syndrome (SIDS) risk factors.
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Child Health Institute and Human Development has expressed 
that SIDS is a developmental issue and it takes its root from 
the fetal development (2). The neuropathological examination 
plays a significant role in the death investigation procedure. 
However, just some limited reviews have sufficiently analyzed 
the neurological substrates, albeit even subtle anomalies of the 
autonomic nervous system can measure the dysfunctions in 
the fundamental functions, prompting sudden and unexpected 
death (3, 4). In-depth examination results, performed at the 
University of Milan, Lino Rossi Research Center, have added to 
recognize the area and the nature of these anomalies, normally 
observed in both SIUDS and SIDS. External risk factors, for 
example, alcohol, maternal smoking, and drug abuse are identi-
fied to be the potential contributors of SIUDS and SIDS (5) while 
environmental pollution such as insecticides and pesticides has 
also been reported recently (6).

SUDDeN iNFANT DeATH SYNDROMe

In a number of these infants, the cerebrum portion that controls 
the arousal and breathing from sleep is not yet mature enough 
to work appropriately. Preterm births and intrauterine growth 
restrictions can cause repressed cognitive development and 
chronic infarctions. Low immunological development and 
postnatal sleeping positions are responsible for major respiratory 
distress. In this section, we have discussed the risk factors for 

SIDS. Figure  1 is derived from Filiano and Kinney hypothesis 
(7) and shows risk factors contributing to SIDS.

Neuropathology of SiDS
The major focus on cerebrum anomalies in SIDS victims for 
a physiological investigation demonstrates cardiopulmonary 
abnormalities and sleep arousal dysfunction. A typical pathway 
of these abnormalities at the level of brainstem, where these con-
trol functions including ventilation pathways, cardiac rhythm, 
and pathways for sleep/arousal. Neuropathological basis of 
SIDS, as proposed to be the major risk factor and needs more 
neurochemical investigation (7). Research on the neurochemical 
abnormalities of SIDS victims was started in the 1980s (8). Some 
neurotransmitters and their functions in a normal infant or fetus 
are shown in Figure 2.

For instance, acetylcholine (ACh) and serotonin [5-hydroxy-
tryptamines (5-HT)] were found to facilitate breathing (9) 
while epinephrine (Epi) and norepinephrine (NE) depressed 
breathing (10). Moreover, it was demonstrated that Epi, NE, 
and 5-HT were additionally required in the organization of 
sleep (11). Dopamine was observed to be required in stimulat-
ing breath while the peptide neuromodulator substance P (SP) 
(12, 13), endogenous opioids (14), and derived brain growth 
neurotrophic factor (BDNF) (15) were observed to be required 
in the focal control of breath. The neuropathology abnormalities 
identified in the SIDS brainstem (16) are summarized in Table 1.

ACh Receptor
Smoking in pregnancy fundamentally increases morbidity and 
perinatal mortality. It is presently the vital autonomous and 
modifiable risk factor adding to the sudden newborn child 
death disorder (SIDS) (27). The more convincing hypothesis 
for the connection among SIDS and smoking is that nicotine 
alters the vital breathing patterns and defensive reactions to 
hypoxia in sleeping (28). A lessened anxiety reaction intensifies 
hypoxia and apnea (29). The impacts of nicotine are interceded 
via its activation of very particular nicotinic cholinergic recep-
tors (nAChRs) that are available in the carotid physiques and in 
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TAble 1 | Summary for the identification of all neuropathology abnormalities in the sudden infant death syndrome (SIDS) brainstem.

Reference enzyme, transmitter, or receptor level of brainstem SiDS cases Results

(17) An immunohistochemical method 
involving tyrosine hydroxylase

Diencephalon, basal ganglia,  
midbrain, pons, and medulla  
oblongata

37 In SIDS, changes in basal ganglia can be induced via  
repeated ischemia or chronic hypoxia but can be  
associated with developing a neuronal system to the  
upper cardiorespiratory control

(18) 5-Hydroxytryptamines (5-HT)  
and 5-hydroxyindoleacetic acid

High-performance liquid 
chromatography and Raphe  
obscure and PGCL

35 SIDS was related with lower TPH2 and 5-HT levels,  
consistent with a deficiency of medullary 5-HT disorder

(13) Immunohistochemical expression  
and substance P (SP)

Neuromodulator 20 SP localized in fiber structures, with low to high densities

(19) 3H-nicotine 16 brainstem nuclei 27 In the brainstem alcohol and smoking adversely affect 3 
H-nicotinic binding

(20) α7 and β2 Nicotinic acetylcholine 
receptors (nAChRs)

Rostral medulla and pons 46 SIDS infants have a genetic defect acquired in the  
molecular regulation

(21) γ-Aminobutyric acid Medulla 24 SIDS may essential to include therapeutic agents that  
target more  
than one neurotransmitter system

(22) 1A (5HT1AR) Rostral medulla 67 In SIDS cigarette smoke and prone sleeping exposure  
support serotonergic brainstem system

(23) Serotonergic (5-HT) Respiratory nuclei and medulla 16 An outcome demonstrates that increased neurochemical 
preliminary evidence that supports boy’s vulnerability to SIDS

(24) Interleukin-2 and cytokine Cardiorespiratory- and sleep/ 
arousal pathophysiology

18 The neuro-molecular disequilibrium results in the delicate 
molecular balance producing dysfunction in brainstem  
centers and disturbed homeostasis

(25) Pro-BDNF, rh-BDNF, and TrkB Rostral medulla 67 In the brainstem provides abnormal expression of rh-BDNF,  
TrkB, and pro-BDNF receptor protein of SIDS and non-SIDS 
infants

(26) Pontine Kolliker–Fuse nucleus  
and orexin receptors

Raphe nuclei and locus coeruleus 28 KF neurons detection only 20% of SIDS

TAble 2 | Summary for the identification acetylcholine receptor abnormalities in the sudden infant death syndrome brainstem.

Reference Receptor Samples Results

(34) nAChR Procedure of all animal from  
National Institutes of Health Care

Calcineurin activation and reduced intracellular calcium  
by L-type channels

(34) Neuronal nicotinic acetylcholine  
receptors (nAChR), α7, β2

Rats The existence of nicotine (10 M) in hypoxic insult secured  
a subpopulation

(35) Nicotinic acetylcholine receptors,  
β2

+/+ mice
Animals were used from the  
National Research Center

Modulate β2-nAChRs to the survival of infant brain cells

(36) Nicotinic cholinergic receptor  
(nAChR)

Feminine rats Reduced nAChR expression in dopaminergic areas in the  
duration of adolescence

(31) Nicotine impairs breathing Age-matched wild-mutant mice  
deficient the subunit β2 nAChR gene

The nAChRs are vital in breathing in the duration of sleeping and  
are important for the ordinary improvement in the mechanisms  
of arousal

(33) Nicotine and preBotzinger complex Medullary slice Nicotinic acetylcholine receptors (nAChRs) activation improved  
the tonic synaptic excitatory input to inspiratory neurons

(37) Nicotinic acetylcholine receptors  
(nAChRs)

The animals used were an  
adult male, age-matched

nAChRs with β2 contribute activity in REMS, NREMS, and the  
promoting effect of stress
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the serious brainstem cores, for example, the core of single tract 
and locus coeruleus (30). At these locales, nAChRs add to the 
cholinergic adjustment of arousal and breathing. Interference 
with the nAChRs functions on the presumed basis of negative 
nicotine reactions (31). Disturbing equilibrium among arousal 

and ventilatory responses could intensify respiratory failure in 
sleeping duration. Postnatal exposure to smoke tobacco during 
early stages is related to increase in the number of sicknesses 
in repository, pulmonary impaired function, and SIDS events. 
It is additionally connected through reduced (32) cognitive 
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FigURe 4 | Sudden intrauterine unexplained death syndrome (SIUDS) risk 
factors.

TAble 3 | Summary for the identification of serotonin 5-hydroxytryptamines (5-HT) neurotransmitter abnormalities in the sudden infant death syndrome.

Reference Year Method Sample Results

(41) 2014 5-HT 45 mice In the hypothalamus gene expression, it minimizes the 5-HT2A receptor

(42) 2014 Tryptophan hydroxylase 2 
(TPH2), 5-HT

Group of mice TPH2−/− mouse is a useful model in the new medications searches for  
depression

(43) 2014 Serotonin (5-HT) and  
oxytocin (OXT)

4 healthy males In the amygdala effects of OXT on 5-HT1A within the subgenual cortex  
can be mediated via induced effects occurring of OXT

(44) 2015 5-MT injection Animals from National 
Organization of Health

5-Methoxytryptamine shows that the CYP2D-catalyzed different pathway  
synthesis of serotonin

(45) 2017 5-HT7 Mice 5-HT7 brain receptor–ERK system performed a vital role in the adaptation  
of stress formation

(46) 2017 5-HT4R 24 healthy participants  
and 3 woman

In the association’s differences, 5-HT4R binding between negative,  
positive, and neutral word categories did not statistically reach

(40) 2014 5-HT1A and mRNA  
expression

Adult rat Serotonin transporter mRNA reduction shows variants in polymorphic  
individuals with depression at the higher risk

FigURe 3 | Role of serotonin 5-hydroxytryptamines (5-HT) neurotransmitter.
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Serotonin 5-HT Neurotransmitter
In the brain development, serotonin 5-HT neurotransmitter 
performs a central role in stress reactivity, mood regulation 
disorders of psychiatric risk factors and subsequently signaling 
in 5-HT in the early stage have complicated implications on 
mental health and behavior over the life span. It takes part in the 
intercession of cognition, arousal, mood, cerebral blood flow and 
motor activity. It regulates cardiovascular and cardiorespiratory 
function, chemosensitivity, thermoregulation, arousal, and pain 
(38). Figure 3 shows the role of serotonin 5-HT. SIDS victims 
have been found to have reduced levels of brainstem serotonin 
(5-HT) and tryptophan hydroxylase 2 (TPH2) but retain produc-
ing 5-HT neurons. TPH2 is cerebrum particular enzyme that 
translates tryptophan into 5-HTP, which is then transformed 
over into 5-HT via DOPA decarboxylase.

Due to the disturbance in 5-HT medullary levels that outcomes 
in deadly dysfunction of these dependent sodium-pacemaker 
neurons regulated via projections of 5-HT from the Raphe and 
additional Raphe cores (39). We assumed that alteration might 
be brought about by contrasts in serotonin transporter mRNA 
expression and 5-HT1A receptor in mind regions included in the 

working and attention deficits in youth. Nicotine, the main 
neurotoxic segment of tobacco smoke, actuates its activities 
via binding to nicotinic acetylcholine receptors (nAChR). The 
immunohistochemical expression of nAChR subunits α2, α3, 
α4, α5, α7, α9, α1, and α2 in medulla brainstem was analyzed in 
a piglet model after postnatal nicotine exposure (33). Table 2 
describes the ACh receptor abnormalities identified in the 
SIDS brainstem.
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TAble 4 | Summary for the identification of abnormalities in the sudden intrauterine unexplained death syndrome.

Reference Year Methods Tested sample Results

(50) 2014 Fetal growth restriction (FGR) Rats, guinea pigs,  
rabbits, and sheep

FGR is related with minimizing brain volume and altered structure,  
cortical volume, and decreased total myelination that deficits  
cells number

(51) 2014 Magnetic resonance imaging (MRI),  
 corpus callosum, and intrauterine  
growth-restricted (IUGR) fetuses

173 IUGR fetuses Further explored corpus callosum to predict anomalous  
neurodevelopment risk in pregnancies

(52) 2014 NRG1-IVNV 41 cases Development of human neocortical provides expression  
of quantitative NRG1 isoform

(53) 2017 Cerebral palsy Therapeutic candidates Injury to developing the brain caused by the cerebral palsy

(54) 2017 Perinatal hypoxia Humans and animals In the FGR hypoxia is a vital problem in fetal–maternal medicine

(55) 2017 Human amnion epithelial cells (hAECs) Mouse model hAECs release trophic factors

(56) 2003 Diagnosis of IUGR, respiratory distress 
syndrome, intraventricular hemorrhage, 
and necrotizing enterocolitis

Newborn infants Increased IUGR with prematurity and represent a vital risk factor  
in women when present with labor preterm

(57) 2015 Ultrasound appearance of brain volume 
and cortical development in fetuses

20 fetuses Brain volume smaller in IUGR fetuses, with accelerated or normal  
cortical maturation as depicted with the examination of postnatal  
MRI, can be described by 3D prenatal ultrasound

(58) 2015 HbF and BCL11A 3 patients It highlights the significance of using hematopoietic-specific  
methods when trying to target therapeutically BCL11A

control of feelings, memory, and additionally in areas control-
ling the focal serotonergic tone (40). Table 3 summarizes all the 
serotonin 5-HT neurotransmitter abnormalities identified in the 
SIDS brainstem so far.

low birthweight and Respiratory  
Tract infection
The sudden infant deaths are multifactorial, where low birth-
weight has been reported major risk factor for SIDS (47). Viral 
respiratory infections are mainly responsible for the occurrence 
of sudden death. Mild level of respiratory viral infection was 
observed by investigators in cases of sudden death infants up to 
80% (48).

SUDDeN iNTRAUTeRiNe UNeXPlAiNeD 
DeATH SYNDROMe

Risk factors for SIUDS are shown in Figure  4. Perinatal brain 
injuries may occur due to trauma during pregnancy, birth 
asphyxia, and postnatal accident (48).

Fetal growth restriction (FGR) is a significant difficulty of 
pregnancy showing a fetus that does not develop to maximum 
capacity because of pathological compromise. FGR influences 
3–9% of pregnancies in high-salary nations and is the main 
source of perinatal mortality. Placental insufficiency is the key 
reason for FGR, bringing about chronic fetal hypoxia. This initi-
ates hypoxia of an adaptive fetal reaction of cardiovascular yield 
redistribution to support indispensable organs, involving the 
mind and is in result called cerebrum sparing. In spite of this, it 
is currently apparent that cerebrum sparing does not guarantee 
normal cerebrum growth in limited development fetuses (49). 
A brief summary of SIUDS is mentioned in Table 4.

Numerous neurodevelopmental issues of cognitive and 
motor function have their origins in the antenatal period. Fetal 
suboptimal growth is probably a key variable underlying altered 
cerebrum growth. FGR is related with perinatal death, preterm 
birth and, for survivors, an expanded risk of sensory and motor 
neurodevelopmental deficits, learning and cognitive impairments, 
and cerebral palsy. The implementation of the neuroprotective 
treatments can just happen in light of careful characterization 
of the abnormalities in brain growth that increases because of 
FGR, first require the identification of newborn children at most 
serious risk for the impairment of neurodevelopmental second-
ary to fetal poor development. Eighty pregnancies end up in 
termination following detection of an abnormal fetal, neonatal 
death, or stillbirth, describing no less than eight thousand cases 
per annum, and there are more than 500 unexplained baby and 
youth deaths every year. In these circumstances, the posthumous 
examination is frequently required to decide reason for death, set 
up implications for relatives, and direct administration of future 
pregnancies (55).

Fetal growth restriction is generally viewed as a risk for perina-
tal cerebrum injury with intraventricular hemorrhage (IVH), yet 
clinical reviews record altered outcomes with elevated, decreased, 
or unaltered rates of IVH in FGR newborn children contrasted 
with suitably developed counterparts. Placental insufficiency 
with anomalous umbilical artery Doppler was connected to the 
occurrence of IVH. While considering that cerebrum sparing is 
a characteristic reaction to placental chronic hypoxia, it is not 
amazing that changes in blood flow to the cerebrum might be 
both characteristics of the clinical seriousness of FGR, and related 
with impairments of neurodevelopment. The adaptive reaction 
of cerebrum sparing requires remodeling of the fetal cerebrum 
flow that can be diagnosed via Doppler ultrasound as a reduced 
pulsatility record in the cerebral arteries. At the point when a 
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with suitably developed newborn children. That concern the 
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Sudden intrauterine unexplained death syndrome is multifac-
torial and polygenic condition. Although several genetic factors 
have been reported as cause of SIUDS but defining a specific 
genetic aberration at this stage is often a challenging issue due to 
limited phenotype–genotype correlation (61). In addition, genetic 
anomalies in under developed phenotypes are rarely investigated. 
Several studies have reported through whole genome sequencing 
the importance of neurodevelopmental and ion exchange pathway 

genes (ARHGAP35, BBS7, CASZ1, COL2A1, CRIM1, DHCR7, 
HADHB, HAPLN3, HSPG2, MYO18B, RYR1, and SRGAP2).

CONClUSiON

A brainstem abnormality is suggested to be the main underly-
ing etiological factor in SIUDS and SIDS victims. Alterations in 
certain neurotransmitters such as ACh receptor, serotonin 5-HT 
neurotransmitter, SP, and brain-derived neurotrophic growth 
factor (BDNF) are identified in the SIDS and SIUDS, which 
have vital roles in chemosensation and cardiorespiratory control 
leading to these sudden deaths. However, further studies are 
suggested to investigate more into this serious life threatening 
events.
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