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Fluoxetine therapy has been approved for children with major depressive disorder and 
obsessive compulsive disorder for over 14 years and has expanded to other childhood 
behavior disorders. As use increases, more detail on fluoxetine effects during juvenile 
brain development can help maintain safe and effective use of this therapy. Here, a nar-
rative review is provided of previously published findings from a large nonhuman primate 
project. Fluoxetine was administered to juvenile male rhesus monkeys for an extended 
period (2 years) prior to puberty. Compared to controls, treated monkeys showed sleep 
disruption, facilitated social interaction, greater impulsivity, and impaired sustained atten-
tion during treatment. No effects on growth were seen. Metabolomics assays charac-
terized a distinctive response to fluoxetine and demonstrated individual differences that 
were related to the impulsivity measure. Fluoxetine interactions with monoamine oxidase 
A polymorphisms that influenced behavior and metabolomics markers were an import-
ant, previously unrecognized finding of our studies. After treatment was discontinued, 
some behavioral effects persisted, but short-term memory and cognitive flexibility testing 
did not show drug effects. This detailed experimental work can contribute to clinical 
research and continued safe and effective fluoxetine pharmacotherapy in children.

Keywords: fluoxetine, children, monkeys, sleep, attention, cognition, metabolomics, monoamine oxidase A

inTRODUCTiOn

Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) that was approved (as Prozac®) for use in 
adults for depression in 1987 and for use in children for depression (MDD) and obsessive compulsive 
disorder (OCD) in 2003. Expanding use of fluoxetine has spurred interest in filling the gap in basic 
and clinical research on effects of fluoxetine therapy specific to children. This review is based on a 
project undertaken to supplement information on the safety of fluoxetine for children by using a 
juvenile nonhuman primate model, the rhesus monkey. Macaque monkeys are prominent models 
for childhood because of the extended juvenile period between infancy and puberty when advanced 
cortical functions mature under the influence of complex social systems. The review integrates find-
ings from eight published studies of different endpoint domains (1–8) with current issues in pediatric 
psychopharmacology.

JUveniLe MOnKeYS AS A MODeL FOR CHiLDRen

Species differences in drug metabolism can be an important barrier to translation. Studies in adult 
monkeys have demonstrated metabolic profiles of fluoxetine similar to those seen in humans (9–11), 
as did our pilot work in juvenile monkeys (1). Also, in that pilot research, fluoxetine’s biological 
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action of blocking serotonin reuptake in brain was reflected in 
increased concentrations of serotonin in cerebral spinal fluid after 
long-term treatment (1).

Because simple weight-based extrapolation from humans to 
monkeys is not appropriate (11), preliminary pharmacokinetic 
studies in juvenile rhesus were used to select an oral dose of 2 mg/kg 
relevant to children (1). Plasma levels (fluoxetine + norfluoxetine) 
in the monkeys after 2 years of dosing were 273 ± 31 ng/mL (5), 
compared to 241 ± 91 ng/mL in children with MDD who showed a 
therapeutic response at the recommended dosage of 20 mg/day (12).

Life history provides a valuable parallel between monkeys and 
humans particularly as regards the prolonged period of develop-
ment after infancy and before puberty known as childhood in 
humans. Monkeys in our project began dosing at 1 year of age 
(approximately equivalent to 4–6 years of age in children), were 
dosed for 2  years, and completed the postdosing follow-up at 
4 years of age, just before puberty. An outline of the study sched-
ule is provided in Table S1 in Supplementary Material.

Rhesus monkeys, like humans, display polymorphisms 
that result in greater or lesser expression of genes that regulate 
brain function and interact with environmental influences, 
including, prominently, monoamine oxidase A (MAOA), which 
metabolizes serotonin, and the serotonin transporter (SERT), 
which is responsible for reuptake of serotonin after release dur-
ing neurotransmission (13). Genotyping for polymorphisms in 
these genes (MAOA-uVNTR and 5HTTLPR) was available in 
our monkey subjects. As it turned out, fluoxetine interactions 
with MAOA polymorphisms influenced several of the behavioral 
assessments, most prominently emotional response (Table S2 
in Supplementary Material). Also, unexpectedly, 5HTTLPR 
polymorphisms interacted with fluoxetine in influencing growth.

LiMiTATiOnS

Two major limitations of this project were the all-male cohort and 
the limited duration of postdosing follow-up.

eXPeRiMenTAL FinDinGS

experimental endpoints and expectations
This project was purposely broad in scope and not designed to 
test specific hypotheses. However, the available literature did 
allow some expectations about the consequences of fluoxetine 
treatment in the juvenile monkeys. Most of the endpoints targeted 
for evaluation as potentially sensitive to fluoxetine were identified 
from clinical and experimental studies of SSRIs in human adults 
and children and from a small number of juvenile animal studies 
in the literature. This literature led to the following expectations 
for effects during dosing:

• Less growth in weight and height during treatment
• “Activation syndrome”: poor behavioral inhibition/hyperactivity
• Sleep disturbance, particularly nighttime awakening
• Facilitation of social interaction
• Deficit in sustained attention
• Altered emotional response
• Altered cortical synaptic spine density.

The complete schedule of evaluations is provided in Table 
S1 in Supplementary Material. Some of these expectations were 
supported in analysis of our nonhuman primate data and some 
were not.

Less Growth in weight and Height during 
Treatment
Effects on growth were a major finding in the 19-week clinical 
trial used to support FDA approval for fluoxetine use in children 
(14, 15), and the fluoxetine label recommends that “…height and 
weight should be monitored periodically in pediatric patients 
receiving fluoxetine.” A more recent 36-week clinical trial also 
reported decreased weight gain during fluoxetine treatment in 
children (16). In addition, the rat juvenile toxicity study con-
ducted for FDA and described on the fluoxetine label (17) found 
growth retardation, but included postpubertal ages (weaning to 
adulthood).

The expectation of less growth was not supported in our 
study. There were no main effects of fluoxetine on growth in 
body weight, body length, long bone length, head circumference, 
arm circumference, or skinfold thickness measured at 4-month 
intervals (3).

However, nonhuman primate vs. human studies differed in 
several relevant respects including an all-male cohort and the 
lack of a depression diagnosis. Also, the human cohorts included 
adolescents whose rapid growth may have been more sensitive 
to the drug.

Unexpectedly, SERT 5HTTLPR genotype (LL vs. SL polymor-
phism) was found to influence growth rate in our nonhuman 
primate project (3). Growth was slower in the SL subjects (puta-
tive lower transcription) than the LL subjects (putative higher 
transcription) for body weight, body length, and long bone length 
during the second year of dosing. Interestingly, the 5HTTLPR 
effect on growth showed an interaction with fluoxetine. The 
slower growth in leg bones (femur and tibia) in the LL subjects 
was significant for the vehicle controls (p = 0.0006) but not for 
the fluoxetine-treated subjects (p = 0.41). This finding and related 
literature on serotonin and bone (18) suggests that 5HTTLPR 
may be an important consideration in conducting and replicating 
growth studies in juvenile monkeys and possibly children.

“Activation Syndrome”
“Activation syndrome” is a term coined to describe side effects [or 
treatment-elicited adverse effects (TEAEs)] observed in response 
to SSRI therapy in children (19). The term includes symptoms 
with descriptors such as impulsivity, behavioral disinhibition, 
hyperactivity, jitteriness, and akathisia. “Activation syndrome” has 
been implicated in the early suicidality identified in SSRI-treated 
adolescents (20). As early as 1991, this pattern was reported in 
fluoxetine-treated children with depression (21) and has subse-
quently been observed in a number of studies in children treated 
for a variety of disorders. A single conceptual or biological basis 
has not been defined, but factor analysis of symptom reports 
indicates validity of the construct (22). In our study, we gathered 
information on this issue by measuring impulsivity with a reward 
delay task and hyperactivity with 48 h actimeter monitoring.
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FiGURe 1 | Social interaction. Percent of time spent in social interaction during three 30-min observation sessions over the 2-year dosing period. From Ref. (5). 
N = 16/group. p-values are for comparison of fluoxetine group with vehicle group.
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Our project found fluoxetine-induced impulsivity (2). In the 
reward delay task, the subject was required to withhold reaching 
for a food reward for 15 s, while it was gradually revealed from 
behind a screen. Fluoxetine-treated subjects responded sooner 
and had more immediate responses after 1 year of dosing. After 
2 years of dosing, this group difference was no longer statisti-
cally significant (p  =  ~0.28). Notably, in children, activation 
side effects of SSRIs are more prominent in the youngest age 
groups (23).

Hyperactivity, as measured with actimeters, was not found in 
fluoxetine-treated monkeys (4). In children, an actimeter study 
of “activation syndrome” did not find that total daily activity was 
correlated with “activation syndrome” intensity as assessed by 
questionnaire (22).

Sleep Disturbance, Particularly nighttime 
Awakening
Sleep disturbance associated with SSRI administration was 
an early clinical observation later confirmed with EEG studies 
in adults, both patients and non-patients (24, 25). Measures 
included nighttime awakening, eye movement, restless legs, 
and, more recently, bruxism. In children, a similar finding was 
described during treatment with fluoxetine and other SSRIs in 
symptom reports (26, 27), as well as EEG/EOG monitoring (28).

Sleep disturbance was found in our non-human primate 
project (4). With our actimeter data, it was possible to use activ-
ity thresholds to identify the onset and duration of nighttime 
sleep, as well as disruption of sleep at night (awakenings), and 
daytime sleeping (naps). We measured sleep disruption with 
the Fragmentation Index, which combines number of nighttime 
awakenings and daytime naps. Fluoxetine led to more sleep dis-
ruption (greater Fragmentation Index) after both 1 and 2 years of 
dosing (4). An additional finding was that greater Fragmentation 
Index values in the fluoxetine group, as well as awakenings at 
night, were influenced by MAOA genotype (4). The fluoxetine 
effect was statistically significant in high-MAOA subjects but not 
low-MAOA subjects (Table S2 in Supplementary Material).

An actimeter study in children (22) found that “activation 
syndrome” was associated with more nighttime awakenings and 

less daytime activity. These authors suggested that sleep distur-
bance could serve as a marker for “activation syndrome.”

Facilitation of Social interaction
Fluoxetine has been used successfully in the treatment of social 
anxiety in both adults and children (29–31). An increased 
social interaction is also a well-recognized consequence of SSRI 
treatment of depression. While social facilitation may be a non-
specific consequence of reduced anxiety and depression, there is 
also evidence of an independent drug effect from studies of social 
facilitation in adult non-patient populations given SSRIs (32–38).

Facilitated social interaction was seen in our fluoxetine-treated 
monkeys (5). Monkeys were housed in pairs and were observed 
interacting with their longtime cagemate. More social behavior 
was seen in the fluoxetine-treated subjects based on the sum of 
all social behavior (Figure  1). Also, the incidence of the most 
common type of social behavior, quiet socialization, was statisti-
cally greater in the fluoxetine-treated group. However, some 
specific types of behavior were differentially affected depending 
on the MAOA genotype: social invitations and initiations were 
greater in the high-MAOA-treated subject than the low-MAOA 
fluoxetine-treated subject, while grooming was enhanced in 
fluoxetine-treated dyads with two low-MAOA cagemates (Table 
S2 in Supplementary Material).

Sustained Attention impairment
Sustained attention is a cognitive domain that has been charac-
terized in some depth for SSRI influences in adults (39–43). It 
has not been formally evaluated in children although poor atten-
tion is sometimes reported in TEAE questionnaires (23, 44–46).

Sustained attention was sensitive to fluoxetine in our nonhu-
man primate project (8). An automated Continuous Performance 
Test (CPT) was used to evaluate sustained attention at the end 
of the dosing period. Monkeys were rewarded with a sugar pel-
let for touching a white square when it appeared on the screen 
and punished with a delay for touching red or green squares. A 
total of 112 stimuli were presented during a 12-min session with 
different colored squares presented randomly. After 2 years of 
treatment, fluoxetine-treated monkeys showed more omission 
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FiGURe 3 | Emotional response. Emotional responses to pictures varying in affective content (neutral, social, and fearful). Responses were from an observational 
ethogram including vocalizations, facial expressions, and actions. From Ref. (6).

FiGURe 2 | Sustained attention. Omission errors in the automated 
Continuous Performance Test administered 20 months after initiation of 
dosing (“Dosing”) and 6–10 months after discontinuation of dosing 
(“Post-Dosing”) (8).
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errors (failure to touch the correct stimulus) than vehicle 
controls, indicating a sustained attention deficit. The decrease 
in attention was measurable but not dramatic, resulting in 16% 
omission errors in the fluoxetine group compared to 11% in 
controls. Under the more challenging testing condition (upper 
tier caging), the omission rate was 23% in the fluoxetine-treated 
group (Figure 2).

Of interest, CPT commission errors (false alarms) were not 
influenced by fluoxetine, and there were no interactions with 
MAOA genotype.

Altered emotional Responsiveness
The mood and affect systems in the brain are a prime target of 
antidepressants. Empirical findings of therapeutic effects are often 
attributed to correction of dysfunction in these systems. However, 
with broad use of SSRIs in children, information is needed on 
mood and affect effects in the absence of mood disorders. By 
using imaging techniques in non-patient populations, antidepres-
sants including fluoxetine have been shown to influence activity 
in brain circuits associated with emotional response (47, 48).

Our young nonhuman primate subjects were not selected for 
mood disorders. While one might anticipate that the emotional 
response would be altered by fluoxetine, the extent and direction 
of such an effect could not be predicted. To assess emotional 
response, we used picture-elicited emotion, a common tool in 
imaging studies of brain circuits underlying emotion, including 
adult studies with fluoxetine (49, 50) and basic research in chil-
dren (51). Monkeys were shown pictures with neutral, positive 
affective, and negative affective content. Vocalizations, facial 
expressions, and behaviors associated with emotional response 
were scored from videotape (6).

Emotional response was the major domain from our project 
that demonstrated a fluoxetine effects primarily associated with 
one MAOA genotype (6) (Figure 3; Table S2 in Supplementary 
Material). Low-MAOA subjects treated with fluoxetine were less 
emotionally reactive than their vehicle-treated counterparts. This 
result may be relevant to the inconsistent therapeutic efficacy of 
fluoxetine in childhood MDD, but also to fluoxetine use in condi-
tions other than depression.

Postdosing Persistence of Behavioral 
effects
After discontinuation of dosing and a washout period, most of 
the assessments were repeated to look for persistence of effects. 
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Persistent effects might stimulate further work on the more 
general question of whether exposure to this powerful serotonin 
system agent can alter the trajectory of brain development (52). In 
addition to the tests administered during dosing, two further tests 
of cognitive function that were still immature during the dosing 
period were added: recognition memory and cognitive flexibility. 
A simple comparison of drug effects during and after dosing was 
complicated by the rapid maturation of behavior that provided 
different background for detecting drug effects. However, some 
general conclusions on persistence can be offered at different 
levels of confidence.

• Impulsivity: marginal statistical significance (p  =  0.055) for 
persistence (unpublished data).

• Sleep disturbance: fluoxetine effect on nighttime awakenings 
persisted (4).

• Sustained attention: persisted in subjects tested in the top tier 
(Figure 2) (8).

• Social interaction: fluoxetine effect on sum of all social interac-
tions did not persist (unpublished data).

• Emotional response: emotional response was decreased in the 
low-MAOA genotype monkeys, as was the case during dosing, 
but the statistical test was not significant (p = 0.18) (6).

The two additional cognitive domains were evaluated only 
postdosing (short-term memory, cognitive flexibility) (8). The 
previous fluoxetine dosing did not impair memory or cogni-
tive flexibility in these tests. However, subject engagement with 
testing was impaired in terms of trial initiation and completion 
(8). Multivariate analysis suggested that this was related to the 
persisting sustained attention deficit (8).

CORTiCAL DenDRiTiC SYnAPTiC  
SPine DenSiTY

In a different study in rhesus (53), enhanced expression of the 
SERT was found in cortex 1.5  years after discontinuation of a 
1-year fluoxetine exposure during juvenile brain development. 
This finding demonstrates the possibility of long-term changes in 
brain after developmental fluoxetine treatment.

After conclusion of our project, we were able to complete an 
assessment of synaptic spine density in the monkey brains (8). 
Synaptic pruning is a hallmark of juvenile brain development in 
children, which is well documented in monkeys (54), and has been 
shown to be influenced by fluoxetine in rodent models (55–57). In 
cortex (dorsolateral prefrontal cortex), there was a pattern of lower 
density in fluoxetine-treated monkeys. However, this pattern could 
not be confirmed statistically in our sample (N = 8–9/group).

MeTABOLOMiC BiOMARKeRS OF 
ReSPOnSe

Precision medicine seeks to use biomarkers to optimize therapeutic 
responses and minimize adverse side effects. There are several 
reasons why biomarkers that predict response to fluoxetine in 
children would be valuable. On the therapeutic side, looking 
specifically at MDD and OCD, the response rate to fluoxetine in 

children is similar to adults, about 57% of patient population com-
pared to 33% placebo in a recent clinical trial (16). No approach 
to predicting responders vs. non-responders is currently available 
although genetics are beginning to be explored (58). In children, as 
in adults, the therapeutic response lags in time from the onset of 
treatment requiring prolonged dosing as the only way to determine 
therapeutic efficacy. On the adverse effects side, the postapproval 
emergence of reports of suicidality in adolescents treated with SSRIs 
emphasizes the value of predicting individual adverse side effects.

Metabolomics is one approach to providing biomarkers that 
predict treatment response and treatment-related adverse effects 
(59). In rodents and adult humans, metabolomics is already 
actively used to look for biomarkers of response to antidepressants 
(60–62). In our nonhuman primates, we looked for metabolomic 
biomarkers of fluoxetine response after 1 year of dosing.

Peripheral metabolite profiling was conducted using plasma, 
CSF, and fibroblasts from our juvenile monkeys (2, 7). To under-
stand whether biomarkers of fluoxetine response predicted rel-
evant behavioral effects, we correlated metabolomic biomarkers 
with impulsivity, a behavioral test affected by fluoxetine at 1 year 
of age. Finally, to further define individual response to fluoxetine, 
we included MAOA genotype in the analyses.

In targeted analysis of plasma and CSF samples, partial 
least squares discriminant analysis demonstrated separation of 
metabolite profiles from control and fluoxetine-treated groups 
(2) (Figure  4). The separation was greater for CSF than for 
plasma. Two pathways emerged that distinguished fluoxetine and 
vehicle-treated animals and also contained metabolites that were 
associated with impulsivity: the Alanine, Aspartate, Glutamate 
pathway, and the Nicotinate, Nicotinamide pathway (2). This latter 
pathway was also influenced by MAOA genotype. It is directly 
linked to the metabolism of tryptophan, the amino acid precursor 
of serotonin, and to the Alanine, Aspartate, Glutamate pathway.

Metabolites in serum and CSF are subject to time-dependent 
“noise” from the environment. Fibroblasts are an easily obtainable 
biopsy material that has been recently added to biomarker studies 
of psychopathology (63, 64) to identify more stable biomarker 
profiles. When we looked at fibroblasts, the Purine, Pyrimidine 
and Histidine metabolic pathways were influenced by drug (7). 
Somewhat surprisingly, a strong biomarker for impulsivity was 
identified in the Pyrimidine pathway of the fibroblasts. Our pro-
ject reinforces recent research showing a possible involvement 
of Purine and Pyrimidine pathways in adult mood disorders and 
their response to antidepressants (62, 65–67). Purine pathway 
metabolites previously implicated as biomarkers of therapeutic 
response to fluoxetine in depressed adult patients (65) may also 
be relevant to children.

new FinDinGS OF POTenTiAL vALUe 
FOR CLiniCAL TRAnSLATiOn

In addition to confirming some previously described effects of 
fluoxetine in a developmental context, a few entirely new findings 
were generated in the project.

 (1) Interaction of fluoxetine with MAOA genotype. Together with 
research on the interactions of developmental environment 
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FiGURe 4 | Metabolomic profiles. Partial least square analysis of metabolite profiles in plasma and CSF after 1 year of dosing demonstrating greater overlap for 
plasma than CSF samples. From Ref. (2).
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with MAOA polymorphism, these findings support the 
important role of these common gene variants in determin-
ing later behavior.

 (2) Bone growth effects in conjunction with 5HTTLPR 
polymorphism. The broad utilization of serotonin in tissues 
outside the nervous system is well known. A literature is also 
developing for serotonin systems in the bone. Implications 
of developmental SSRI use for tissues other than brain may 
need attention in children.

 (3) Biomarkers. Continued research on minimally invasive 
biological sampling may yield potentially useful biomarkers 
for predicting response to fluoxetine in children.
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