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Maternal breast milk (BM) is a complex and unique fluid that evolution adapted to

satisfy neonatal needs; in addition to classical nutrients, it contains several bioactive

components. BM characteristically shows inter-individual variability, modifying its

composition during different phases of lactation. BM composition, determining important

consequences on neonatal gut colonization, influences both short and long-term

development. Maternal milk can also shape neonatal microbiota, through its glycobiome

rich in Lactobacilli spp. and Bifidobacteria spp. Therefore, neonatal nourishment during

the first months of life seems the most important determinant of individual’s outcomes.

Our manuscript aims to provide new evidence in the characterization of BM metabolome

and microbiome, and its comparison to formula milk, allowing the evaluation of each

nutrient’s influence on neonatal metabolism. This result very interesting since potentially

offers an innovative approach to investigate the complex relationship between BM

components and infant’s health, also providing the chance to intervene in a sartorial way

on diet composition, according to the nutritional requests. Future research, integrating

metabolomics, microbiomics and stem cells knowledge, could make significant steps

forward in understanding BM extraordinary properties and functions.

Keywords: human milk, metabolomics, microbiota, microbiomics, human milk oligosaccharides, preterm,

newborn

INTRODUCTION

Breast Milk (BM) is a precious fluid which has been considered miraculous since ancient times.
Its extraordinary properties have been studied in detail, not resulting fully clarified yet. It can
confer protection against a large number of pathologies and exerts a beneficial effect on breastfed
newborn’s development (1, 2).

BM is the most suitable choice for neonatal nutrition, highly recommended as the exclusive
component of the infant’s diet for almost 6 months of life (3).

Nutrition in the early neonatal period influences the successive whole life, due to its role
in the activation of several metabolic processes, for example, microanatomy development,
growth, metabolism, gut microbiological colonization and maturation, immunological system
development, brain maturation, and organization (1, 4).
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In fact, BM has been associated to many beneficial short-term
effects, such as a reduction in necrotizing enterocolitis (NEC)
and sepsis (5); a positive influence on long-term outcome (such
as neurodevelopment) and a protective effect against infections,
overweight, obesity, diabetes and malignant diseases incidence
have also been described (6).

BM beneficial effects do not regard exclusively infants’ health
but could also be exerted on lactating mothers, improving their
outcome (6).

BM contains several components, such as lipids,
carbohydrates, proteins, vitamins, minerals. Oligosaccharides,
the third most abundant constituents of BM, which represent
a highly variable fraction of BM, exert several important
functions, such as the modulation of neonatal gut microbiota
composition, influencing many physiological processes
(7).

BM is also defined an “alive” fluid, since it provides to the
breastfed newborn maternal soluble bioactive components,
growth-factors (GFs), hormones, cytokines, chemokines,
immunoglobulins (Ig), and immunological-related cells as
leucocytes, cells of both bacterial and maternal origin and
finally, as recently demonstrated, also multipotent Stem Cells
(SCs) able to integrate in vivo in many neonatal tissues and
differentiate into mature cells. Finally, great relevance can
also be attributed to the presence of maternal milk microbiota
(1, 2, 5, 7–9).

BM composition has the extraordinary property to vary
according to gestational age (GA) of the neonate and to the
lactation phase (5, 6, 10).

Since the degree of prematurity highly influences BM features,
the resulting composition is optimal for preterm newborns needs.
Macro- and micronutrients levels vary and determine advantages
regarding immunity, neurological development, gastrointestinal
maturation (9, 11–17).

The presence of several cytokines and chemokines, showing
a higher concentration in colostrum, has been widely evidenced
and could represent an additional mechanism of protection,
especially against NEC and sepsis (17, 18).

It is not fully known how maternal or pregnancy factors
could modify their level, although in peripartum infections,
in spontaneous preterm delivery and in VLBW neonates
lower concentrations of pro-inflammatory cytokines have been
measured, potentially protecting against mucosal damage or
pathogens (19).

Even the cellular composition of BM varies among samples
deriving from mothers of preterm and full-term newborns,
meeting the necessities showed by premature neonates during
the first phases of life (9) and confirming the extraordinary
ability of this liquid to modify itself according to the newborns
features and assuming the best qualities for his optimal
development (5).

BM related SCs belong to different lineages such as mammary
epithelial cells, neuroepitelial-like SCs and mesenchimal SCs
(10–15%) (20).

It seems that, among large amount of SCs ingested by the
newborns each day, some can pass fromBM through neonatal gut
and migrate into brain and other organs; there, they can persist

and proliferate as in a microchimerism, restoring the involved
organs, potentially even after a damage (1, 5, 21). This interaction
between the dyad mother-child result very interesting but all the
implications should be deeper clarified.

METABOLOMICS

The great relevance of micronutrients in BM is highlighted by
the increasing number of metabolomic studies performed to
characterize its metabolic profile and inter- and intra- individual
variations (8, 10, 16, 22–30).

BM can be analyzed through nuclear magnetic resonance
(NMR) and liquid or gas chromatography coupled with mass
spectrometry (LC-MS or GC-MS), to evaluate its unique profile
(5).

The first metabolomic study investigating BM composition
was conducted by Cesare Marincola et al in 2012 (22). This
group demonstrated different metabolic features characterizing
subsequent lactation stages. Moreover, they found higher levels
of lactose and lower levels of maltose in BM samples, compared
to formula milk (FM) (1, 17, 22).

Interesting results were also obtained by the numerous
successive studies, performed by several groups. The most
relevant findings are reported below, and they can be found in
a more detailed way and summarized in 2 tables in the recent
papers published by Fanos et al. (5) and Bardanzellu et al. (17).

According to the findings of Spevacek and colleagues, (23)
the highest variability can be found in preterm samples. They
identified and measured variations in 69 metabolites and also
demonstrated that lacto-N-tetraose and lysine decreased during
the maturation of full-term milk (23).

Another group (10) demonstrated that preterm BM
metabolome mostly varies within 5–7 weeks postpartum;
after this period it would probably obtain the composition of
term milk after this time and BM dependence on GA seems to be
reduced (5, 10, 17, 31).

Moreover, in colostrum samples from preterm delivering
mothers, an increased level of fucosylated oligosaccharides,
fucose, N-acetylneuramic acid and N-acetylglucosamine, citrate
and creatinine have been shown (10).

The group of Villasenor et al. also demonstrated a different
composition between full term colostrum and mature milk and
moreover, our research group detected a higher sample variability
in colostrum instead of mature milk belonging to extremely
preterms (27).

Summarizing these findings, the highest variability has been
evidenced during the first three months of lactation (25), with
a high dependence on GA (28); a different metabolitic pattern
comparing human colostrum with transition milk and mature
was observed (23).

BM from mothers of preterm neonates showed a different
composition if compared with full-term newborn mothers’ BM.
In particular, a higher concentration of proteins and aminoacids,
promoting cerebral development and energy production, was
observed. This reinforces the concept of BM variability according
to the breastfed newborn’s peculiarities (17).
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Among the genetic factors highly influencing BM
composition, four maternal phenotypes, depending on both
blood group and expression of two specific genes, were identified.

This influence in particular regards human milk
oligosaccharides (HMOs), which constitute the third most
abundant solid fraction of BM, following lactose and lipids
(1.9–4.5%) (7).

These genes are, firstly, alpha-1-2-fucosyltransferase (secretor
gene, FUT2) which is codified by Se gene and allows the
classification of secretors (Se+) and non-secretors (Se−) mothers.
Secondly, it is considered alpha-1-3-4-fucosyltransferase
gene(Lewis gene, FUT3); it indicates positivity or negativity for
Lewis Group (Le+ or Le−). According to these considerations,
maternal phenotypes can be divided in: Se+/Le+, Se+/Le−,
Se−/Le+, and Se-/Le−, showing significant differences in BM
metabolites (1, 17, 32, 33).

In fact, Se+/Le+ mother’s BM exhibits all the fucosylated
oligosaccharides (2′fucosyl-lactose 2′FL, lactodifucotetraose
LDFT, Lacto-N-fucopentaose I LNFPI, Lactodifucoesaose I
LNDFHI), while the Se−/Le+ mother’s phenotype determines
the production of samples containing a high concentration of
HMOs with (α1-3) and (α1-4)-linked fucose residue, in absence
of α1,2-fucosylated structures (32, 34–36).

The great interest concerning BM HMOs composition is also
related to their potential influence on microbiota (10, 37, 38).

It has been estimated that FUT2 is expressed inmore than 70%
of the Caucasian women (34). The absence of α1-2-fucosylated
oligosaccharides in BM can lead to several pathophysiological
consequences, such as a delayed colonization by Bifidobacteria
spp., a higher abundance of Streptococcus spp. and also functional
differences of microbiota metabolic activity. According to some
authors, Se+/Le+ phenotype results protective against some
infections, such as E. coli and Campylobacter spp. and preventive
of NEC (35), while infants fed with BM from Se−mothers
would show a higher risk for diarrheal diseases (11, 39,
40).

In accordance with these data, Bazanella and colleagues
analyzed BM samples from Se+ mothers, demonstrating a
higher percentage of fucosylated oligosaccharides instead of Se−

mothers, and the presence of B. longum exclusively in the stools
of Se+ breastfed neonates (41).

HMOs are known to decrease with milk maturation (10, 27).
According tomany studies, total HMOs content, sialic acid, lacto-
N-tetraose, LNDFH I, 3′- sialyllactose, 6′-siallylactose, fucose, N-
acetylglucosamine, N-acetylneuraminic acid resulted higher in
preterm milk (10, 23, 42).

In addition to HMO’s, also amino acids and lipids showed a
great variability across lactation stages and a great dependence
on prematurity. Some amino acids increase, while other reduce
their concentration during BMmaturation (10, 17, 43).

The studies performed in this field allow to conclude that
BM, in particular in the first phases and in the samples
obtained by premature delivering mothers, is extremely rich
in creatinine and amino acids. These factors are involved in
two crucial processes, especially for the vulnerable category of
preterm babies: brain development and energetic metabolism
(17).

In particular, creatinine, betaine, coline, leucine, isoleucine,
and valine take part in cerebral maturation (10, 26, 28, 44, 45),
while energy production is closely related to the presence of
alanine, glutamate, methionine and creatinine (23, 26, 28, 46, 47).

Coline and betaine could play a role in the reduction
of cardiovascular diseases (28, 48). Moreover, acetylcarnitine,
betaine, lysine, isoleucine, and taurine levels seem to decrease
during milk maturation in samples of mother of full term
neonates and not in preterm samples (17).

Other detected metabolites may also take part in several
immunity processes, hepatic regeneration, lipid and glucidic
metabolism (17, 45, 49–51).

It is also been demonstrated that fatty acids’ (FA) composition
in BM can be influenced by many factors, not fully understood
up to now. Among these, maternal age, nationality, parity, body
mass index (BMI), diet, newborn’s GA, lactation stage, maternal
gestational diabetes mellitus, number and duration of breastfed
meals and delivery route can be mentioned, although the entity
of their influence is not currently attested. The most represented
fractions are tryglicerides, palmitic, oleic, linoleic and alpha-
linolenic acids (17, 52–60).

FA’s content seems to be higher in colostrum from mothers
whose neonates’ weight was lower than the 20◦ centile (52, 61,
62) and this mechanism may probably help to compensate the
intrauterine growth restriction occurred in these neonates.

According to the analysis of Collado et al. (63), evaluating
BM from preterms and full-term delivering mothers, the content
of FAs resulted comparable among colostrum and mature milk
samples, although different qualitative profiles were found.

Recently, interesting results confirmed the importance of a
metabolomic approach to evaluate the differences occurring in
newborns fed with BM or formula milk during the early life.
Cesare Marincola et al. (64) detected variable urinary profiles in
relation to the kind of diet; several and more numerous trials
would be needed to fully understand the clinical implications of
these findings, improving our knowledge on BM’s effects.

Metabolomics also gave promising results analyzing urine
and/or blood samples of breastfed neonates or those from their
mothers, to understand biological effects of maternal BM. Two
recent studies evidenced as different metabolites can be found in
urine or blood of breastfed newborns, instead of those described
in samples belonging to FM fed newborns (31, 65).

Moreover, the analysis of urine from breastfeeding mothers
revealed different profiles too (5, 66).

In conclusion, BM metabolome varies according to GA and
lactation phase, depending on neonatal necessities and especially
meeting the peculiar requests of the vulnerable category of
premature newborns.

MICROBIOMICS

Even if BM was considered sterile for long time, it has
recently been demonstrated, through culture-dependent and -
independent techniques, that the microbial community in BM
from healthy mothers can contain more than 200 phylotypes,
belonging to about 50 different genera (2, 67, 68).
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The technological advances, particularly the cultivation
independent methods, such as 16S gene sequencing, allowed
a deeper analysis of bacterial diversity, giving more detailed
information on the populations present in several human fluids,
such as BM.

In this sampling, although they permitted to demonstrate a
bacterial load between two and three orders of magnitude, which
resulted higher than those estimated by cultures, from a critical
point of view these technique are not able to discriminate DNA
sequences from non-vital bacteria and extracellular DNA that
could interfere the amplification by quantitative PCR (qPCR).
However, it is also clear that the early stimulations coming from
all the microbial products, alive or residual, could influence the
newborn immune system (69).

According to the current knowledge, how maternal microbes
can reach mammary epithelium and undergo secretion in BM,
is still matter of debate. Milk harbored bacteria may derive
from the contamination with bacteria from mother’s skin (such
as S. epidermidis) and from infant’s oral cavity. On the other
side it has been postulated that microorganisms from maternal
intestinal tract can reach the mammary gland through a vascular
transport via intestinal immune cells, especially dendritic cells
(the so-called entero-mammary pathway hypothesis). This
entero-mammary pathway allows to consider as maternal
gastrointestinal bacteria during pregnancy and lactation could
directly influence the infant’s immune system. Moreover, a
retrograde flow of newborn’s microbes could occur during
nursing (17, 67, 68, 70, 71). However, due to its peculiar
characterization, this community is even more considered as a
site-specific microbiota, as demonstrated by several anaerobic
species that are identifiable and that are not present both in the
skin or in the oral cavity (2, 67, 68).

This community is represented, for about half, by a
constant core microbiota with a limited variability, being BM
microbiota dominated by Staphylococcus spp., Pseudomonas
spp., Streptococcus spp., Acinetobacter spp., Finegoldia spp.,
Anaerococcus spp., Actinomyces spp., and Enterobacter spp. (67,
69), with huge differences between colostrum and mature milk
(68, 69, 72–77).

On the contrary, the other half seems to be highly dependent
on maternal factors, such as ethnicity, diet, drug exposure,
environmental factor exposure, mode of delivery (67, 69).

BM is an exceptional source of commensal bacteria for
breastfed newborns, representing a dynamic ecosystem for
several species, which can modify itself during milk maturation,
according to the infant’s needs (67, 72). In fact, microbiota
shows high variability during the subsequent lactation stages,
also highlighted by the possibility to detect different microbial-
related metabolites (69, 78). After about one month of lactation,
BM microbiota reaches the full maturation and its definitive
composition, maintaining therefore a relative stability (67).

Composition and metabolic network of BM microbiota may
be considered as an epigenetic determinant of neonatal health
(78, 79). Moreover, many microbic-related metabolites represent
a linking ring between metabolomics and microbiomics. In
particular, BM microbiota is known to shape the newborn
intestinal microbiota since the early phases of life. Bacterial
genera and species present in colostrum and then in mature

milk can positively influence intestinal bacterial network, highly
rich in Bifidobacteria spp. and Lactobacilli spp. Bacterial
communities produce metabolites, such as short chain fatty acids
(SCFA), mostly butyrate, that may be detected in the fluids by
metabolomics and are able to influence several health outcomes
of the child.

Moreover, an active role is played by sialylated BM HMOs,
which can induce transcriptional responses in the intestinal
microbiota (i.e., B. Fragilis) potentially influencing even other
microbial members, such as E. coli. Therefore, through several
routes and deep interactions not fully clarified yet, this leads
to infant growth promotion, beneficial metabolic pathways and
effects on several organs (brain, liver, respiratory, and urinary
tract) (36, 80).

The effect of early diet on pigs’ intestinal microbiota has
been also evaluated by Piccolo et al. (81), demonstrating
that neonatal nutrition could characteristically induce different
effects according to the different small bowel’s region, mostly
influencing duodenum microbial composition, since microbial
network seems to be functionally defined by the intestinal
segment (81).

This bioregional effect of nutrition on the shape of intestinal
microbiota also influences the production of different molecules,
highlighting the strict dependence of metabolic profile from
microbial communities and the influence played by microbiota
itself on the host tissue metabolism, as demonstrated through
metabolomic analysis (81).

Hunt et al. (68) observed as BM microbial community
represents a unique fingerprint characterizing each mother’s
sample. BM and therefore neonatal intestinal microbiota
can be influenced by several factors, as reported in Table 1,
including genetics (such as secretor status, as previously
described), delivery route (in relation to newborn’s
colonization with maternal vaginal microbiota during
spontaneous delivery), maternal weight, diet and lifestyle
(in relation to ingested foods and even to maternal diseases
or metabolic status), antibiotic therapy administered just
before delivery (influencing maternal intestinal microbes),
environmental factors, lactation stage or GA (recognized
as actors influencing intestinal metabolites and HMOs and
thus, indirectly, newborn’s microbial community), mastitis
or maternal dysbiosis (allowing the newborn to become in
contact with potentially dangerous microbial communities)
(2, 17, 67, 72, 82, 84, 87).

Due to such reasons, maternal intestinal microbiota
influences breastfed newborn, modulating its intestinal microbial
community. In fact, several factors leading to maternal dysbiosis
(such as an overgrowth of a microbial species instead of the
others) and/or breast infection, which has been associated to a
reduced variability in microbiota composition, can show direct
effects on breastfed neonate’s health (2, 73, 74).

Among the other factors, even BM lipid composition, in
addition to maternal BMI, seems potentially influence BM
microbiota (72, 74).

Finally, even the modality of delivery can modify qualitative
bacterial composition of BM. For example, S. Salivarius, an oral
commensal, was detected only in samples collected frommothers
who underwent cesarean section (72, 85).
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TABLE 1 | Factors influencing the composition of breast milk and/or neonatal

intestinal microbiota and some of proposed mechanisms and exerted effects.

Maternal factors Effects on BM and/or neonatal gut

microbiota

Genetics (1, 16, 26, 27) Secretor status Se+ (associated with high

presence of Bifidobacteria spp. in neonatal

stools) and non secretor status Se− (higher

percentage of Streptococcus spp.), Lewis

gene; ethnicity; other factors not completely

known.

Lactation phase (54, 57–59, 63) Modulation of BM metabolites and microbial

community, directly influencing neonatal gut

microbiota and metabolic network

Breast milk composition (such as

oligosaccharides, lipids)

(10, 37, 38, 72)

Modulation of BM metabolites and microbial

community, directly influencing neonatal gut

microbiota and metabolic network.

HMOs influence B. Fragilis, E. coli etc… HMOs

and FAs influence Bifidobacteria spp. and

Staphylococci spp. in neonatal gut

Body mass index (5, 82, 83) Influence on maternal metabolic status

Diet, lifestyle and habits

(2, 5, 17, 67, 82)

Influence played by ingested foods, maternal

diseases or metabolic status

Delivery route (vaginal, elective or

emergency cesarean section)

(5, 72, 82–85)

Induce neonatal colonization with maternal

vaginal microbiota during spontaneous delivery.

S. Salivarius detected only in BM samples from

mothers undergone cesarean section.

Other factors not completely known

Gestational age at delivery (86) Modulation of BM metabolites and microbial

community, directly influencing neonatal gut

microbiota and metabolic network

Administration of antibiotics

(17, 33)

Influence on maternal intestinal microbiota

Dysbiosis and/or mastitis

(2, 17, 73, 74)

Neonatal contact with potentially dangerous

microbial communities

It is clear that BM microbiota plays a central role even in
the early colonization of neonatal gastro-enteric tract (67, 88),
considering that the breastfed newborn swallows about 1 x 105−8

bacteria/day (67–69, 71, 72, 88, 89). Since BM contains both
probiotics (such as Bifidobacteria spp. and Lactobacilli spp.)
and prebiotics (mostly HMOs) it can be considered a natural
symbiotic mixture (72, 75).

Thus, neonatal commensal bacteria could be involved in
gut tolerance modulation, immune system stimulation and
may even inhibit reactions vs. some DNA fragments (78, 90,
91). This would result in a greater protection against several
diseases, reducing the rate of enteric and respiratory infections
(67, 71, 92).

Moreover, in BM, there are many anaerobic and lactic
acid bacteria (69), which could confer further anti-microbial
protection and improve nutrients’ absorption (67, 68, 71, 72, 88–
91, 93).

The recent study of Damaceno et al. (72), investigating BM
microbiota in healthymothers, revealed a bacterial concentration
ranging from 1.5 to 4.0 log10 CFU/mL, with the highest
concentration in colostrum. In their sample, S. epidermidis
resulted the predominant species.

Our group (67) evaluated microbiota network in italian
mothers, detecting a variable microbial composition

duringprogressive lactation stages and even some differences
occurring among different populations. In particular, colostrum
of Italian mothers mostly contained Abiotrophia spp.,
Actynomicetospora spp., Aerococcus spp., Alloicoccus spp.,
Amaricoccus spp., Bergeyella spp., Citrobacter spp., Desulfovibrio
spp., Dolosigranulum spp., Faecalibacterium spp., Parasutterella
spp., Rhodanobacter spp., Rubellimicrobium spp. (67, 88, 94).
Other authors also demonstrated a high prevalence of Weisella
spp., Leuconostoc spp., Staphylococci spp., Streptococci spp., and
Lactobacilli spp. (82).

In mature BM from italian mothers, Abiotrophia spp.
and Aerococcus spp. were also present, in addition to
Acetanaerobacterium spp., Aciditerrimonas spp., Acidocella spp.,
Aminobacter spp., Bacillus spp., Caryophanon spp., Delftia spp.,
Microvirga spp., Parabacteroides spp., Phascolarctobacterium
spp., and Alistipes spp. (67). Other authors also reported the
presence of Veillonella spp., Leptotrichia spp., Prevotella spp.
(82)., Enterococcus spp., Lactococcus spp., Actinomyces spp.,
Corynebacterium spp., Kecuria spp., Escherichia coli spp.,
Klebsiella spp., and Raistonia spp. species (88).

In the same study evaluations were conducted in colostrum
and mature milk frommothers living in Burundi, where so many
genetic but also environmental factors can be taken into account
to explain huge differences in microbial composition. Several
differences in the microbiota network have been observed also
in different lactation stages of the same population and it is clear
that the differences between these two populations may influence
the findings (67).

Analyzing the gut microbiota of breastfed neonates, and
comparing it to FM fed infants, different levels of Proteobacteria
spp., Bacteroides spp., Actinobacteria spp., and Firmicutes spp.
were detected (95); moreover, Bifidobacteria spp. resulted one of
the most represented species, especially Bifidobacterium longum
subsp. longum and infantis, and B. breve (96), which also showed
a high concentration in breastfed neonate’s stools (2, 86).

Bifidobacteria spp., Lactobacilli spp., and Bacteroides
spp. proliferation is useful to face intestinal aggressive
pathogens’ invasion (such as Salmonella spp., Lysteria spp.,
and Campilobacter spp. (97, 98). Moreover, BM has a buffering
capacity, that allows acidifying the intestinal content in order to
make it more fermentable by the bacteria of the proximal colon.
BM shows an inhibitory effect on the growth of Clostridi spp.,
Bacteriodes spp. and other anaerobic bacteria.

The great influence exerted by BM on neonatal intestinal
microbial composition allow to indicate this community with the
expression milk-oriented microbiota (MOM) (1).

This effect mainly occurs through the action of the glycans,
constituted by free HMOs, glycolipids and glycoproteins and
highly contained in BM. In fact, as previously reported, they act
as prebiotics, since they do not undergo absorption in proximal
gut (38, 99) and represent growth substrates for specific hugs
(67, 68, 71, 72, 88, 96, 100–103).

Therefore HMOs, and even FAs, influence the growth of
some beneficial species in neonatal gut, such as Bifidobacteria
spp. and Staphylococci spp., related to several positive effects
(38, 96, 104–106). For example, a better response to vaccines,
an improved function of the intestinal barrier and a protection
against intestinal infections (38, 107–109).
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Moreover, bacterial species like Bacteroides spp.,
Bifidobacteria spp. and Lactobacilli spp. are very important
for HMOs’ metabolism (72), promoting their degradation into
sugars available for energy production. In addition, Bifidobacteria
spp., Lactobacilli spp., and Bacteroides spp. can induce short
chain fatty acids (SCFAs) production, playing a role in gut
mucosa homeostasis and in lipid metabolism (97, 98).

A recent study of Karav et al. (96) demonstrated that a
endo-β-N-acetylglucosaminidase (EndoBI-1) found in several
Bifidobacteria spp. promotes the cleavage of N-linked glycans
fragments. These can influence bacterial selective growth,
especially allowing Bifidobacterium longum subsp. Infantis (B.
infantis) proliferation and even interfering with other subspecies’
metabolism. On the contrary, in the same study, B. infantis
did not result able to grow exclusively in presence of the de-
glycosylated protein fraction, confirming the role played by
glycans in bacterial growth.

In this perspective, Bifidobacteria spp. and other species
able to perform the initial de-glycosylation seem advantaged,
since this represents a key passage. In fact, many studies
demonstrated that the shape of gut microbiota, through the
influence of microbial growth, is better promoted by HMOs
and deconjugated glycans instead of the whole glycoprotein or
glycolipid (96, 110–120).

This topic represents an interesting field of research, being
not full clarified up to now. It would be very promising to find
a link among the exact and inter-individual BM composition,
the exerted influence on intestinal microbiota of the newborn
and its resulting clinical phenotype. In fact it could be a suitable
substrate for therapeutic beneficial applications modifying the
final outcomes.

For example, BM content in HMOs and even neonatal gut
microbiota showed some differences in under nutrition models,
leading to an impaired infantile development. Therefore, it could
be very useful to perform some dietetic strategies, adapted to
these needs, which could treat or prevents several disorders,
including under nutrition (38, 121).

CONCLUSIONS

BM exceptional features make it a very precious fluid,
whose extraordinary properties and functions have not

been fully clarified yet. It would be very interesting to
understand all maternal factors influencing BM composition,
also regarding SCs, in terms of quality and quantity
(21, 122).

In the last years the importance of metabolomics has
been highlighted, especially due to its role in characterizing
metabolites related to microbial network. This integrated
approach to the triad nutrients-microbes-metabolites can
allow the identification of the effective bacterial taxa in BM
and therefore transferred to the newborn (78, 123, 124),
since we know that BM is the best modulator of neonatal
microbiota (125).These findings would help to clarify, and
even predict, BM influence on neonatal short- and long-
term outcomes. Moreover, such observations may result
useful to perform a sartorial approach through targeted
strategies which potentially could, improve neonatal or
even maternal health through the modulation of BM
microbiota (2).

Finally, these evidences suggest the possible importance of
bacterial supplementation of FM. The detailed knowledge of
BM composition could allow to produce the best artificial
products to provide to the nourished newborn a FM
resembling, in the most accurate way, BM characteristics
(78, 126).
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