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Human milk is uniquely optimized for the needs of the developing infant. Its composition

is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent

by diet and environment. One important component that is gaining attention is the milk

fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a

tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates

from mammary gland epithelia. The MFGM is enriched with glycerophospholipids,

sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known

to exert numerous biological roles. Mounting evidence suggests that the structure of

the MFG and bioactive components of the MFGM may benefit the infant by aiding in the

structural and functional maturation of the gut through the provision of essential nutrients

and/or regulating various cellular events during infant growth and immune education.

Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG

might have a pivotal role in shaping gut microbial populations, which in turn may promote

protection against immune and inflammatory diseases early in life. This review seeks to:

(1) understand the components of the MFG, as well as maternal factors including genetic

and lifestyle factors that influence its characteristics; (2) examine the potential role of

this milk component on the intestinal immune system; and (3) delineate the mechanistic

roles of the MFG in infant intestinal maturation and establishment of the microbiota in the

alimentary canal.

Keywords: milk fat globule, milk fat globule membrane, infant development, gut maturation, microbiota, immune

system

INTRODUCTION

Human milk has evolved to meet the unique requirements for infant growth and development and
should be the sole source of nutrients for the developing infant during the first 6 months of life
(1, 2). One component of milk is the milk fat globule (MFG), which is difficult to mimic in infant
formulas due to its highly complex structure and variable composition. Beyond the traditional
role of milk fat as a source of nutrients, which provides up to 50% of the total calories in milk,
the functional importance of the MFG structure and composition on infant development is of
increasing interest.
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Biosynthesis of the MFG is energetically costly. Formation
begins with the packaging of triacylglycerols (TAGs) into micro-
lipid droplets that bud from the endoplasmic reticulum of
mammary gland alveolar epithelial cells to form cytoplasmic
lipid droplets (CLD) surrounded by a phospholipid monolayer.
Migration of the CLD to the apical pole of the epithelial cell
results in fusion with the plasma membrane and the addition
of a peripheral bilayer that contains a variety of bioactive
proteins and lipids (3). The fully-fledged MFG covered by
the membrane (MFGM) is then secreted outside the cell to
become part of the milk that provides nourishment for the
infant (3, 4).

MFG composition varies considerably among individuals
and is dynamic over the course of lactation, but also varies
over a single breastfeed (5). These variations reflect maternal
factors including diet, environment, maternal genetics, and body
composition, as well as the changing needs of the infant over
the period of lactation (Figure 1). Recent research has shown
a protective effect of MFGM against infectious diseases (6,
7), in part through the modulation of the intestinal immune
response and the gut microbiota (8–10). Although the underlying
mechanism is not entirely clear, the MFGM harbors two forms
of glycoconjugates (glycoproteins and glycolipids), which are
thought to have antimicrobial, anti-inflammatory, and prebiotic
functions in the gut (11, 12). These functions may be responsible,
in part, for the aforementioned modulation of immune response
and microbiota.

The focus of this review is on the role maternal and
environmental factors play in mediating MFG lipid and protein
composition, along with inter-species differences (e.g., bovine
and human), and the biological significance of the human
MFG in the infant intestine, with particular attention given to
structural and immune system development. The importance of
this component of milk on infant health outcomes as well as
identified gaps in the research literature that have been under-
explored are also discussed.

COMPOSITION OF MILK FAT GLOBULE
(MFG)

MFG Lipids
Structural Components
MFGs are heterogeneous structures, varying in diameter,
triglyceride content, and membrane and fatty acid composition
(13–15). The diameter of the MFG varies between 0.2 and
15µm, and its composition is observed to vary by size,
adding more complexity to the study of their structure and
function. Progress in lipids analysis has been slower than for
other biomolecules, such as proteins and metabolites. This
may be due partly to unsophisticated instruments, which
inadequately capture the complexity of lipids, and partly to
the limited amount of information that can be gleaned from
genomic studies since lipid fingerprints are not directly linked
to the genome (4). The core of the MFG is composed
primarily of TAGs, which represent 98% of total milk fat
and provides approximately half of the infant’s energy intake

in addition to essential fatty acids required for growth and
development (16).

Milk fat contains over 400 different fatty acids, among
which 15 constitute 90% of the total fatty acid pool (17). In
mature human milk, the majority of TAGs in the MFG core
consist of 18:1(n-9) oleic (20–35%), 16:0 palmitic (18–23%), and
18:2(n-6) linoleic (LA) (8–18%) acids (Table 1) (46). Medium
chain fatty acids (MCFAs) comprise 12% of total fatty acids,
and < 1% are short chain fatty acids (SCFAs) (49). Long
chain polyunsaturated fatty acids (LC-PUFA), notably 20:4(n-
6) arachidonic (ARA), 20:5(n-3) eicosapentaenoic (EPA), and
22:6(n-3) docosahexaenoic (DHA) acids, as well as one of the two
essential fatty acids, 18:3(n-3) α-linolenic acid (ALA) are some
of the least abundant, although a wide inter-individual variation
exists that is dependent on maternal diet and genetics (Table 1)
(50). The location of fatty acids on the glycerol backbone is highly
conserved within species, but not between species, with saturated
fatty acids typically occupying the sn-2 position of the TAG, and
specifically palmitic acid occupying 50-60% of all fatty acids at the
sn-2 position (defined as β-16:0) in human milk (51–53). The sn-
1 and sn-3 positions are occupied primarily by unsaturated fatty
acids, of which approximately half is oleic acid (54).

Surrounding the TAG core is the milk fat globule membrane
(MFGM), which is derived from the mammary gland epithelium
(55). The MFGM is a complex mixture of 60% proteins and
40% lipids (56) and functions to stabilize the globule as an
emulsion. The major building components of the MFGM
are the membrane phospholipids, i.e., glycerophospholipids
(glycerol-based phospholipids), which are comprised of
phosphatidylethanolamine (PE), phosphatidylcholine (PC),
phosphatidylserine (PS) and phosphatidylinositol (PI) (45),
and sphingolipids, notably sphingomyelin (SM) (57). SM, the
predominate sphingolipid in MFGM, is present in much higher
quantity in human milk compared to milk from other species
(e.g., bovine milk) (47). In general, PE, PC and SM are the most
abundant phospholipids in the MFGM, while PS and PI are
relatively minor components, although inter-individual variation
does exist (47) (Table 1).

The MFGM exists as a polymorphic lipid phase with
lipid-disordered domains rich in glycerophospholipids that are
fluidic and lipid-ordered domains that are more rigid at body
temperature (58). The lipid-ordered domains in the MFGM
are called lipid rafts because cholesterol and sphingolipids
interact to form circular assemblies in the outer leaflet (43).
Lipid rafts, which contain approximately 80% of total milk
cholesterol, play an important role in maintaining membrane
structure (43), and are critical for many biological processes
including compartmentalizing membrane proteins to modulate
their functions (44).

Different lipid classes in the MFG exhibit distinct fatty
acid profiles, with the MFGM phospholipids containing more
unsaturated fatty acids than the MFG core (43). Although
phospholipids in the MFGM only represent 0.5–1% of the total
fat in milk, 15–20% of the total LC-PUFA (e.g., DHA and
ARA) in milk is present in the MFGM phospholipids (59, 60).
In contrast to MFGM phospholipids, MFGM sphingolipids are
highly saturated, and are thought to maintain the lipid raft
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FIGURE 1 | Factors influencing the composition of milk fat globules in breast milk and the impact of those components on the infant gut during early development.

structure due to their tightly packed structure and higher melting
temperature. This structure may be important in digestion,
allowing for delivery of sphingosine and ceramides to the distal
gut (57). The varied digestion and absorption kinetics of the
MFG may be physiologically important for the infant. To date,
most research has focused on understanding and modulating the
overall fatty acid composition and lipid content in milk rather
than studying structural function.

Glycosphingolipids (sphingolipids with a carbohydrate
moiety) such as cerebrosides and gangliosides are present at low
abundance (61, 62). Gangliosides are glycosphingolipids with
one or more sialic acid residues, and are classified according to
the number of sialic-acid residues on the molecular backbone
(M = mono- or 1; D = di- or 2, as GM or GD), the number
of residues attached to the sugar moiety, and the biosynthetic
pathway from where they are derived (63). Human milk contains
a much higher concentration of gangliosides than bovine milk
(64). Supplementation of infant formula with a ganglioside-
enriched dairy fraction has shown beneficial impacts on cognitive
development in infants aged 0–6 months (35).

The size of the MFG is related to the TAG/phospholipid
ratio, fatty acid composition (14), and cholesterol content
(43). Argov et al. (65) demonstrated that smaller fat globules
tend to have more phospholipids (65) that may partly result
from a biosynthetic balance between phospholipids and neutral
lipids coordinated in the milk-secreting epithelial cells (4).
Independent of cellular TAG content, increasing intracellular
phosphatidylethanolamine content has been shown to facilitate
fusion between lipid droplets and hence increase the size of the
MFG (66). It is also thought that the type of esterified fatty acids

in the MFG core and membrane lipids contributes to globule
size (67), as a higher content of LC-PUFA and medium chain
fatty acids (MCFA) was observed in small fat globules in bovine
milk (65, 68). Differences in digestion and fat release patterns
between smaller and larger fat globules have also been described
(69, 70), suggesting that varying sizes of the MFG may have
distinct physiological effects. Interestingly, the mean diameter
of human MFG appears to be largest in colostrum, followed by
mature milk, and the smallest in transitional milk (71). Nano-
sized particles termed lactosomes that are devoid of triglycerides
and gangliosides but rich in phospholipids have been identified
and isolated at a density equivalent to high-density lipoproteins
(HDL) (higher density than native MFGs), which suggests that
they may also have biological functions (65, 72).

Maternal Factors Influencing MFG Lipids
a. Lactation Period

The composition of milk fat is dynamic over the course of
lactation and adapts to changes in the maternal environment,
diet and physiological state. While fatty acids with 4 to
14 carbons can be made from de novo synthesis in the
mammary gland, the 16 carbon fatty acids are derived either
from circulation, body stores, or diet (73). As milk matures,
the average fatty acid chain length decreases because the
mammary gland increases its capacity to produce MCFAs (12-
14 carbons) (74). The overall LCFA content remains similar
throughout lactation, with the exception of stearic acid, which
is higher in colostrum (74); however, wide variations among
different populations exist likely due to dietary differences
(75, 76). As lactation proceeds, TAG concentrations tend
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TABLE 1 | Lipid composition in milk fat globules.

Fatty acidsa % total fatty acids Biological significance

Palmitic acid (16:0) 18–23 Energy metabolism (18); used in the synthesis of other bioactive lipids (18)

Oleic acid (18:1) 20–35 Energy storage and metabolism (19); alters cell membrane fluidity (13)

Linoleic acid (n-6 18:2) 8–18 Skin barrier function (20); precursor to ARA; competes with n-3 fatty acid

metabolism (21)

Linolenic acid (n-3 18:3) 0.43–1.33 Precursor to EPA and DHA (22)

Arachidonic acid (n-6 20:4) 0.36–0.49 Eicosanoid synthesis (23); neurodevelopment (24)

Eicosapentaenoic acid (n-3 20:5) 0.07–0.26 Precursor to eicosanoids (23); immune function (23)

Docosahexaenoic acid (n-3 22:6) 0.17–0.99 Cell signaling; neurodevelopment and vision (25)

Phospholipidsb % of total phospholipids Biological significance

Phosphatidylinositol 4.6 Cell signaling; activation of Akt (26)

Phosphatidylcholine 25.2 Membrane structure; lipoprotein assembly and secretion (27)

Phosphatidylserine 5.9 Induction of apoptosis (28); carrier of DHA (29)

Phosphatidylethanolamine 28.6 Component of phospholipase D (30); cell proliferation and differentiation by

regulation of pathways including MAPK and NF-kB (31)

Sphingomyelin 35.7 Metabolized to ceramide and sphingosine (32); vascular development (33);

immune function (34)

Gangliosidesc 14.8–26.8 mg/L in human milk Cognitive development (35); altering membrane fluidity and function of

enterocytes (36–39); cell-cell communication (40); gut maturation and

immunity (41, 42)

Cholesterold 90–150 mg/L in human milk Structural maintenance of membranes (43); compartmentalization of

membrane proteins to modulate functions (44); substrate for bile acids,

vitamin D, hormones and oxysterols (45)

aFatty acid content represents mature milk collected in nine countries (46).
bPolar lipids were quantified using HPLC-ELSD (47).
cTotal ganglioside content represent Malaysian mother’s milk quantified using HPLC-MS (48).
dTotal cholesterol content adapted from Koletzko (45).

ARA, Arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

to increase for the first few weeks, whereas cholesterol
and cholesterol esters gradually decrease (74). Although the
concentration of sphingomyelin in human milk appears to
remain constant, colostrum is observed to contain more total
phospholipids (75, 77) and LC-PUFAs relative to transitional
and mature milk (71, 77). Yet, in most studies, including those
referenced above, fatty acids in the MFG core and those in the
MFGM lipids have not been separately analyzed despite the
reported differences in the two fractions (59, 60).

Levels of total gangliosides in human milk appear to be
highest in colostrum (48). While the GD3 ganglioside is the
predominant form in human colostrum, a shift toward GM3
predominance is observed in mature milk (64). Gangliosides
contain significantly more LCFA and less MCFA in colostrum
compared to mature milk (which is similar to the overall fatty
acid trend in milk), as well as more monounsaturated fatty
acids and less LC-PUFA (78). Distinct fatty acid esterification
profiles have also been reported for human compared with
bovine gangliosides (e.g., higher amounts of LCFAs longer
than 20 carbons in bovine gangliosides) (79). Whether these
differences translate into different health outcomes remains to
be investigated.

b. Genetic Factors
Several maternal factors influence the lipid profile of human
milk, and maternal genotype is a strong determinant. Within
mammary epithelial cells, fatty acids activated by acyl-CoA

synthase undergo a number of enzymatic reactions to produce
other fatty acids, TAG, and phospholipids (4). Some of the
most studied genes involved in milk lipid synthesis are those
involved with the synthesis of LC-PUFA, likely due to the
implication of LC-PUFA in immune responses and cognitive
development in infants. These genes include fatty acid
desaturase (FADS) genes (80–82) as well as members of the
ELOVL family of genes that encode elongase enzymes (82, 83).
However, fewer studies on maternal genetics regulating levels
of phospholipid classes in the MFGM have been published.
One study revealed that a polymorphism in diacylglycerol
acyltransferase 1 (DGAT1) was associated with varying
compositions of phospholipids and phospholipid/TAG ratios
in bovine milk (84). Various enzymes are involved milk lipid
synthesis and transport processes (4, 66, 73), which leaves
considerable scope for further research on the genetic variants
regulating milk lipid composition.

c. Diet
Many studies have focused on the effect of maternal diet
or supplementation on milk fatty acids, and in particular
LC-PUFA (16, 45, 85, 86), but how those influences are
reflected in the MFG core and membrane lipids have not been
clear. Milk ganglioside and phospholipid concentrations have
been reported to differ by maternal geographic region within
China, suggesting that diet may influence their amounts
in human milk (75). Additionally, maternal socioeconomic
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and nutritional status have been shown to be associated
with variations in total lipid and phospholipid content
(87). Supplementation with LC-PUFA was also shown to
increase the concentrations of total phospholipids (+18%)
and sphingomyelin (+30%), as well as alter phospholipid
composition of milk (59). Total choline intake, including
choline supplements, have been shown to be positively
correlated with breast milk phosphatidylcholine, especially at
lower maternal intakes (88).

d. Gestation
Infant sex may influence milk lipid composition. Milk from
mothers who gave birth to boys appeared to have higher
concentrations of SM, PC, PE, and PI relative to milk
from mothers who gave birth to girls (89). Associations
between milk fatty acids and infection (in mother, infants, or
both) were observed (90, 91), but no studies have reported
such associations with milk polar lipids. Further studies
into the mechanisms behind the observed relationships are
warranted.

The composition of breast milk lipids appears to shift depending
on whether an infant is born full-term or prematurely,
including total fat (92, 93), DHA (94) and MCFA content
(95). Although phospholipid composition was reported to
be comparable between term and preterm milk throughout
lactation (61), one study in Japan showed higher SM and
lower PC in preterm mature milk relative to term mature
milk (96).

MFGM Proteins
Structural Components
The proteins of the MFG are located within the MFGM, and
account for 1-4% of the total protein fraction in milk, and 1%
of the total globule mass (97). Much attention has been given
to the MFGM proteins, which have been extensively explored
using proteomics. To date, approximately 500 proteins have
been identified in human milk (98), some of which have been
well characterized and include the glycosylated butyrophilin,
mucins, xanthine oxidoreductase, lactadherin, CD proteins, the
non-glycosylated adipophilin, and fatty acid binding proteins
(Table 2). These proteins are the major proteins observed across
all mammalian species, which suggests important biological
functions (97, 98, 107). Interestingly, the quantities of those
proteins greatly vary between species (101).

Human MFGM proteins were first separated by 2-
demensional electrophoresis in 1997 (108) and besides the
common MFGM proteins (mentioned above), the following
proteins have been frequently identified in human MFGM in
several proteomics studies: α-lactalbumin, lysozyme, β-casein,
clusterin, lactoferrin, Immunoglobulins (e.g., IgA α-chain),
tenascin, apolipoproteins (e.g., type A-I) and fatty acid synthase
(1, 97, 108, 109) (Table 3).

BTNs are members of the immunoglobulin (Ig) superfamily,
and it is the butyrophilin subfamily 1 member A1 (BTN1A1)
that has been shown to be associated with human MFGM
(97). The structures of the BTNs and their functions have been
reviewed elsewhere (118). Another abundant class of proteins in

humanMFGM is the mucins (MUC), of which Mucin 1 (MUC1)
and MUC4 are the most abundant. MUC proteins have highly
glycosylated extracellular domains, which makes them resistant
to digestion (119), and potentially available to act as decoys for
pathogens (described below).

Xanthine oxidoreductase (XOR) is another major protein
(120) with a critical role in milk fat secretion. XOR aids with
the fusion of the apical plasma membrane onto the fat globules
through structural interactions with BTN and adipophilin
(ADPH) as a tripartite structure (121). XOR is a highly conserved
molybdoenzyme that oxidizes a wide range of substrates
(generally with low specificity) including purine nucleotides and
has been suggested as an antibacterial component in the MFGM
(122). Loss of XOR has been shown to result in less efficient milk
fat secretion in mice (123).

Other glycosylated MFGM proteins include milk fat globule-
epidermal growth factor 8 protein (MFG-E8; PAS VI/VII),
also known as lactadherin (124). Human lactadherin was first
identified in the MFGM as well as in the lactating mammary
gland but was recently also found in other tissues such as the
endometrial epithelium (125). It has been implicated in the
autoimmune disease systemic lupus erythematosus (126), and
may have a role in sepsis (127).

The well-described non-glycosylated MFGM proteins include
adipophilin (ADPH), and fatty acid binding proteins (FABP).
ADPH (also known as perilipin 2) is in the perilipin family
of proteins that regulate lipolysis by controlling the access of
proteins to the lipid droplet surface (128). A recent study using
homology modeling suggested that the ADPH C-terminus forms
a four-helix bundle motif which aids in formation of a stable
membrane bilayer during lipid secretion (shown in mice and
in vitro) (129). FABP is involved in the intracellular transport of
fatty acids, which is a critical step in the synthesis of MFG lipid
constituents such as TAG and phospholipids (4).

Compared to the aforementioned major MFGM proteins,
hundreds of other proteins with lower abundance exist, which
include the glycosylated enzymes carbonic anhydrase, milk
alkaline phosphatase (AP), lactoferrin, osteopontin (OPN) and
lysozyme (109, 130, 131), while the last three are present
primarily in milk whey and to a lesser extent in the MFGM.
Carbonic anhydrase, also present in saliva, serum and tissues,
has a few proposed functions: acid neutralizer, antibacterial
agent (130) and growth factor (132), yet clinical significance
as a milk component has not been established. Milk AP is an
enzyme derived from the membrane of the mammary gland
epithelial cell and is covalently bound to phosphatidylinositol
of the MFGM (133). This same enzyme was shown to be
expressed in human liver, where zinc and magnesium are
required for maximal activity (134). Lactoferrin, a member
of transferrin family, was first identified in milk but is also
found in most exocrine fluids of mammals (e.g., saliva, tears
and bile) (135). Lactoferrin is a multifunctional protein and
a key component in innate immunity (136, 137). It has also
been shown to improve neurodevelopment in a piglet model
(131). Charlwood et al. identified α-lactalbumin and β-casein in
MFGM isolates (109), although incorporation of whey and casein
proteins to the MFGM via sulfhydryl–disulfide interchange

Frontiers in Pediatrics | www.frontiersin.org 5 October 2018 | Volume 6 | Article 313

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Lee et al. MFG in Infant Development

TABLE 2 | Properties of major human milk fat globule membrane (MFGM) proteins.

Protein Molecular

weight (kDa)

Location in

milk fraction

Function Difference with bovine

MFGM

Change over

lactation

Glycosylated

(Y/N)

Resistance

to digestion

Butyrophilin

subfamily 1

member A1

(BTN1A1)

56 MFGM Milk fat

globule

secretion,

immune

system

Higher in human than in

bovine MFGMa
Higher in mature

MFGM than in

colostrum MFGMa,c

Y Rapidly digested in the infant

stomachf but more resistant

to pepsin compared to XORg;

well digested by trypsin and

by pronase Eh

Mucin 1 (MUC

1/PAS 0)

250-450 MFGM Immune

protection

Lower in human than in

bovine MFGM, but not

significant (P > 0.05)b

No significant change

reported in human

MFGM; but in bovine

MFGM higher at d7

(7.7-fold) compare to

colostrumd

Y Significantly resistant to

gastric digestion and may

survive to the distal gutf,i;

detected in feces of breastfed

infants

Mucin 4 (MUC 4) 232 MFGM Immune

protection

Higher in human MFGM

(P < 0.05); not detected

in bovine MFGMb

No significant change

reportedc
Y Not specified, but likely be

resistant to digestion due to

the heavy glycosylation as

glycoproteins tend to be

resistant to proteases relative

to non-glycoproteinsj

Xanthine oxidase

(XDH/XO, XOR)

145 MFGM Milk fat

globule

secretion,

immune

system

Lower in human than in

bovine MFGMe; but not

significant in another study

(P > 0.05)b

Highest at 6 months

during 12 months

lactationc

Y Resistant to hydrolysis by

trypsin and partially attacked

by pronase Eh

Lactadherin (PAS

VI/VII, MFG-E8)

43 MFGM Immune

system

Lower in human than in

bovine MFGM (P < 0.05)b
No significant change

reportedc
Y Resistant to human neonatal

gastric juice digestion at pH 4

(bovine lactadherin)i; detected

intact in gastric aspirate

samples of preterm-infantsf;

resistant to hydrolysis by

trypsin and partially attacked

by pronase Eh

Cluster of

differentiation 14

(CD14)

40 MFGM Immune

system

Higher in human than in

bovine MFGM (P < 0.05)b ;

CD36 was dominant in

bovine MFGMd

Not specified Y Resistant to pepsinj

Adipophilin (ADPH) 52 MFGM Milk fat

globule

secretion

Not specified No significant change

reported in human

MFGM; but in bovine

MFGM 3.4-fold

upregulated at day 7

compared to

colostrumd

N Well digested by trypsin and

by pronase Eh

Fatty-acid binding

protein (FABP)

13 Whey and

MFGM

Fatty acid

transport,

milk fat

globule lipid

synthesis,

Higher in human than in

bovine MFGM (no P value

reported)e

Higher at later

lactationc
N Not specified

aYang et al. (99), bHettinga et al. (1), cLiao et al. (97), dReinhardt and Lippolis (100), eYang et al. (101), fPeterson et al. (102), gYe et al. (103), hVanderghem et al. (104), iChatterton et al.

(105), and jLe et al. (106). Note that the study by dReinhardt and Lippolis (100) used bovine MFGM.

reaction during the isolation could be the origin (138). OPN
is present in the MFGM as a minor constituent (97). It makes
a protein complex with lactoferrin via electrostatic interaction,
potentially preventing it from being digested (139) as OPN is
resistant to proteolysis by infant gastric juice in vitro (105).

Several enzymes including a 5
′
-nucleotidase, an ATPase, and

a nucleotide pyrophosphatase that are known to be localized
in liver plasma membranes have also been identified in the
MFGM (55).

Maternal Factors Influencing MFGM Proteins
a. Lactation Period

As the MFGM is derived from the mammary gland epithelial
cell, mammary gland cell biology, which varies over the
course of lactation, is captured in the MFGM proteome.
From postpartum day 1–7, significant increases in bovine
MFGM proteins related to lipid synthesis (e.g., acyl-
CoA synthetase, lanosterol synthase, lysophosphatidic
acid acyltransferase and FABP) and secretion (e.g., the
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TABLE 3 | Properties of minor human milk fat globule membrane (MFGM) proteins.

Protein Molecular

weight (kDa)

Location in milk

fraction

Function Difference with

bovine MFGM

Change over

lactation

Glycosylated

(Y/N)

Resistance to

digestion

Carbonic

anhydrase 6

35 MFGM Acid neutralizer,

antibacterial

component, and

growth factor

Not specified No significant change

reportedc, or 8-fold

higher in colostrum

MFGM than the

MFGM in mature milke

Y Not specified

Milk alkaline

phosphatase (AP)

86 MFGM Immune system Not specified Not specified Y Not specified

Lysozyme 17 Predominantly in

whey and to lesser

extent in MFGM

Antibacterial

component,

immune system

Higher in human than

in bovine MFGM

(P < 0.05)b

Higher at later stages

of lactationa,c
Y Not detected in feces

of breastfed infantsi;

resistant to pepsin, but

susceptible to trypsinj

Lactoferrin 78 Predominantly in

whey and to lesser

extent in MFGM

Antibacterial

component,

immune system

Higher in human than

in bovine MFGM

(P < 0.05)b

No significant change

reportedc; however,

higher in early milk

than in mature milkf

Y 4-9 % of ingested

lactoferrin detected in

feces of breastfed

infantsi

Osteopontin (OPN) 41-75 Predominantly in

whey and to lesser

extent in MFGM

Antibacterial

component,

immune system

Lower in human than

in bovine MFGM but

not significant

(P > 0.05)b

No significant change

reporteda,c; but in

bovine milk, higher in

early milk MFGMd

Y Partially resistant to

proteolysis when

incubated with infant

gastric juice in vitrok

α-Lactalbumin 16 Predominantly in

whey and to lesser

extent in MFGM

Antibacterial

component,

immune system

Higher in human than

in bovine MFGM

(P < 0.05)a

Higher in mature

human MFGM than

colostrum MFGMa; or

no change reportedc.

Y Digested in the small

intestine, releasing

bioactive peptides and

essential amino acidsl

Immunoglobulins

(e.g., IgA α-chain C

region)

37-38 Predominantly in

whey and to lesser

extent in MFGM

Antibacterial

component,

immune system

A wider range of Ig

present in human

MFGM; IgA is more

enriched in human

than in bovine

MFGMb

IgG H chain, Ig heavy

chain variable region,

polymeric

immunoglobulin

receptor and

immunoglobulin J

chain were higher in

colostruma

Y Resistant to digestion

and survived intact to

the stoolm

Toll-like receptors

(e.g.,TLR2, 4)

∼90 MFGM Antibacterial

component,

immune system

Higher TLR2 in

human than in bovine

MFGMg

Higher TLR4 in mature

milk MFGM than in

colostrum MFGMh

Y Not specified

Clusterin 52 MFGM Antibacterial

component

Higher in human than

in bovine MFGM

(P < 0.05)b,g; but

another study

reported lower

quantity in human

than in bovine

MFGMa

No significant change

reporteda; but in

bovine, colostrum

MFGM has

significantly higher

quantity than mature

MFGMb

Y Resistant to gastric

hydrolysisn

Tenascin 241 Whey and MFGM Antibacterial

component

Not specified Significantly higher in

colostrum MFGM than

in mature MFGM

(P < 0.05)a,c

Y Resistant to gastric

hydrolysisn

aYang et al. (99), bHettinga et al. (1), cLiao et al. (97), dReinhardt and Lippolis (100), eKarhumaa et al. (110), fRai et al. (111), gLu et al. (107), hCao et al. (98), iDavidson and Lonnerdal

(112), jHamosh (113), kDemmelmair et al. (114), lLayman et al. (115), mDemers-Mathieu et al. (116), and nDallas et al. (117).

Note that the study by dReinhardt and Lippolis (100) used bovine MFGM.

tripartite complex; BTN, APN and XOR), as well as
mucins (MUC1 and 15) have been observed, suggesting
a developmental shift to increase efficiency of milk
lipid secretion (100). In contrast, apolipoproteins (e.g.,
A1, C-III, E, and A-IV) and immune-related proteins
(e.g., immunoglobulin γ1 chain C region, clusterin and
lactoferrin) have been observed to decrease (100) in
bovine MFGM.

Analysis of human milk revealed that as lactation proceeds
(from 0 to 6 months of exclusive breastfeeding), levels
of proteins related to lipid synthesis and transfer (e.g.,
FABP, nonspecific lipid transfer protein, and proactivator
polypeptide), intracellular folate uptake (e.g., folate receptor-
α), actin filament organization (e.g., gelsolin and heat
shock protein beta-1), antioxidant function (e.g., glutathione
peroxidase 3), and antimicrobial function (e.g., lysozyme C)
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were found to increase in the MFGM (97). BTN and XOR
levels were also shown to increase over the first 6 months
of exclusive breastfeeding but tended to decrease during
partial weaning (from 6 to 12 months) (97). No significant
changes have been observed for MUC4, lactadherin, carbonic
anhydrase 6, and lactoferrin in human MFGM (97). However,
another study showed significantly higher levels of carbonic
anhydrase 6 in human colostrum compared to mature milk
(110). In contrast, the levels of proteins with potential
antimicrobial function, including human leukocyte antigen
(HLA) II (which aids antigen presentation to T cells) (97) and
AP (140), were found to be higher in colostrum compared
to mature human milk, which may possibly compensate for
immature neonatal immunity (discussed in section Intestinal
Immune Maturation). Compared to bovine MFGM, the
human MFGM proteome has been less explored (Tables 2, 3).

b. Environmental Factors
Proteins in the MFGM have been associated with various
health benefits, particularly in immune defense (97). In
addition to gradual changes during lactation, temporal
fluctuations in the immune-related proteins of the MFGM
have been observed during immune challenges such as
bacterial infection. For example, the infectious bacterium
Mycoplasma agalactiae, which causes mastitis, initiates
an immune response involving up-regulation of proteins
involved in host defense, inflammation, and oxidative stress,
and down-regulation of proteins involved in milk fat
metabolism and secretion in lactating ewes (141). Similarly,
in lactating cows infected with Staphylococcus aureus,
neutrophil extracellular traps (NETs), which are known to
amplify bactericidal properties of antimicrobial peptides, were
observed to accumulate in the MFGM fraction to a greater
extent than observed in the whey or milk exosome proteins
(142). Although these were shown in other species, similar
phenomena likely occur in human MFGM reflecting the
mammary gland immune response. Whether those proteins
will still be active in the intestine of breast-fed infants remains
to be determined, and in this sense, their metabolic fates in the
GI tract are worth investigating.

c. Species
So far, only a few studies have reported (1, 98, 99, 101,
107) or summarized (143) cross-species comparison of the
MFGM proteome (Tables 2, 3). One such study revealed
that several MFGM proteins involved in lipid and fatty acid
catabolism are higher in relative abundance or uniquely found
in human milk compared with milk from other mammalian
species. These proteins include peroxisomal acyl-coenzyme
A oxidase 3, bile salt-stimulated lipase (BSSL), peroxisomal
bifunctional enzyme, peroxisomal multifunctional enzyme
type 2, hormone-sensitive lipase, lipoprotein lipase and
sphingomyelin phosphodiesterase, all of which as isolates
in vitro retain their lipolytic activity (107). BSSL has
demonstrated roles in immune-modulation, intestinal growth
(144), and antimicrobial action (145).

Variable expression of host defense proteins has also been
observed across different species. Human MFGM is enriched

with MUC4 and TLR2 relative to MFGMs from other mammals
(bovine, goat and yak), which may improve innate immune
response and protection against gram-positive pathogens (107).
Compared to bovine MFGM, human MFGM is significantly
enriched with lactoferrin, whereas cathelicidins (antimicrobial
peptides) appear to be uniquely found in bovine MFGM (107).
In another study, Yang et al. reported that human MFGM
(pooled from 10 mothers between 3 and 8 months post-partem)
was significantly more enriched with FABP but much less in
XOR compared to pooled bovine MFGM (101). Importantly,
bovine MFGM appears to exhibit a wider range of proteins
with antibacterial properties (e.g., cathelicidins), whereas human
MFGMwas more enriched with the proteins involved in mucosal
immunity (i.e., IgA, CD14, lactoferrin, and lysozyme) (1).

Commercially available MFGM isolates (e.g., used in infant
formulas) are predominantly bovine sourced. It is therefore of
great interest to understand the differences between human and
bovine MFGM (and therefore the functions) to fully understand
what functions are missing from bovine MFGM. Variations in
isoforms and glycoforms of MFGM proteins exist within and/or
between species, although less explored (146–148), which may
contribute to differences in molecular functions such as binding,
receptor activity, signaling, and enzyme activity. This aspect is
beyond the scope of this review but further comparative studies
would greatly benefit the field and promote its application.

FUNCTION OF MFG IN INFANT GUT
MATURATION

In addition to its role in digestion and nutrient absorption,
the gastrointestinal (GI) tract functions as a critical first
defense immunological barrier. Gut maturation is stimulated by
constant interactions between dietary components, endogenous
secretions, host gastrointestinal cells, and microorganisms, all of
which contribute to the development of intestinal morphology,
immune function and composition of the gut microbiota. The
“critical window” hypothesis postulates that events occurring
early in life that disrupt the microbial ecology of the young
gut, increase the risk of developing disease later in life (149). In
view of this, the mechanisms through which breast milk guides
early intestinal development while protecting against potentially
harmful insults has been a key research question. The MFG may
have a critical role in intestinal development. However, the MFG
has been historically removed from breast milk substitutes (8).
This section aims to review the primary roles of the MFG and its
components in the development of: (1) the intestinal structure;
(2) the intestinal immune system; and (3) the gut microbial
community structure, with a focus on infancy.

Structural Development of the Intestine
Intestinal growth and maturation begin in utero and continues
postnatally. During this period, intestinal development is
characterized by active tissue growth and morphological changes
(150). Human milk lipids contain numerous components that
aid in the postnatal development of the intestinal mucosa,
vasculature, and motility. Studies on human infants are limited
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due to the invasive nature of the procedures involved, and
therefore the bulk of available research utilizes animal models,
and particularly the piglet model, which has physiological
similarity with humans (151).

a. Development of the Small Intestinal Mucosa
Milk lipids appear to improve intestinal integrity by serving
as essential building blocks for cellular membrane structure
and as signaling messengers for cell growth, proliferation and
migration (8). It was recently reported that the addition of
bovine MFGM to a control formula in rat pups accelerated

intestinal development and improved intestinal mucosal
architecture by improving epithelial cell proliferation and
differentiation, as well as expression of tight junction proteins
to levels similar to mother-reared pups (152). These findings
are consistent with another study that showed feeding

an MFGM-rich post-weaning diet to mice strengthened

the mucosal barrier by protecting against LPS-induced gut
leakiness (153). Recently it was shown in a Caco-2 cell model
that addition of polar lipids derived from bovine milk in the
form of beta serum concentrate mitigated damage caused by a
TNF-α challenge to the intestinal epithelial barrier (154). It is
possible that MFGM aids in the maturation of the gut through
both direct and indirect modulation of the gut microbiota,
particularly since MFGM supplementation is observed to
have the greatest effect on the colon (154), which is the site
harboring the highest density of microbes.

The MFGM is a carrier of polar lipids, whose digestive
products are essential for the morphological and functional
development of the newborn intestine. The MFGM is an

exclusive carrier of gangliosides to the neonatal gut (42), and
a ganglioside-enriched diet has been shown to significantly
increase total ganglioside and GD3 content, while decreasing

GM3 and reducing the ratio of cholesterol to ganglioside in
the enterocyte membrane of rat pups (36). These findings
suggest that gangliosides can be incorporated into the
intestinal mucosa, where they can alter membrane fluidity and
enterocyte function (36).

Gangliosides are integral components in cell membranes,
and the oligosaccharide residues that extend from the cell
surface serve as surface markers in cell-cell communication
(40). Gangliosides may also modify the brush border
membrane of the GI tract. For instance, when dietary bovine
gangliosides were provided to weanling rats, multiple changes
in the intestinal epithelium were observed, including an

increase in the content of ether phospholipids (a group of
phospholipids with an alkyl or alkenyl bond at the sn-1
position) (39), greater incorporation of LC-PUFAs such as
DHA and ARA (38), and enhanced LCFA uptake (37). In
an ex vivo study, pre-exposure of infant bowel tissue to
gangliosides reduced bowel necrosis and pro-inflammatory
signals in response to LPS, implying an in vivo functional
re-structuring of enterocytes (155).

Sphingolipids such as SM that are present in the MFGM
and in the intestinal apical membrane are digested by brush
border enzymes (expressed at birth) to generate the digestive

products: ceramide, sphingosine, sphingosine-1-phosphate
(S1P), and ceramide-1-phosphate (8). These metabolic

products are known to mediate intracellular signaling
pathways that are involved in cell growth, differentiation,

apoptosis and immune cell migration in the neonatal mucosa
(8, 156), and to facilitate enzymatic and morphological

maturation of the intestine (157). The importance of
sphingolipids and gangliosides in infant gut maturation,
immunity, and neurological development has been reviewed
elsewhere (42).

In newborns, PC and SM in MFGM are important
sources of choline, which is an essential component of cell
membranes, neurotransmitters (e.g., acetylcholine), and for
neurogenesis and synaptogenesis (8). Phospholipids carry
essential LC-PUFAs, critical molecules for membrane fluidity
of the intestinal mucosa or neuronal tissues (57). The
benefits of phospholipids in human milk have been broadly
discussed (158).

b. Development of Intestinal Vasculature
During the first month of life, intestinal tissues expand and
develop, and intestinal perfusion increases as a means to
supply sufficient oxygen to accommodate these increases in
metabolic activity. Vascular tone is mediated by endothelial
nitric oxide synthase (eNOS) and the primary constrictor
stimulus, endothelin-1 (ET-1), which promotes vasodilation
and increases vascular resistance, respectively [reviewed in
Nowicki (159)]. In addition to these endogenous regulators,
SM and its metabolites (mentioned above) are able to
alter infant vasculature, thereby influencing gut maturation.
For example, S1P activates Akt signaling (a protein kinase
with many regulatory functions in the cell), which initiates
angiogenesis by invoking endothelial cell migration and
morphogenesis (33). Additionally, S1P increases vascular
barrier function by up-regulating adherence junctions (160,
161). Importantly, S1P levels are metabolically regulated by
adiponectin, another component of milk, which increases
turnover of ceramide to S1P by up-regulating ceramidase
activity (162). In contrast to S1P, ceramide inhibits Akt
signaling, which increases apoptosis and eNOS induction
during vasculature remodeling in order to accommodate new
growth prior to angiogenesis (161). This coordinated interplay
of SM metabolites in the MFG establishes the architecture
of blood vessels to meet the high metabolic demand of the
expanding GI tract, aiding in gut maturation.

Other factors involved in small intestinal development
derived from the MFGM have been suggested. For example,
lactoferrin (Lf) bi-directionally stimulates proliferation and
differentiation of the small intestinal tissue by interacting with
Lf receptors located on the enterocytes and crypt cells (163).
Expression of the plasma membrane Lf receptor was shown to
be highest in the small intestine (163).

Intestinal Immune Maturation
When faced with an immune challenge, two key biological factors
are involved in the intestinal defense response: the mucosal
immune system and the gut microbiota (the latter will be
discussed in the following section). A recent study reported that
supplementation with bovine MFGMwas able to enhance overall
immunity andmetabolism (10) whichmay explain the previously
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reported reduction in infection-related diarrhea (6). This section
discusses potential mechanisms whereby components in the
MFGM are able to regulate cellular events to enable maturation
of the mucosal immune system, thereby improving infant health
(Table 4).

While the immune system begins to develop in utero,
there is rapid development after birth. Immediately following
delivery, newborns have a limited capacity to initiate immune
responses as the adaptive immune system is still influenced by
the active suppression that occurs in utero to prevent adverse
immunological reactions from occurring between the mother
and fetus (183). In addition, this suppression enables the infant
to develop tolerance against antigens such as breast milk proteins
and commensal microorganisms after birth (184). For example,
fetal CD4+ naïve T-cells tend to differentiate into Foxp3+

CD25+ regulatory T-cells (Treg) in fetal lymphoid tissue (185,
186), which suppresses antigen-specific immune reactions and
inflammation. This active suppression of the adaptive immune
system, combined with low exposure to antigens prior to birth
(little immunological memory) (187, 188), and a sudden flow of
food and microorganisms entering the gut after birth increases
the risk of infections in newborns.

Maturation of adaptive immunity involves antigen exposure,
followed by T-cell differentiation in response to antigens
presented by antigen presenting cells (APCs). Human MFGM
contains human leukocyte antigen II (HLAII) (97), an antigen
presenting complex typically expressed on the surface of APCs
that may be derived from HLA-DR (a subgroup of the major
histocompatibility complex (MHC) Class II) on the mammary
gland epithelium (169). Notably, only secretory epithelial cells in
the lactating mammary gland, but not non-lactating cells, were
found to express HLA-DR (169). Moreover, milk exosomal MHC
Class II is more abundant during early lactation and gradually
decreases, whereas MHC Class I shows the opposite trend (171).
These studies suggest that HLAII on the MFGMmay be involved
in presenting antigens encountered by mothers to CD4+ T-cells
in the infant gut, thereby supporting immune education during
early life when tolerance is being established.

Some MFGM proteins may be involved in modulating
properties of T-cells, the key regulator of the immune system.
Butyrophilin (BTN) has been shown to negatively regulate T-
cell proliferation and activity. When mouse CD4+ T-cells were
activated by immobilized anti-CD3 antibody in the presence of
the recombinant Fc fusion proteins BTN1A1 and BTN2A2, T-
cell proliferation as well as IL-2 and IFN-γ production were
inhibited (168). Thus, BTN in the mammary gland epithelium
and the MFGM may control the function of maternal T-cells in
themammary gland andmilk, respectively. Theymay also impact
neonatal T-cells, although human BTN1A1 is digested rapidly in
the infant stomach (102).

Lactadherin, also known as MFG-E8, is another MFGM
protein with T-cell regulatory function. Lactadherin
supplementation of formula led to the differentiation of naïve
CD4+ T-cells to CD3+CD4+CD25+ Treg in Peyer’s patches of rat
pup ileum, an important segment of the intestine that is involved
in the immune response (173). In the same study, expression of
OX62+CD4+SIRP+ dendritic cells (DCs) increased in Peyer’s
patches, which was coupled with an increase in production of

the anti-inflammatory cytokine, IL-10 (173). These patterns in
the T-cell population and cytokine production were shown to
continue after weaning (173), suggesting a long-lasting effect of
lactadherin supplementation. Previously, a positive correlation
was observed between lactadherin concentrations in breast milk
and protective effects against rotavirus infection (measured by
morbidity) in Mexican infants, which was independent of the
level of secretory IgA and other milk components such as BTN
and mucin (119). This observation is supported by cell culture
models showing that human lactadherin limits the infectivity
of rotavirus in Caco-2 cells (174). Furthermore, lactadherin
prevents tissue damage caused by prolonged inflammation
by clearing apoptotic cells, thereby facilitating immune
resolution (127, 172). To accomplish this, lactadherin binds to
phosphatidylserine on the external membrane of apoptotic cells
via its C-terminal V/VIII like domains, and its epidermal growth
factor (EGF) domain contains the arginine-glycine-aspartate
(RGD) motif that interacts with αvβ3 and αvβ5 integrin receptors
of phagocytes (172). The binding of lactadherin to integrin
receptors leads to activation of the signaling cascade that
enables macrophages to engulf apoptotic cells (127). Delivery of
lactadherin by the MFGMmay be critical because active mitosis,
which occurs during intestinal maturation, is accompanied by
a high rate of apoptosis due to the many errors made in DNA
replication and the subsequent clearance of mutated cells by the
p53 protein (189).

AnotherminorMFGMprotein associated with the developing
immune system is milk alkaline phosphatase (AP), whose anti-
inflammatory activity in the gut may contribute to protection
against inflammation that is induced by the presence of large
quantities of lipids from a high-fat diet (190). Although
the role of AP in MFGM is not entirely clear, AP is
endogenously produced by enterocytes, which, as a host defense
mechanism, dephosphorylates pro-inflammatory molecules such
as lipopolysaccharide (LPS), inhibiting TLR-mediated NFκB
signaling and subsequent inflammation in the gut (190). Milk
phospholipids and fatty acids, particularly LCFA, are strong
stimulators of intestinal AP activity (190).

Osteopontin (OPN) is another minor MFGM protein that is
involved in the development of both the innate and adaptive
immune system of newborns. OPN functions as an opsonin,
binding directly to bacteria such as Streptococcus agalactiae and
S. aureus to enhance phagocytosis by macrophages (191). OPN is
also involved in balancing the Th1 and Th2 immune responses
as a cytokine, where it induces the Th1 immune response
through elevation of IL-12 production from macrophages, while
suppressing the Th2 immune response through lowering IL-10
secretion (192).

Milk lipids have been shown to interact with milk proteins
during digestion, altering the types of peptides remaining in the
gut, which in turn affect their bioactivities. In a piglet model, a
formula incorporating both milk fat and vegetable oil stabilized
by a protein-MFGM fragment mixture inhibited digestion of
β-casein and β-lactoglobulin, thereby increasing the proximal
jejunum and ileum content of immunoreactive peptides derived
from those proteins. This was not observed in animals fed a
formula incorporating vegetable oil with the same emulsifier nor
a formula with vegetable oil stabilized only with a proteinmixture
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TABLE 4 | MFGM proteins and lipids involved in the infant intestinal immune system.

MFGM protein Functions

α-lactalbumin • Proteolysis of α-lactalbumin generates peptides with bactericidal or immune-stimulatory activities (164, 165).

• Protects against diarrhea caused by enteropathogenic Escherichia coli (166).

Butyrophilin subfamily 1 member A1

(BTN1A1)

• Involved in the regulation of lipid secretion (167).

• Involved in T-cell proliferation and metabolism (168).

Human leukocyte antigen II (HLAII) • May present maternal antigens to infant T-cells (169–171).

Lactadherin (PAS VI/VII, MFG-E8) • Regulates apoptosis by phagocytes (127, 172).

• Induces anti-inflammatory responses (173).

• Regulates T-cell proliferation and cytokine production profile by dendritic cells (173).

• Involved in the protective effect against rotavirus (119, 174).

Lysozyme • Inhibits the growth of Gram-negative bacteria by disrupting the outer membrane and cooperating with

lactoferrin (175).

Mucin-1 (MUC1) • Binds to microorganisms and chemicals to prevent infection and inflammation (176).

• Inhibits the growth of Salmonella enterica serovar Typhimurium (177), S-fimbriated Escherichia coli (178),

and rotavirus (179).

• Suppresses inflammation caused by Pseudomonas aeruginosa and its flagellin by down-regulating Toll-like

receptor pathways (180, 181).

Osteopontin (OPN) • Binds to Streptococcus agalactiae and Staphylococcus aureus, enhancing phagocytosis by macrophages

(162).

• Induces Th1 immune response (elevating IL-12 production from the macrophages) while suppressing the

Th2 immune response (reducing IL-10 secretion) [162)].

Xanthine oxidoreductase (XOR) • Generates reactive oxygen species with antibacterial properties (182).

Gangliosides • Regulates activity and functionalities of immune cells including lymphocytes and dendritic cell, playing a

role in developing immune tolerance (41).

(8, 9). This indicates that milk fat (mainly TAG) and differences
in structural organization of molecules at the interface are the
contributors for the observed modulatory effects.

Gangliosides in the MFGM are involved in multiple aspects
of the mucosal immune system. Dietary gangliosides have been
shown to modulate intestinal cytokine and IgA production (41)
as well as lymphocyte activation (193). An inhibitory role of GM3
and GD3 on dendritic cell functionalities has also been reported
(41), suggesting that in addition to promoting defense against
aggressive antigens, milk gangliosides may promote tolerance
against non-aggressive antigens, which is equally important
during the first stages of life. GD3 levels in milk are higher
in colostrum and GD3 has superior inhibitory activity against
dendritic cell functions compared with GM3, indicating that
immune modulation by gangliosides is more prominent during
early infancy (41). This suggests that there may be a relationship
between compositional changes in breast milk and infant gut
maturation over the course of lactation.

Limitations in Studies of MFGM Functions
in Infant Immune Development
There are some limitations in studies of MFGM and its
roles in infant immune development. Most of the proposed
immune mechanisms are based on studies focusing on isolated
components of MFGM rather than intact MFGM. Indeed, the
fate of MFGM through the neonatal and infant GI tract during

digestion remains to be elucidated. In order to better understand
how MFGM is able to modulate the intestine, future studies
should examine how MFGM is digested, and in which part
of the GI tract bioactive components of MFGM proteins are
liberated from their complex structure. Furthermore, because the
MFGM composition changes dynamically during lactation, and
given that there is variability among individuals (102), identifying
those components of the MFGM responsible for infant immune
development would help move the field forward. Specifically,
there is a lack of data concerning which components of MFGM
in human milk are highly conserved and/or variable (not only in
quality but also in quantity). This information may help us better
understand the critical components of MFGM, and define which
are important for maternal and/or infant health. For example,
lactose exhibits very low variation (4% CV) among individuals,
which suggests that this major osmotic component that regulates
milk volume is highly conserved and may be important for
the developing infant (194). Nonetheless, it is becoming more
evident that MFGM proteins support the proper education and
development of the immune system in infants.

IMPACT ON THE INFANT GUT
MICROBIOTA

The human microbiota represents a community of commensal,
symbiotic, and pathogenic microorganisms inhabiting the body
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(195). From the earliest moments in life, the microbiome is
progressively built on a foundation initiated by key events,
including delivery method (196), gestational age (197), antibiotic
use (198), and nutrition (199), and eventually stabilizes into an
adult-like state by approximately 12 months of age (198). The gut
microbiota is dynamic during early life and is critically important
for the maturing infant GI tract and the immune system as
it establishes the basis for long-term metabolic and immune
health (200). Nutrition remains a crucial factor during early
development as dietary components are in constant interaction
with the nascent microbiome, and emerging evidence suggests
that the MFG, or components thereof, may contribute toward
its evolution at this early stage of life. Structural differences
between human MFG, which are enveloped by the MFGM,
and infant formulas, which contain homogenized vegetable fats
emulsified with dairy proteins and/or emulsifiers, influence the
extent to which nutrients are digested in the intestine and have
downstream effects on the gut microbiota. The following sections
summarize evidence for a modulatory role of MFG and its
components on the gut microbiota of the developing infant.

MFG Core Lipids
The structure of humanMFG and specific positional distribution
of fatty acids may explain differences in the gut microbiota
between breast-fed and formula-fed infants. Human milk
contains β-16:0 (palmitic acid esterified on the sn-2 position) in
contrast to vegetable-sourced palmitic acid, which is esterified
in the sn-1 or−3 positions (201). One study found that
supplementing an infant formula with β-16:0 increased fecal
abundance of Lactobacillus and Bifidobacterium genera in infants
after 6 weeks of feeding compared to a control formula
containing vegetable-sourced 16:0 (202). The mechanisms
behind this observation need to be determined, but the position
of palmitic acid on the TAG suggests that lipid structure may
be important for gut microbiota. Similar bifidogenic results
were shown with an infant formula supplemented with both
β-16:0 and a mixture of prebiotic oligosaccharides (203) and
formulas containing high amounts of β-16:0 with and without
supplemented oligofructose (204).

In contrast to a formula containing only vegetable-derived
lipids, a combination of milk fat and MFGM fragments
altered fecal microbial composition in piglets by increasing
Proteobacteria abundance at the expense of Firmicutes (which
included the Escherichia/Shigella, and Klebsiella genera), as
well as increasing Bacteroidetes (including members of the
Parabacteriodes genus) (9). This may partly be explained by
an increased intestinal content of immune modulatory peptides
(as discussed earlier) as well as milk lipid-derived metabolites.
However, studies on the gut microbial composition of breast-
fed compared to formula-fed infants found the opposite effect,
where a higher abundance of Firmicutes was observed in breast-
fed infants, at the expense of Proteobacteria (205). Interestingly,
differences have also been observed in the rate at which large
and small MFG molecules are digested by pancreatic lipase, the
former of which are hydrolyzed more slowly (206) likely affecting
the accessibility of lipid products of the MFG core for bacterial
metabolism.

Another study found that an infant formula high in MCFAs
(coconut oil) emulsified with bovine MFGM (Lacprodan R©

MFGM-10) enriched the bacterial families Bacteriodaceae,
Desulfovibrionaceae, Rikenellaceae, and Porphyromonadaceae,
while formulas made with LCFAs emulsified with soy
lecithin increased the abundance of Enterobacteriaceae,
Erysipelotrichaceae, Coriobacteriaceae, and Enterococcaceae in
the colon of germ-free mice (207). The effect of dietary fatty
acids on the gut microbiota may also depend on the chain length
and desaturation degree of the fatty acids (207). Human milk
contains high amounts of medium chain fatty acids (207), such
as C10:0 and C12:0, which have previously been shown to inhibit
the growth of several strains of food-borne pathogens (208).
Lipolysis of MFG core lipids is capable of causing cell lysis in
undesirable microbes through the detergent-like characteristics
of free fatty acids, and monoglycerides (113, 209).

An interesting feature of MFG lipids is that they can influence
which protein digestion products enter the colon by altering the
rate at which proteins are hydrolyzed in the small intestine (9)
(as discussed earlier in section Intestinal Immune Maturation).
A review on bacterial utilization of undigested luminal proteins
and peptides was previously published (210). Overall, these
results suggest that lipids derived from milk fat may indirectly
enrich specific bacterial populations in the infant gut; however,
additional studies are required to understand how this occurs.

MFGM Lipids
It is conceivable that remnants of the MFGM escaping digestion
in the lumen proceed to the large intestine and support
the colonization of microbial communities (15). Comparison
of the colonic bacteria of germ-free mice fed two different
types of emulsifiers, soy lecithin vs. MFGM phospholipids
(Lacprodan R© PL-20, Arla, Denmark), revealed that MFGM
phospholipids tended to enrich Porphyromonadaceae, while soy
lecithin tended to enrich Enterobacteriaceae and Enterococcaceae.
Interestingly, mice fed MFGM phospholipids showed lower cecal
concentrations of branched SCFAs (isovaleric acid, isobutyric
acid), which are products of protein metabolism, compared to
soy lecithin fed mice, suggesting a decrease in proteolytic activity
in the ceca (207). In a separate study, rat pups fed a formula
supplemented with bovine MFGM (Lacprodan R© MFGM-10,
Arla, Denmark) experienced an increased gut microbial species
richness and evenness compared with rat pups fed a formula
containing vegetable fat. At the phylum level, the microbiota of
rat pups fed MFGM were more similar to the group reared on
dam’s milk, with similar levels of Firmicutes and Proteobacteria.
In contrast, the control pups on regular formula experienced
increased Proteobacteria and reduced Firmicutes. In the same
study, Lactobacilli were determined to be the most abundant in
dam-reared pups, present in pups supplemented with MFGM,
but not detected in pups fed control formula (152).

In addition to supporting the growth of beneficial microbes,
MFGM also exhibits antimicrobial activity that appears to
protect against the development of infectious diseases. For
example, a double-blind randomized controlled trial (RCT)
showed that during the first 12 months of life, infants fed
an experimental formula supplemented with bovine-derived
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MFGM (Lacprodan R© MFGM-10) from 2 until 6 months of
age experienced fewer acute otitis media (AOM) infections, and
less fever than those receiving a control formula (7). These
findings are supported by the observation that breast-fed infants
experience lower rates of AOM in comparison to formula-
fed infants (211, 212), and parallel another RCT in pre-school
children (mean age 4.4 ± 0.9 y), which showed that consuming
200mL chocolatemilk containing anMFGMconcentrate derived
from bovine milk enriched with phospholipids (INPULSE R©)
daily for 4 months resulted in fewer days with fever, a
reduction in fever incidence, and improved behavioral outcomes
compared to children consuming a non-enriched chocolate milk
control (213).

MFGM polar lipids such as sphingophospholipids and
gangliosides have been shown to exhibit antimicrobial activities
and protect against lipopolysaccharide-induced inflammation
associated with Gram-negative bacteria (153, 214) and the
development of colitis after Clostridium difficile infection (152).
Degradation products of sphingomyelin, such as sphingosine,
have shown bactericidal activities against specific bacteria
(208, 215). Adult mice fed a high-fat diet supplemented with
sphingomyelin sourced from bovine milk resulted in lower fecal
Gram-negative bacteria while enriching bifidobacteria (216).
In preterm newborns, infants fed a formula supplemented
with bovine gangliosides resulted in reduced E. coli fecal
counts and enriched Bifidobacterium compared to a standard
formula (193).

MFGM Proteins
The protective mechanism behind the anti-infection activities
associated with the MFG may also be related to MFGM proteins.
For example, xanthine oxidase and antimicrobial proteins such
as lactoferrin, lysozyme, and secretory immunoglobulin A (sIgA)
are known antibacterial and/or antiviral proteins. Bovine MFGM
has demonstrated antimicrobial activity, whose in vitro digestive
products have been shown to selectively suppress the growth of
Salmonella typhimurium (217).

Xanthine oxidoreductase (XOR), a major oxidative enzyme
present in the MFGM, generates reactive oxidative species (ROS)
such as hydrogen peroxide and superoxide anion, as well as
reactive nitrogen species (RNS), which may play a role in the
antimicrobial defense of the GI tract (122). A decoy effect of
surface carbohydrates of XOR has also been suggested (122).
Indeed, a growth inhibitory activity of XOR was demonstrated
against E. coli (218) and S. enteritides (182). One interesting
feature of XOR associated in immune defense of the infant is that
infant saliva contains hypoxanthine and xanthine, substrates for
XOR, in concentrations that are 10-fold higher than in adults,
resulting in the generation of sufficient quantities of hydrogen
peroxidase to inhibit the growth of S. aureus and Salmonella spp.
(219). Interestingly, the enzyme activity of XOR in human milk
peaks during the first few weeks of lactation likely as a protective
measure for the immature gut at this stage, diminishing thereafter
despite constant levels of protein expression (220). XOR is
located in the inner leaflet of the MFGM, and its release
and activation in the oral phase may provide a first line of
defense against pathogen invasion. Indeed, a study on the oral

microbiota in infants (<2 mo) given formula supplemented with
bovine MFGM found thatMoraxella catarrhalis, one of the most
common bacteria associated with otitis, was less prevalent in
oral swabs at 4 months of age compared to infants fed standard
formula (221).

α-Lactalbumin, a minor protein embedded in the MFGM, is
digested by pepsin, trypsin, and chymotrypsin during passage
through the GI tract (97), generating bactericidal peptides (e.g.,
Gly-Leu-Phe; GLF peptides) (165) that protect from infection by
enhancing macrophage phagocytosis and stimulating oxidative
metabolism in neutrophils (164). Supplementation of infant
formula with α-lactalbumin has previously shown protection
against diarrhea by enteropathogenic E. coli in infant rhesus
macaques (166). Another minor component of the MFGM,
lysozyme, has potent bactericidal properties against both Gram-
positive and -negative bacteria due to the presence of 1,4-β-
N-acetylmuraminidase which can degrade bacterial cell walls
(222). This action by lysozyme is supported by lactoferrin,
which sequesters iron and directly interacts with the negatively
charged Lipid A moiety of LPS to damage the bacterial
membrane (114).

These data together provide evidence of the supportive effect
of MFGM on the mucosal immune system, and that MFGM
serves as a key component in milk enhancing intestinal defense
during early life, while establishing stable commensals in the gut.

MFGM Glycobiome and the Infant Gut
Microbiota
The MFGM contains glycoconjugates (glycolipids and
glycoproteins) harboring both N-linked and O-lined glycan
moieties (12). About 70% of bovine glycolipids in milk are
associated with the MFGM (223). The glycosylation patterns
of these glycoconjugates in milk are tightly regulated by gene
expression (98, 224), and determine resistance to digestive
enzymes and functionality in the gut. The ability of certain
bacteria to selectively bind to the intestinal mucosa through
recognition of specific sugar moieties influences susceptibility
to infection (11). The glycoproteins (MUC1, lactadherin)
and gangliosides of the MFGM have the ability to interfere
with pathogen recognition of, or attachment to, the intestinal
mucosa, causing the pathogens to instead interface with the
antimicrobial components embedded within the MFGM (225).
For example, several glycoproteins derived from porcine MFGM
were able to inhibit intestinal adhesion of E. coli F4ac (226).
Mucin has been shown to inhibit the invasion of common
enteric pathogenic bacteria such as the Salmonella enterica
serovar Typhimurium SL 1344 (177), S-fimbriated Escherichia
coli (178), and rotavirus (179), which could partly explain
the lower risk of Salmonella infection in breast-fed infants
compared to formula-fed infants (177). The structural diversity
of MFGM-bound oligosaccharides greatly differs between
mammalian species (11, 146–148), and little is known about the
functional differences. However, it is tempting to speculate that
the differences have to do with the specificity of host-microbial
interactions.
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Probiotic/Prebiotic Effects of MFGM in the
Infant Gut
It has been hypothesized that probiotic bacteria (such as
members of the Lactobacillus and Bifidobacterium genera) are
able to pass from the mammary gland through to the infant
colon by adhering to components of the MFGM, suggesting
that the MFGM may be a probiotic carrier (227). Recently,
Pannaraj et al. (228) established that bacteria found naturally
in breast milk are able to seed the infant gut during the early
stages of gut development (228). Another study showed that
select OTUs assigned to Bifidobacterium, specifically B. breve,
B. bifidum, and B. longum, were identified in breast milk and
infant feces of the same mother-infant pair, but not in the
oral cavity, suggesting that breast milk provides an important
inoculum of specific bacteria for seeding the infant gut (229).
Bacteria (including Lactobacillus) present in milk have been
shown to preferentially associate with the MFGM utilizing
glycan adhesion factors that enable them to bind to mucin
(227). In addition, bacteria with greater surface hydrophobicity,
such as L. reuteri, are better able to adhere to the MFGM
(230), a phenomenon that is related to properties of the
bacterial cell surface. In this context, several patents have
been published for utilizing the MFGM as a probiotic carrier,
which have recently been reviewed with a focus on lactic acid
bacteria (227).

Mucin and lactadherin have been detected intact in gastric
aspirate samples of pre-term infants fed breast milk, which
suggests that MFGM glycoproteins remain stable and are able
to survive gastric digestion (102). The MFGM may therefore
confer a prebiotic effect, potentially providing a source of
carbon to support the growth of the colonic bacteria (231).
Indeed, members of both the Ruminococcus and Bifidobacterium
genera are capable of producing extracellular glycosidases to
digest glycans and glycolipids (232). Interestingly, Lactobacillus
paracasei, and Bifidobacterium spp. isolated from cheese products
were shown to survive in carbohydrate-restricted media by
utilizing membrane-bound sugars on the MFGM as an energy
source (233). This prebiotic effect is likely due to the sialic
acid residues (234) on the gangliosides, which can be utilized
by B. infantis and B. bifidum (231). This may account for the
increased SCFAs observed during in vitro incubation of fecal
material with MFGM isolates (235).

CONCLUSIONS AND FUTURE
PERSPECTIVES

MFGs are complex structures that are found in breast milk
and growing evidence suggests a role for these important
biomolecules in the early stages of human life. The observation
that MFGs are heterogeneous in size and composition suggests
that MFGs take on multiple roles in the developing neonate. It
is known that the rate at which MFGs are digested is related
to their diameter, and that proteins in the MFGM of some
globules are able to resist pepsin hydrolysis better than others.
Unique features of the MFGM, such as the lipid rafts, which
are formed through the integration of cholesterol with highly

saturated sphingolipids, create a rigid structure that enables
minor components of the MFGM with bioactive properties
to survive digestion. The extensive glycosylation of major and
minor proteins found in the MFGM also appears to help them
resist digestion, thereby enabling their passage to the colon intact.
Thus, it is intriguing to consider that, in addition to their role
as an energy-dense source of nutrition, the MFG may aid in
the development of intestinal structure and the immune system,
as well as the establishment of the intestinal microbiota in the
neonate. Most studies published to date rely on data generated
from animal models as the methods required to rigorously
examine these research questions remain too invasive for
human studies. However, important observations have already
been made, including the finding that MFGM supplementation
can accelerate intestinal development and improve intestinal
integrity and vascular tone. Furthermore, several proteins
associated with the MFGM are able to modulate the production
and activity of immuno-modulatory components, such as T-
cells, providing mechanistic evidence to support the role of
MFG in development of the immune system. Finally, several
animal studies and a growing number of studies involving infants
show that the MFG and its components shift core microbial
populations in the lower gut viamultiple mechanisms, including
the action of MFGM fragments that are resistant to digestion,
through the unique distribution of fatty acids in the lipid core,
and by antimicrobial activities associated with some MFGM
components. Future studies should aim to elucidate the digestive
fate of individual MFG and MFGM components to better
understand their metabolic fate in different regions of the GI
tract. As discussed, theMFG can be affected bymaternal genetics,
diet and environmental factors, and a deeper understanding of
the connection between those factors, MFG composition, and
downstream effects in the infant may improve dietary strategy of
nursing mothers. Further, data on biological conservation as well
as variations in MFG components observed among mammalian
species (e.g., bovine vs. human) would provide guidelines for
the development of infant formulas that meet the specific needs
of human infants in cases where breastfeeding cannot be done.
Overall, a growing body of literature continues to unravel the
unique features of the MFG which suggest it plays important
roles in preventing infection, supporting neurodevelopment, and
shaping the maturing immune system and gut microbiota. These
characteristics further underscore the importance of breast milk
for the developing neonate.
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