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Inflammatory bowel diseases (IBD), encompassing both Crohn Disease (CD) and

ulcerative colitis (UC) are globally prevalent diseases, impacting children of all ages. The

hallmark of IBD is a perturbed immune system that leads to continuous inflammation in

the gut and challenges optimal treatment. Nuclear factor kappa-light-chain-enhancer

of activated B cells (NF-κβ), a nuclear transcription factor, plays a major role in gut

homeostasis and contributes significantly toward a balanced, homeostatic immune

system. Dysregulation in the NF-κβ pathway and factors that regulate it lead to a state

of uncontrolled inflammation and altered immunity, as typically observed in IBD. Levels

of proinflammatory cytokines that are regulated through NF-κβ are increased in both CD

and UC. Genes known to activate NF-κβ, such as, Nucleotide-binding oligomerization

domain-containing protein 2 (NOD2) and Interleukin 23 (IL-23), are associated with IBD.

Factors involved in inhibition of NF-κβ, such as A20 and TOLLIP, are also affected

in IBD, resulting in failed inflammation suppression/regulation. NOD-2 and A20 have

specifically been found to be strongly associated with pediatric IBD. Gut commensals

are known to exert anti-inflammatory activities toward NF-κβ and can have a potential

role in attenuating inflammation that likely occurs due to microbial dysbiosis in IBD.

Failure to terminate/downregulate NF-κβ signaling results in chronic inflammation in IBD.

Well-regulated control of inflammation in children with IBD can help better control the

disease and suppress immune responses. Better understanding of factors that control

NF-κβ can potentially lead toward discovering targeted therapeutic interventions for IBD.

Suppression of NF-κβ can be achieved through many modalities including anti-sense

oligonucleotides (ASOs), siRNA (small interfering RNA), factors regulating NF-κβ, and

microbes. This review focuses on the role of NF-κβ, especially in pediatric IBD, and

potential therapeutic venues for attenuating NF-κβ-induced inflammation.
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BACKGROUND

The immune system of the gastrointestinal tract is normally
well-tuned with the gut microenvironment, which enables the
existence of a steady homeostatic state. The gut environment is
continuously exposed to various exogenous materials, including
food, xenobiotics, and microbial pathogens. Eradication of
pathogens with simultaneous survival of gut commensals that are
beneficial for maintaining homeostasis is a major challenge faced
by the intestinal immune system. Nature has many protective
mechanisms in place that help maintain this stable environment
in the gut. This stability is disrupted in disease conditions
affecting the gastrointestinal system, such as inflammatory bowel
diseases (IBD). IBD, including both Crohn disease (CD) and
ulcerative colitis (UC) have a debilitating impact on the lives
of children and adults alike (1, 2). Some of the major features
distinguishing between adult and pediatric IBD are nutritional
challenges, poor bone health, delayed puberty, and growth
failure, all of which are linked to inflammation (3, 4). Given
the complex complications of IBD in children, it is critical
to understand the basic factors that trigger inflammation and
modulate treatment regimens accordingly.

Although many factors have been associated with IBD, the
etiology is still not clearly understood, but seems to involve
integrated mechanisms of uncontrolled immune response
to various environmental/microbial stimuli in genetically
susceptible hosts. Recent research has highlighted the importance
of nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κβ) in regulating immune responses in the gut. This review
will focus on the role of NF-κβ in IBD and potential therapeutic
mechanisms that can control NF-κβ-mediated inflammation in
IBD, highlighting aspects especially relevant to children (5).

NF-κβ, a nuclear transcription factor, is a central player
of sustaining a stable state of innate immunity in the gut.
Disruptions and imbalances in the NF-κβ pathway lead
to chronic inflammation, dysregulation of natural immune
responses (6, 7), and altered immunity in IBD (8). Pathogenesis
in both CD and UC is heavily marked by expression of multiple
proinflammatory cytokines (9), many of which are regulated
through NF-κβ. In fact, several of the key genes associated
with IBD, such as Nucleotide-binding oligomerization domain-
containing protein 2 (NOD2) and Interleukin 23 (IL-23), drive
NF-κβ activation. On the flip side, dysregulation of NF-κβ

inhibitory pathways, such as reduced expression of A20 (tumor
necrosis factor α-induced protein 3; TNFAIP3) or TOLLIP (10),
could also contribute to unremitting inflammation, as seen
in NF-κβ essential modulator (NEMO) epithelial cell-specific
knockout mice (8, 11). Thus, better understanding of factors
that drive and control NF-κβ could lead to targeted therapeutic
interventions for inflammatory conditions, including IBD.

As we hypothesize that dysregulation, or the inability to
terminate NF-κβ signaling is critical for the persistence of chronic
inflammation in IBD, we would argue that this is especially
important in children as microbe-driven persistent inflammation
cannot be turned off in this setting and is likely to drive chronic
inflammation at its early stages. We have recently shown that
A20, a negative regulator of NF-κβ, is specifically disrupted

in pediatric IBD; despite an observed increase in A20 gene
expression, protein levels and associated signaling are reduced,
suggesting a pediatric-specific dysregulation of A20 and NF-κβ

(12). In contrast, adult studies have shown variable expression of
A20 (13).

Early life factors can define the immune milieu and microbial
interactions and predispose for immune-mediated conditions,
such as IBD; regulation of NF-κβ is likely to be critical for
this process. For all these reasons, better defining how NF-κβ is
regulated in children is likely to provide important insight into
pathogenesis and guide future therapies. It is quite likely that
as more therapies will target NF-κβ regulation, physicians and
scientist caring for children with IBD would benefit from deeper
understanding of this complex pathway.

STRUCTURE OF NF-κβ

NF-κβ structure consists of multiple protein subunits: p52, RelA
(p65), p50, c-Rel, and RelB, which are coalesced in the cytoplasm
bound to Iκβ proteins (Figure 1). N-terminal Rel homology
domain (RHD) is shared by all subunits and is essential for dimer
formation. The subunits are conjoined in the cytoplasm in the
resting state and remain inactive while attached to Iκβ proteins.
Gene transcription can be regulated by RelA, RelB, and c-Rel
as they have a transcriptional activation domain (TAD). The
transcriptional activity of the p50 and p52 subunits depends upon
binding with proteins that have TAD, for example, RelA, RelB,
and c-Rel (14).

The IKK complex is the major factor that activates the NF-
κβ pathway. It consists of IKKγ (a non-catalytic protein) and the
kinases IKKα and IKKβ. Phosphorylation of Iκβ by IKK results in
its proteasomal degradation and thus activates NF-κβ, releasing
NF-κβ, and resulting in NF-κβ subunits being translocated into
the nucleus and leading to proinflammatory gene transcription.

NF-κβ SIGNALING PATHWAYS

The NF-κβ pathway is activated either through the canonical
or the non-canonical pathway (Figure 1). Initiation of the
canonical pathway occurs through a process of receptor-ligand
binding. Binding and stimulation of TLRs with antigens leads
adaptors, such as TRADD, TRAF 2, cIAP1, and cIAP2 and
RIP1, to bind to NF-κβ receptor’s cytoplasmic domain. K63-
linked polyubiquitination of RIP1 aids the IKK complex in
recruitment of NF-κβ to the activated receptor. This activates the
IKK complex, which in turn phosphorylates Iκβ and causes it
to degrade (15). Activation of NF-κβ via the canonical pathway
triggers production of cytokines in IBD, such as TNF-α and
IL-6 (16).

The non-canonical pathway depends upon activation of NF-
κβ inducing kinase (NIK); this involves phosphorylation and
subsequent activation of the IKKα complex by NIK. Activation
leads to phosphorylation of p100 by IKKα, which in turn
results in the formation of the p52/RelB active heterodimer. The
p52/RelB active heterodimer is then translocated to the nucleus.
Induction of the non-canonical pathway occurs throughmultiple
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FIGURE 1 | Structure and activation of NF-κβ.

factors, such as, IL-1β lymphotoxin-α, and BAFF. IκBα mediates
the turn-off inhibitory signal for NF-κβ by binding with nuclear
NF-κβ complexes and transferring them back to the cytoplasm
(6). Several genes involved in the non-canonical pathway were
significantly higher in diseased tissue of IBD patients vs. adjacent
healthy areas and healthy controls (17).

Microbe-associated molecular patterns (MAMPs), damage-
associated molecular pattern molecules (DAMPs), cytokines,
oxidative stress, bacteria, viruses, and ischemia stimulate and
activate the NF-κβ pathway (6).

NF-κβ IN IBD

There is a pathological shift in gut homeostasis in IBD that
activates NF-κβ, which in turn further propagates inflammation

(8). IBD patients had high levels of NF-κβ, and biopsies of
inflamed regions showed a significantly higher number of NF-κβ

positive cells compared to normal regions (18). NF-κβ activation
has been linked to disease phenotype in CD patients, with
high NF-κβ levels correlating with increased ileocolonic and
less perianal involvement (19). While NF-κβ is closely linked to
IBD, much remains unknown about the specific mechanisms of
involvement in disease pathogenesis. Below are a few examples of
what is known and how this could impact IBD.

Cell-Specific Factors Affecting NF-κβ in
IBD
Expression and activation of NF-κβ is greatly increased in the
gut of IBD patients and is largely cell-specific. NF-κβ subunit
p65 levels were found to be higher in the lamina propria of
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biopsy specimens from CD patients as compared to UC patients
and controls (20). NF-κβ is involved in the induction and
regulation of many cytokines, including IL-6, TNF-α, IL-1β (21),
and IL-12 (9). IL-12 plays an important role in augmenting the
differentiation of Th-1 helper cells, and other cytokines, such as
TNF-α and IL-23 are also involved in this phenomenon that is
critical for inflammation propagation (22, 23). Thus, the effect
of NF-κβ on IBD is paramount, as TNF-α is involved in exerting
extensive damage to themucosa and extracellularmatrix by being
involved in the regulation of, and increasing levels of matrix
metalloproteinase (24). In addition, it was found that NF-κβ

was induced by IL-6 in colonic epithelial cells and caused an
increase in the expression of intercellular adhesion molecule-
1 in epithelial cells, which is essential for recruiting neutrophil
granulocytes to places of inflammation (25). CD40L induced
NF-κβ activation in fibroblasts of colonic epithelial cells, which
in turn augmented the expression of IL-6 and IL-8 (26). The
IL-6-STAT3 pathway is activated in pediatric IBD (27).

Several cytokines that are increased in IBD and contribute
toward inflammation are especially relevant to children. For
example, IL-6 is increased in intestinal lamina propria biopsies
and serum of pediatric IBD patients (28). In children with IBD,
low bone mineral density is attributed to high levels of IL-6
(29). Similar to adults there is an increase in TNF-α levels in
the terminal ileum of pediatric CD patients (12). IL-7, IL-1β,
IL-5, IL-16, interferon (IFN)-γ-inducible protein-10, leukemia
inhibitory factor, monokine induced by IFN-γ, IFN-α2, and
IFN-γ were also found to be increased in serum of pediatric IBD
patients as compared to healthy control patients, whereas, IL-
17, macrophage inhibitory protein-1β, and IL-2 were decreased;
many of these cytokines are regulated by NF-κβ-related pathways
(30). This imbalance in cytokine regulation indicates the need for
further exploration of NF-κβ-related inflammatory pathway in
pediatric IBD, as their role in propagating inflammation remains
unclear.

Along with its association with inflammation, evidence
suggests that NF-κβ has an anti-inflammatory role as well, as seen
by increased intestinal inflammation, apoptosis, and reduced
antimicrobial peptides in a NEMO-deficient epithelial cell mouse
model (31). Similarly, NF-κβ RelA intestinal cell conditional
knock-out mice were susceptible to develop DSS-induced colitis
(32). These examples highlight the multifaceted, complex nature
of innate immune control in the gut.

Regulation of NF-κβ Through A20
A20 is a cytoplasmic protein that acts as a significant
inhibitor/regulator of NF-κβ-induced inflammation (33). A20
plays an important role in counter-regulating inflammation
in the gut, as shown by the presence of damaged intestinal
epithelium and increased apoptosis after intestinal epithelial
cells-specific A20 knock-out mice were treated with TNF-α
(34). A20 is an important inhibitor of TNF-α-induced NF-
κβ inflammation (35). A20 also suppresses CD40 and IL-
1, and pattern recognition receptors induced NF-κβ-mediated
inflammation (36). A20 expression is increased in pediatric IBD
patients with a simultaneous reduction in A20 protein levels,
possibly due to destabilization of A20-chaperone factors in IBD

(12). Genome-wide association studies (GWAS) have shown
linkage between A20 and IBD (11). In adult IBD patients, A20
profiling has shown varying correlations with disease phenotype
and severity. A20 expression was low in the colonic and terminal
ileum (TI) mucosa (13) and was found to be high in colonic
biopsies of adult UC, but not CD patients (37).

Microbial Regulation of NF-κβ
Gut commensals are integral to homeostasis andmany regulatory
functions, interacting with the mucosal immune system. As
such, commensals are heavily involved in anti-inflammatory
activities targeted toward NF-κβ in the gut, such as inhibition
of NF-κβ activity through peroxisome proliferator activated
receptor-γ (PPAR-γ) by Bacteroides thetaiotaomicron, which in
turn suppresses transportation of the NF-κβ subunit RelA into
the nucleus (38). Bifidobacterium infantis downregulates NF-
κβ activity induced by LPS (39). Lactobacillus Casei counteracts
inflammation induced by Shigella flexneri infection that causes
increased transcription of inflammatory cytokines by acting on
pathways that stabilize Iκβ and hence prevents translocation of
NF-κβ to the nucleus (40). Microbial dysbiosis is a prominent
factor involved in IBD and contributes toward inflammation.

Specific Relevance of NF-κβ to Pediatric
IBD
IBD in children has been subclassified into different categories by
age; above or below 10 years, very early onset IBD (VEOIBD) in
children <6 years, and infantile IBD in children <2 years (41).
Pediatric IBD differs from adult IBD in many aspects. Positive
family history of IBD is more often the case in pediatric cases
vs. in adults. Most often, at the initial stages, IBD occurs in
the colon in young children, whereas in adults, small bowel is
usually involved. Young children with Crohn disease have more
colonic involvement than adults do. Pediatric IBD is more often
refractory to medical and surgical treatments commonly used for
management of IBD in older patients (42). The proportion of
monogenetic causes of IBD-like presentation is highest in the
VEOIBD and infantile groups and genetic defects that control
NF-κβ, such as variations in TRIMM22, appear to be especially
relevant in children (5). Defects and variations in IL-10 and IL-
10 receptor are also significant in children with VEOIBD (43, 44).
Alterations in other genes, such as, LRBA (45), XIAP (46), and
TTC7A (47) is associated with a high risk of developing IBD
mostly in childhood (48), but also in adults.

INVOLVEMENT OF CURRENT IBD
TREATMENTS IN NF-κβ PATHWAY

Changes in expression of NF-κβ and associated factors have
been observed with several treatments for IBD. In IBD patients
treated with corticosteroids, colonic epithelial, mononuclear, and
endothelial cells had significantly less nuclear NF-κβ-p65 levels
than cells from untreated patients. Corticosteroids increase the
expression of IκBα, which retains NF-κβ in the cytoplasm and
interacts physically with p65, thus preventing the activation of
NF-κβ (49). However, prolonged use of corticosteroids affects
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linear growth and has the potential to cause hypertension,
osteopenia, and increased susceptibility to infection (50).

Sulfasalazine was found to suppress IKKα and IKKβ, which in
turn inhibit NF-κβ (51)

In vitro experiments revealed that when NF-κβ activation
induced by TNF was suppressed by methotrexate, it appeared
to be through prevention of phosphorylation and degradation
of IκBα, which retains NF-κβ in the cytoplasm and interact
physically with p65, thus preventing the activation of NF-κβ (52).

Infliximab treatment caused an increase in IκBα and IκBγ in
colonic biopsies; this then inhibits NF-κβ activation and helps in
maintaining remission in pediatric patients (53).

Exclusive enteral nutrition (EEN) has been proven to induce
clinical remission and lead to mucosal healing in pediatric CD
with matching or even superior efficacy to that of corticosteroids
(54, 55). Although the use of EEN has been adopted across
the globe (56), the mechanism of action remains unclear (54).
Increased attenuation of inflammation was also observed in
murine models of DSS-colitis along with suppression of TNF-
α, IL-6, and IL-8 in colonic biopsies with administration of a
novel nutritional polymeric formula. In vitro experiments also
showed suppression of genes associated with the NF-κβ pathway
including, TNF, TNFSF10, NF-κβ1, and RELB with polymeric
formula (57). Arginine and glutamine present in polymeric
formula suppress phosphorylation involved in the NF-κβ and
P38 pathways preventing NF-κβ activation (58). Curcumin,
glutamine, and arginine together suppressed IL-8, raising the
option of addition of curcumin to polymeric formula to suppress
inflammation in IBD (55).

Thus, although current standard therapies for IBD do exert
an effect on NF-κβ to some extent, through its associated
factors, additional therapies are required for better control
of NF-κβ-associated inflammation, Furthermore, much of the
published work was done in in vitro settings, which is a
controlled environment and is starkly different than the actual
gut microenvironment where multiple factors are simultaneously
at play. Therefore, it is important to focus on the development
of a translational approach to develop additional therapies that
impact NF-κβ, as described in the following section.

POTENTIAL TREATMENTS TARGETED TO
MODIFY NF-κβ REGULATORY AND
ASSOCIATED FACTORS

Given the pathogenic role of NF-κβ in IBD pathogenesis, it
would be attractive to reduce NF-κβ activity by manipulating its
regulation. This could be achieved by either directly suppressing
NF-κβ or indirectly, by enhancing factors that regulate it.
The function of proteasomes differs amongst CD patients and
healthy individuals as evident by an increased conversion of the
precursor p105 toward its active form, p50 in CD patients (59).
Proteasome inhibitors designed for proteasomes that convert the
p105 precursor toward active p50 and enhance NF-κβ activation
can be beneficial in breaking this pathway. Animal studies have
reported successful treatment of TNBS-induced colitis with p65
antisense oligonucleotides that directly target NF-κβ proteins

and block them, thus inhibiting the activation of NF-κβ (60).
Similar studies have not yet been done in humans, highlighting
the importance of early stages of developing drugs focused on
enhancing immune regulation, in contrast to current mostly
immunosuppressive approaches.

Alterations in gut microbial composition in IBD has been
reported by many studies (61) and focus on future targeted
microbe-altering therapies is under consideration (62). Fecal
microbial transplant (FMT) has been used as a treatment for
IBD, but results reported by different studies are variable (63,
64). While studies have shown that gut microbes do exert
an inhibitory action on NF-κβ, experimental approaches for
studying the mechanism of action of microbes toward NF-κβ in
models of IBD and gut environment, such as, organoids derived
from IBD patients, need to be developed. As “designer microbes”
have been developed to induce immune regulation (through
secretion of IL-10, for example) (65), it would be attractive to use
microbes to directly regulate the NF-κβ pathway.

Treatments to prevent A20 degradation and administration of
factors that stabilize it might be beneficial. A striking correlation
was found between A20 and anti-TNF therapy within a Danish
cohort of IBD patients, where functional polymorphisms in A20
were predictive of response to anti-TNF therapy (66). Probing
another cohort revealed a correlation between A20 SNPs and
response to anti-TNF therapy (67). These findings suggest the
possibility of using polymorphisms inA20 as a genetic biomarker,
a venue that should be explored further for practical application.
Post-translation modification highly impacts the stability of A20.
IKKβ, a kinase required to activate the NF-κβ pathway is also
involved in the phosphorylation of A20 at the serine 381 (S381)
site, and thus helps A20 to stabilize and stop NF-κβ signaling.
As phosphorylation of A20 by IKKβ occurs in response to LPS
and TNF (68), presence of IKKβ in inflammation could be a
counteractive action to combat NF-κβ induced inflammation too,
in addition to stimulating it. Perhaps the key is in studying the
conditions that help IKKβ stimulate NF-κβ and altering them.

ParacaspaseMALT-1 regulates T cell receptor signaling to NF-
κβ and is essential for T cell activation. A20 is directed to a
complex of MALT-1 and Bcl-10 upon T-cell receptor stimulation,
resulting in its cleavage and rendering it unable to stop the NF-
κβ signal (69). Thus, drugs that target MALT-1 can also have an
indirect affect on A20, by removing MALT-1 from the cellular
environment.

Interaction of A20 with other proteins, such as Tax1 binding
protein 1 (TAX1BP-1) and A20-binding inhibitor of NF-
κB activation 1 (ABIN-1) helps in attenuating inflammation.
The ABIN family of proteins negatively regulate NF-κβ; they
are ubiquitin binders and attach to NEMO (NF-κβ essential
modulator complex; the IKK complex) (70). ABIN-1 aids A20 to
attach to the IKK/NEMO complex and exert its deubiquitinating
process (71). The expression of ABIN-1 is dependent upon NF-
κβ (72). TAX1BP-1 is also involved in inhibition of NF-κβ-
induced inflammation (73) and recruits A20 to the polyubiquitin
chains, where A20 breaks and interrupts the IKK complex
(74). Ensuring constant presence and stability of TAX1BP-1 and
ABIN-1 therefore can play a very important role in suppressing
NF-κβ induced inflammation.
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FIGURE 2 | Potential therapeutic pathways for NF-κβ attentation (therapeutic interventions are shown in green).

As it was reported that CD patients with high NF-κβ levels had
more ileocolonic disease and less perianal involvement than those
with normal NF-κβ activity (19), it is important to confirm in
larger cohorts whether NF-κβ activity is indeed site-specific and
correlates with disease status. This could especially be important
for pediatric patients, as IBD can possibly be better controlled
in early stages of diagnosis and at an earlier age, without the
presence of other co-morbidities.

Targeting controllers of NF-κβ to attenuate its activity directly
has tremendous potential to suppress inflammation. Stability
of tollip, protein that inhibit inflammation by preventing IL-
1 interaction with IL-1Rs, inhibit IRAK phosphorylation and
inhibit TLR-2 and TLR-4 mediated inflammation could be of

benefit as well (75). In animal models, TNBS-induced colitis
and DSS-induced colitis were attenuated through targeting NF-
κβ 65 (60, 76), and NF-κβ 65 antisense oligonuceotides (ASO)
are undergoing clinical trials currently. Better control of TNF-α
(6), which activates the canonical pathway through Toll-like
receptors (TLRs), through ASOs and siRNA (small interfering
RNA) can be of significance important in precision therapy.
Using phosphorothioate ASOs for CD40 also has anti-NF-κβ

potential (77, 78). Resrevatrol, an immunomodulator and anti-
cancer agent has been found to suppress p65 and IKKβ (79).
Figure 2 illustrates the connection between factors affecting NF-
κβ and potential therapeutic models that could be relevant to
pediatric IBD.
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TABLE 1 | Current IBD Treatments Affecting NF-κβ.

Treatment Mechanisms of Action References

Corticosteroids Increase the expression of IκBα and

prevent the activation of NF-κβ

(49)

Sulfasalazine Suppresses IKKα and IKKβ and

inhibits NF-κβ

(51)

Methotrexate Prevents phosphorylation and

degradation of IκBα, retaining NF-κβ

in the cytoplasm and preventing its

activation

(52)

Infliximab Increases production of IκBα and

IκBγ, which inhibit NF-κβ activation

(53)

Exclusive enteral

nutrition (EEN)

Suppression of cytokines TNF-α, IL-6,

and IL-8; suppression of related

genes: TNFSF10, NF-κβ1, and RELB;

prevention of phosphorylation of

NF-κβ and p38 pathways

(55, 57, 58)

TABLE 2 | Potential future treatments for IBD, related to NF-κβ.

Treatments Mechanism of Action References

Proteasome

inhibitors

Targeting proteasomes that convert

the p105 precursor to active p50 and

enhance NF-κβ activation

(59)

p65 antisense

oligonucleotides

Directly target NF-κβ proteins and

block their action

(60)

Microbial

therapy

Use microbes to directly regulate the

NF-κβ pathway

(62–65)

A20 stabilizers Targeting MALT-1; stabilizing IKKβ

(phosphorylates A20) and A20

chaperone proteins (ABIN-1,

TAX1BP1)

(68–71, 73)

Current IBD therapy is mostly aimed at sustaining
immunosuppression. A definite cure is yet to be found. The aim
of IBD treatment is induction and maintenance of remission,

and prevention of flares and complications. Balance between
drug safety and efficacy is a therapeutic challenge, as current
medications have serious side effects, emphasizing the need of
development of precision therapy for IBD patients. Current IBD
treatments affecting NF-κβ are described in Table 1. Potential
future treatments for IBD related to NF-κβ are described in
Table 2.

FUTURE OF ANTI- NF-κβ DIRECTED
INTERVENTIONS

Treatments directed toward suppressing NF-κβ have a huge
therapeutic potential against diseases such as IBD, cancer, and
other inflammatory conditions. This is especially relevant in
children as controlling the inflammatory cascade at early stages
can prevent the devastating long term effects of uncontrolled
inflammation as seen in IBD. Systematic in vitro and in vivo
studies in animal models need to be conducted to analyze
factors that antagonize/attenuate NF-κβ, and results need to
be interpreted with caution; however, in contrast to almost
all IBD treatments used today, which suppress the immune
response, modulating pathways, for example by enhancing NF-
κβ regulating molecules, such as A20, could allow the gut
environment to return to homeostasis, possibly without an
increase in infection risk. Obviously, before translating potential
treatments to treat humans, safety and efficacy of potential
therapeutic regimens needs to be established. Development
of medications specifically targeting NF-κβ to control its
inflammatory activity can be of tremendous benefit to children
with IBD, such as early control of symptoms and low risk
of immunosuppression that is often associated with current
IBD medications.
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