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Assuring adequate tissue oxygenation in the critically ill, but still developing child is

challenging. Conventional hemodynamic monitoring techniques fall short in assessing

tissue oxygenation as these are directed at the macrocirculation and indirect surrogates

of tissue oxygenation. The introduction of handheld vital microscopy (HVM) has

allowed for the direct visualization of the microcirculation and with this has offered

insight into tissue oxygenation on a microcirculatory level. Since its introduction,

technical improvements have been made to HVM, to both hardware and software,

and guidelines have been developed through expert consensus on image assessment

and analysis. Using HVM, the microcirculation of the skin, the buccal mucosa, and

the sublingual mucosa of healthy and (critically) ill neonates and children have been

visualized and investigated. Yet, integration of HVM in hemodynamic monitoring has

been limited due to technical shortcomings. Only superficial microcirculatory beds

can be visualized, inter-observer and intra-observer variabilities are not accounted

for and image analysis happens offline and is semi-automated and time-consuming.

More importantly, patients need to be cooperative or fully sedated to prevent pressure

and movement artifacts, which is often not the case in children. Despite these

shortcomings, observational research with HVM in neonates and children has revealed

the following: (1) age-related developmental changes in the microcirculation, (2) loss

of hemodynamic coherence, i.e., microcirculatory disturbances in the presence of a

normal macrocirculation and, (3) microcirculatory disturbances which were independently

associated with increased mortality risk. Although these observations underline the

importance of microcirculatory monitoring, several steps have to be taken before

integration in the decision process during critical care can happen. These steps include

technological innovations to ease the use of HVM in the pediatric age group, measuring

additional functional parameters of microvascular blood flow and integrated automated

analysis software. As a next step, reference values for microcirculatory parameters need

to be established, while also accounting for developmental changes. Finally, studies on
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microcirculatory guided therapies are necessary to assess whether the integration of

microcirculatory monitoring will actually improve patient outcome. Nevertheless, HVM

remains a promising, non-invasive tool to help physicians assure tissue oxygenation in

the critically ill child.

Keywords: microcirculation, hemodynamic monitoring, neonates, pediatrics, critical care

INTRODUCTION

Hemodynamic monitoring plays a pivotal role in assessing
an existing imbalance between oxygen delivery and oxygen
consumption and guiding therapy to recover such an
imbalance in critically ill neonates and children. Conventional
hemodynamic monitoring techniques are aimed at the
macrocirculation, i.e., the heart and larger blood vessels,
and therefore do not offer insight into oxygen delivery on a
cellular level (1–3). A well-functioning macrocirculation alone is
no guarantee for adequate oxygen delivery at the cellular level,
as it remains unclear whether the microcirculation, comprising
smaller arterioles, capillaries, and venules, performs equally well
to provide sufficient oxygen delivery.

With the introduction of handheld vital microscopy (HVM)
techniques almost 20 years ago, it became possible to assess
the microcirculation in a non-invasive manner at the patients’
bedside. Microcirculatory research since then has revealed loss
of hemodynamic coherence, microcirculatory disturbances in the
presence of normal macrocirculatory hemodynamics (4). Loss
of hemodynamic coherence can occur either when the recovery
of macrocirculatory hemodynamics is insufficient to also
recover microcirculatory disturbances or when manipulation
of macrocirculatory hemodynamics causes microcirculatory
disturbances. In adults with septic shock, Hernandez et al.
showed that dobutamine administration improved global
hemodynamic parameters, while it failed to improve the
sublingual microcirculation and other peripheral perfusion
parameters (5). Comparable signs of loss of hemodynamic
coherence have also been found in children. In neonates
with congenital diaphragmatic hernia, catecholaminergic drugs
improved macrocirculatory hemodynamic parameters including
mean arterial pressure and heart rate, but could not recruit the
microcirculation (6).

These found microcirculatory disturbances have shown to
be associated with higher mortality risk (7–9). To illustrate, a
study on a mixed group of critically ill adult patients showed
the microcirculation to be an independent predictor of ICU
mortality, even when corrected for the Acute Physiology, Age,
Chronic Health Evaluation (APACHE) II score which includes
macrocirculatory parameters (7). Similarly, the microcirculation
of pediatric patients with septic shock on the first day could

Abbreviations:APACHE II score, acute physiology, age, chronic health evaluation
II score; ECMO, extracorporeal membrane oxygenation; FCD, functional capillary
density; FVD, functional vessel density; HI, heterogeneity index; HVM, handheld
vital microscopy; MFI, microcirculatory flow index; OPS, orthogonal polarization
spectral; PPV, proportion of perfused vessels; PRISM score, pediatric risk of
mortality score; PVD, perfused vessel density; RBC, red blood cell; SDF, sidestream
dark field; STD, space-time diagram; TH, therapeutic hypothermia; IDF, incident
dark field illumination; TVD, total vessel density.

better predict mortality than the Pediatric Risk of Mortality
(PRISM) score which also includes macrocirculatory parameters
(8). Pediatric patients who underwent therapeutic hypothermia
post cardiac arrest but did not survive also showed persistent
microcirculatory disturbances, while global hemodynamics did
not differ between survivors and non-survivors (9).

Despite the continuous improvement of and the extensive
research with HVM, we are still a few steps away from
routinely applying microcirculatory monitoring in clinical
care. The latest expert consensus on the assessment of the
sublingual microcirculation has included important research
questions for future observational studies and studies for guiding
interventions, but these questions were not specified for neonates
and children (10).

This review provides an overview of the different generations
of HVM and a summary of studies on the application of
HVM in neonates and children. We also discuss important
research objectives for future microcirculatory research in
these populations and the issues that need to be addressed
before clinical application of HVM and integration in current
hemodynamic monitoring in neonatal and pediatric critical care
is possible.

Microcirculatory Monitoring
Evolution of Handheld Vital Microscopy Techniques
Over the years, HVM has become an important tool for animal
and human research on the microcirculation. Using HVM,
microvascular beds of different types of mucosa and solid organ
surfaces can be visualized directly up to a depth of ∼1mm,
in real-time, and non-invasively at the patient’s bedside. In
neonates and children, microcirculatory imaging can be acquired
from the buccal and sublingual mucosa (11, 12). In neonates,
transcutaneous measurements (e.g., upper inner arm, axilla, ear
conch, fossa triangularis) are also possible (13). Figure 1 shows
examples of images of the buccal, sublingual, and cutaneous
microcirculation assessed with HVM.

In the late nineties, Groner et al. introduced the first
generation of HVM, the orthogonal polarization spectral (OPS)
imaging device (14). The OPS imaging device illuminates tissue
through a light source in a handheld probe. While some light is
absorbed by hemoglobin, other light is reflected. By disposing of
reflected light by the tissue and having scattered (depolarized)
light pass through the system, high-contrast images can be
acquired of flowing dark red blood cells (RBC) against a light gray
background. In 2007, Goedhart et al. introduced the sidestream
dark field (SDF) imaging device, a comparable handheld probe
with an integrated pulsating green light source (15). The reflected
green light is lead through the center of the probe with a
magnifying lens system up to a computer to create images with
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FIGURE 1 | Microcirculatory imaging of different surfaces. All images are assessed with Cytocam-IDF imaging. (A) The buccal microcirculation of a neonatal patient;

(B) the sublingual microcirculation of a pediatric patient; (C) the cutaneous microcirculation (upper inner arm) of a preterm neonate.

higher contrast and better quality than that of its predecessor.
Finally, in 2015 Aykut et al. introduced the third and latest
generationmicroscope, the incident dark field illumination (IDF)
imaging device (16). The device has a lightweight pen-like probe
incorporated with IDF and higher resolution lenses. The lenses
project images on to a computer with a better density sensor
and improved control of illumination and image acquisition.
These alterations result in a larger field of view and larger image
size with higher resolution than those of its predecessors (17–
20). The IDF imaging device provides images of higher quality
and accuracy and therefore shows higher vessel densities (17).
More details on the technical aspects of the currently available
microscopes can be found in the review by Massey et al. (20).

Image Acquisition and Analysis
In 2007, De Backer et al. published the first expert consensus
paper addressing the requirements for optimal image acquisition
and the different parameters necessary for interpretation (21).
More recently, Ince et al. published an updated consensus
paper specifically discussing the assessment of the sublingual
microcirculation in critically ill (adult) patients (10). Currently,
there are no special considerations for assessment in pediatric
and neonatal patients. Only a single manual for the assessment
of microcirculatory imaging has been published, describing
measurements of the cutaneous microcirculation in (pre)term
neonates (22). Extensive training for both image acquisition and
analysis by experienced users is necessary to assure adequate
quality of images and reliability of results. Before image
acquisition, a clean protective cap is placed on the probe. The
surface area is cleaned from any saliva with gauze, if applicable,
as excessive saliva can reduce the visibility of vessels and should
therefore be removed wherever possible. For transcutaneous
measurements, gel, oil or saline is applied on the tip of the
probe. The probe is gently placed on the surface area. The focus
is adjusted to the degree that single RBC’s are visible in the
capillaries. Artifacts caused by excessive saliva, air bubbles or
pressure should be avoided. For a minimum of 4 s each, motion-
free measurements are made of at least three different areas.

After image acquisition image analysis is possible through
real-time visual evaluation, offline manual analysis, and offline
semi-automated analysis. Massey et al. developed an image

quality score to ensure that only imaging of sufficient quality
is considered for analysis (23). The three clips with the best
quality are selected for image analysis of a single time point.
Image analysis provides several quantitative and qualitative
parameters for microcirculatory function as described elsewhere
and summarized below (10). The average of the three selected
clips (of three different spots) is calculated to assess the value of a
single time point.

Total vessel density (TVD, mm/mm2) quantifies the total
vessel area visible in the frame. Before the semi-automated
assessment of vessel density was possible, the Backer score
(n/mm) was calculated as an estimation of TVD (24). Proportion
of perfused vessels (PPV, %) gives the number of perfused vessels
per total number of visible vessels in the frame. Perfused vessel
density (PVD, mm/mm2), in former studies often referred to as
functional vessel density (FVD, cm/cm2) or functional capillary
density (FCD, cm/cm2) for small vessels, describes the functional
vessel area visible in the frame, through the multiplication of
TVD and PPV. TVD and PVD can be used to assess alterations
in diffusive properties of themicrocirculation as these parameters
are surrogates for the distance oxygen has to cover from
capillary to cell. As for flow properties, quality, heterogeneity,
and velocity of flow can be determined. Microcirculatory flow
index (MFI) is a semi-qualitative score to describe the quality
of flow through the microvascular vessels. Figure 2 shows two
examples of continuous flow and intermittent flow, respectively.
The MFI can be assessed in real-time (25, 26). To account
for variability between measured areas, the heterogeneity index
(HI) can be calculated for PPV and MFI through the equation
(highest value–lowest value)/mean value. HI can help determine
the presence of abnormalities in flow distribution. The increase
of heterogeneity of flow can be a sign of functional shunting.
To assess the velocity of flow, RBC velocities can be measured
using space-time diagrams (STD). Recently, Uz et al. developed
a method to also count leukocytes and assess leukocyte velocity
in microcirculatory imaging using STD (27). Fabian-Jessing
et al. also developed a method for assessing and quantifying
leukocyte rolling and adherence (28). Finally, to assess early
markers of vascular wall damage endothelial glycocalyx layer
dimensions can be estimated through the width of flowing
RBC’s (29).
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FIGURE 2 | Flow quality of the sublingual microcirculation. In both images, the sublingual microcirculation of neonatal patients is visualized, assessed with

Cytocam-IDF imaging. (A) Blue arrows point toward capillaries with normal flow (MFI = 3); (B) red arrows point toward capillaries with intermittent flow (MFI = 1).

Currently available analysis software is semi-automated and
therefore time-consuming. Automated analysis software has been
developed, but these are not yet validated for use in clinical
practice (30–34). Currently, online automated analysis software
is being developed to obtain the above mentioned and additional
parameters more easily and rapidly.

Limitations
Despite technological advancements and the extensive
application of HVM in research, there are still several limitations
to their use. The microcirculation can only be visualized if the
epithelial layer of the area of interest is thin. Also, pressure and
movement artifacts are not rare. Although its use is validated
in children and neonates, the acquisition is complicated as
children need to be sufficiently sedated or fully cooperative
to attain good quality imaging (13, 35, 36). Gonzalez et al.
performed an observational study in the pediatric ICU, where
sublingual microcirculatory monitoring was only possible
in 17% of the admitted patients in the study period (37).
These patients were sedated and/or more severely ill. As for
microcirculatory measurements of the skin, these are performed
in the first few weeks of life in both preterm and term neonates.
Thickening of skin with age and the presence of hair interferes
with optimal visualization of the cutaneous microcirculation.
There is no exact limit for age for the assessment of the
cutaneous microcirculation, as this has not been investigated.
Van Elteren et al. has looked into the difference in transcutaneous
microcirculation of preterm and term neonates and stated that
depth of focus depended on postnatal age rather than gestational
age (22). In both groups, it was more difficult to assess images
on day 28. For image analysis, only offline semi-automated
analysis software is currently available and existing automated
software programs are not yet validated. Therefore actual bedside
evaluation of the microcirculation is not possible, although MFI
could be assessed at the patient’s bedside through eyeballing
(25, 26, 38). Because the semi-automated analysis is currently
the gold standard for image analysis, inter-observer, and intra-
observer variabilities need to be addressed. Lima et al. found a
moderate agreement of assessing microcirculatory disturbances
between real-time assessment and offline analysis (39). As

for the offline analysis of SDF imaging with semi-automated
software, van den Berg et al. found that vessel density of the
buccal microcirculation was highly reproducible, while vessel
density of the cutaneous microcirculation was not and showed
high variabilities (35). It remains unclear how great inter-
observer and intra-observer variabilities are for the sublingual
microcirculation and if these variabilities differ with the use of
different generations of HVM.

Currently, reference values for microcirculatory parameters
for neonates and children are lacking. Only two small
observational studies have been performed in healthy term
neonates and no studies have been performed in healthy children
(35, 36). There is insufficient knowledge of intra-individual
heterogeneity, the natural fluctuation of measured variables
and the correlation between different microvascular beds under
healthy and pathological conditions (40). It is also important
to address developmental changes through aging and the
differences in values of microcirculatory variables derived from
the different techniques and from different microvascular beds
(17). This creates a challenge for comparing research findings,
especially for comparing measurements or using reference
values made with newer, more sensitive techniques. Results
derived from older techniques are not obsolete as the vast
majority of these studies evaluate change over time, change after
intervention, or differences between groups. However, all studies
conducted in children (as described in the following paragraph)
have been observational.

Microcirculation Research in Neonates and
Children
Since its introduction, HVM has also found its way in
neonatal and pediatric research, although only in rather
small observational studies. Table 1 gives a summary of the
microcirculatory studies performed with HVM in preterm and
term neonates and Table 2 gives a summary of the studies
performed in pediatric patients. Genzel-Boroviczény et al. were
the first to use OPS imaging on the cutaneous microcirculation
of term and preterm neonates (13). The skin of the inner upper
arm was the most feasible area; here the skin is thin, without hair
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TABLE 1 | Summary of findings: microcirculatory studies performed in neonates.

Reference HVM Study population n Area of interest Findings

Genzel-Boroviczeny

et al. (13)

OPS Healthy preterm vs. term

neonates

28/9 Cutaneous

(upper inner arm)

Application OPS imaging; groups did not differ; RBC

velocity increased from day 1 to 5 in preterm

neonates alongside decrease of Ht

Genzel-Boroviczeny

et al. (41)

OPS Anemic preterm neonates

receiving blood transfusion

13 Cutaneous

(upper inner arm)

FVD increased after blood transfusion; other

microcirculatory or macrocirculatory parameters were

unaltered

Kroth et al. (42) OPS Healthy preterm neonates 25 Cutaneous

(upper inner arm)

FVD decreased from week 1 to 4 and was correlated

with Hb and incubator temperatures; VD and RBC

velocities did not change over time

Weidlich et al. (43) OPS Preterm neonates:

proven infection vs. suspected

but unproven infection

17/9 Cutaneous

(upper inner arm)

FVD varied widely, infection group showed 10%

decline 5 days before AB compared to controls

(intra-individual differences)

Top et al. (11) OPS Term neonates with severe

respiratory failure:

VA ECMO vs. controls

14/10 Buccal mucosa FVD of ECMO patients was lower before start ECMO

than of controls; FVD improved after ECMO

Hiedl et al. (44) SDF Preterm neonates: significant

PDA vs. non-significant PDA

13/12 Cutaneous

(upper inner arm)

Group with significant PDA showed lower FVD and

higher number of small vessels; after treatment

groups did not differ

Top et al. (45) OPS Healthy term neonates vs. 1 to 6

month olds vs. 3 year olds

22/19/4 Buccal mucosa FVD was highest in first week of life; after first week no

correlation between FVD and age

Ergenekon et al. (46) SDF Neonates with polycythemia

requiring partial exchange

transfusion

15 Cutaneous

(axilla)

After transfusion MFI and number of vessels with

hyperdynamic flow increased from baseline values

Top et al. (47) OPS Term neonates with severe

respiratory failure: VA ECMO vs.

controls

21/7 Buccal mucosa FVD is preserved after start ECMO, while FVD

deteriorated in ventilated controls

Alba-Alejandre et al.

(48)

OPS Term neonates:

mild/moderate infection vs.

controls

16/31 Cutaneous

(ear conch)

Infection group showed lower PPV with continuous

flow than controls

Schwepcke et al. (49) SDF Preterm neonates: postnatal

hypertension vs. controls

10/11 Cutaneous

(upper inner arm)

Preterm neonates with hypotension showed higher

FVD in the first 6 h after birth; at 12 h after birth both

blood pressure and FVD did not differ between groups

Tytgat et al. (12) SDF Neonates undergoing

laparoscopic surgery for

hypertrophic pyloric stenosis

12 Buccal and sublingual mucosa Buccal FVD did not differ before and after surgery.

Sublingual blood vessel diameters increased during

CO2 insufflation and decreased after CO2 exsufflation

Ergenekon et al. (50) SDF Term neonates with HIE:

TH vs. controls

7/7 Cutaneous

(axilla)

Patients showed lower MFI and more vessels with

sluggish flow than controls. After TH parameters

recovered to values of controls

Buijs et al. (6) SDF Term neonates with CDH:

catecholamines vs. controls

28/28 Buccal mucosa Catecholamines improved the macrocirculation, but

did not alter the microcirculation; impaired

microcirculation was predictive of outcome

Van den Berg et al.

(35)

SDF Healthy term neonates 28 Cutaneous

(upper inner arm)/buccal mucosa

Application SDF imaging; reproducibility of buccal

PVD with SDF imaging was confirmed, cutaneous

PVD showed poor reproducibility

Van Elteren et al. (17) SDF/IDF Healthy preterm neonates 20 Cutaneous

(upper inner arm)

IDF imaging showed higher TVD and lower PPV values

than SDF imaging because of higher image quality

Van Elteren et al. (51) IDF Healthy preterm vs. term

neonates

60/33 Cutaneous

(upper inner arm)

TVD decreased in first month of life in both groups;

TVD was higher in preterm than in term neonates

Gassmann et al. (52) IDF Healthy term neonates:

born at high altitude vs. born at

sea level

53/33 Cutaneous

(upper inner arm)

TVD was higher in neonates born at high altitude

(lower SpO2 levels) than in neonates born at sea level

Wright et al. (36) SDF Healthy term neonates 42 Cutaneous

(ear conch)

Application SDF imaging; reporting of reference

values for microcirculatory parameters for ear conch

Kulali et al. (53) SDF Healthy term neonates:

vaginal delivery vs. cesarean

section

12/25 Cutaneous

(axilla)

Vaginal delivery group showed more vessels with

hyperdynamic flow than cesarean section group;

other parameters did not differ between groups

(Continued)
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TABLE 1 | Continued

Reference HVM Study population n Area of interest Findings

Puchwein-Schwepcke

et al. (54)

SDF Term neonates: infection treated

with antibiotics vs. controls

13/95 Cutaneous

(ear conch)

Infection group showed lower FVD and higher

proportion of hyperdynamic flow than control group;

hyperdynamic flow was associated with 5-fold

increased risk for infection

Puchwein-Schwepcke

et al. (55)

SDF Preterm neonates with extreme

LBW: hypercapnia vs. controls

(sub-analysis RCT)

6/6 Cutaneous

(upper inner arm)

Hypercapnia group showed lower FVD and relatively

fewer small vessels than controls

BP, blood pressure; CDH, congenital diaphragmatic hernia; ECMO, extracorporeal membrane oxygenation; etCO2, end tidal carbon dioxide; FVD, functional vascular density; GA,

gestational age; Hb, hemoglobin; HIE, hypoxic ischemic encephalopathy; HR, heart rate; Ht, hematocrit; HVM, handheld vital microscopy; IDF, incident dark field illumination; LBW, low

birth weight; OPS, orthogonal polarization spectral; PDA, persistent ductus arteriosus; PPV, perfused vessel density (%); RBC, red blood cell; SDF, sidestream dark field; TH, therapeutic

hypothermia; TVD, total vessel density; VA ECMO, veno-arterial extracorporeal membrane oxygenation; VD, vessel diameter.

and measurements are less prone to movement artifacts caused
by breathing. Later on, both SDF imaging and IDF imaging were
used on the cutaneous and buccal microcirculation (17, 35, 36).
While buccal FVD values were highly reproducible, cutaneous
FVD values were not. As for pediatric patients, either the buccal
or the sublingual microcirculation have been areas of interest as
apparent from Table 2.

Microcirculatory imaging has been used to assess
physiological changes in the microcirculation, in particular
developmental changes. Studies with all three generations of
HVM in term and preterm neonates showed that the FVD
of both the cutaneous and buccal microcirculation and the
TVD of the cutaneous microcirculation decreased in the first
4 weeks of life (17, 42, 45, 51). Along the same lines, studies
showed that preterm neonates had higher TVD values than term
neonates. The parameters of the two microcirculatory beds did
not correlate (17). Gassmann et al. observed term neonates born
at high altitude with IDF imaging and found higher TVD in the
cutaneous microcirculation of these neonates than of those born
at sea level (52). Schwepcke et al. investigated the cutaneous
microcirculation of both hypotensive as normotensive preterm
neonates with OPS imaging and found higher FVD values in
the first group (49). Twelve hours after birth these differences
had disappeared.

HVM also offers the opportunity to examine how the
microcirculation reacts under different circumstances including
hypercapnia and administration of inhaled nitric oxide.
Puchwein-Schwepcke et al. looked at the effect of hypercapnia
on the cutaneous microcirculation of preterm neonates with
extremely low birth weight with OPS imaging, as a sub analysis
of a RCT (55). High PCO2 levels affected the microcirculation
by reducing FVD and causing a shift to more functional large
vessels than small vessels. Top et al. investigated the effect of
inhaled nitric oxide on the buccal microcirculation in children
with hypoxemic respiratory failure with OPS imaging. FVD was
found to increase with inhaled nitric oxide (57).

Others have used HVM to assess pathophysiological
changes in the microcirculation during disease. To illustrate,
microcirculatory disturbances have been found in patients
with an infection and/or sepsis, with persistently declined
FVD and impaired microcirculatory blood flow. Weidlich
et al. demonstrated with OPS imaging that FVD declined in

preterm neonates with an infection over several days, before
clinical suspicion occurred (43). Puchwein-Schwepcke et al.
found comparable results in term neonates with SDF imaging
on the upper ear conch, as patients with an infection treated
with antibiotics showed lower FVD and, in addition, a higher
proportion of hyperdynamic flow compared to controls without
an infection (54). In contrast, Alba-Alejandre observed different
microcirculatory alterations in both the ear conch and the upper
arm of term neonates with a mild to moderate infection (48).
These patients showed less perfused vessels with continuous
flow than patients without an infection, while FVD did not
differ between the two groups. Top et al. looked at the buccal
microcirculation in 18 children with septic shock with OPS
imaging (8). FVD was lower in non-survivors than in survivors.
Also, in survivors FVD improved on the second day, while FVD
did not change in non-survivors. These findings demonstrated
that persistent microcirculatory disturbances irrespective of
macrocirculatory hemodynamics could be a sign of worse
outcome. Similarly, Paize et al. investigated the sublingual
microcirculation of 20 children with severe meningococcal
disease with SDF imaging. They found all microcirculatory
parameters to be lower in these children than in healthy controls
(58). Parallel to clinical recovery, microcirculatory parameters
restored to values comparable to those of controls.

HVM can also be applied to assess the effect of different
therapies on the microcirculation and the predictive value
of persistent microcirculatory impairment. Buijs et al. looked
at the effect of therapeutic hypothermia (TH) on the buccal
microcirculation in children after cardiac arrest with SDF
imaging (9). During TH themicrocirculation was impaired, while
after TH the microcirculation improved rapidly. Severely altered
microcirculation at the start of TH was also associated with
mortality. Similar findings were shown in the study with SDF
imaging on the effect of TH on the cutaneous microcirculation in
neonates with hypoxic-ischemic encephalopathy (50). Buijs et al.
monitored the buccal microcirculation of term neonates with
congenital diaphragmatic hernia receiving catecholaminergic
drugs with SDF imaging (6). Dopamine, norepinephrine, and
epinephrine improved macrocirculatory hemodynamics but did
not alter microcirculatory function. Impaired microcirculation
despite therapeutic efforts was predictive of poor outcome,
irrespective of macrocirculatory hemodynamics.
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TABLE 2 | Summary of findings: microcirculatory studies performed in pediatric patients.

Reference HVM Study population n Area of interest Findings

Top (56) OPS Septic shock 1 Buccal mucosa Sepsis therapy recovered macrocirculation, while microcirculation was still compromised

Top et al. (8) OPS Septic shock:

survivors vs. non-survivors

15/3 Buccal mucosa FVD improved on day 2 in survivors, while FVD was lower and did not change in non-survivors;

persistent microcirculatory disturbances were prognostic for mortality

Top et al. (57) OPS Hypoxemic respiratory failure: iNO

therapy

8 Buccal mucosa iNO therapy improved FVD

Paize et al. (58) SDF Meningococcal disease vs. controls 20/40 Sublingual mucosa Microcirculatory parameters were lower in meningococcal disease than in controls but recovered when

patients clinically recovered

Buijs (59) SDF Respiratory failure:

VA ECMO vs. VV ECMO

31/17 Buccal mucosa Groups did not differ; PPV and MFI were impaired prior to start ECMO, improved one day after start

ECMO and recovered in both groups

Buijs et al. (9) SDF Post cardiac arrest patients during

TH vs. controls

22/20 Buccal mucosa All microcirculatory parameters were impaired during TH; severe impairment at start TH was associated

with mortality; microcirculatory parameters improved rapidly after TH

Nussbaum et al. (60) SDF Diabetes patients vs. controls 14/14 Sublingual mucosa Glycocalyx thickness was reduced in diabetes patients compared to controls and inversely correlated

with blood glucose levels; diabetes patients showed more large vessels than small vessels than controls

Nussbaum et al. (61) SDF Cardiac surgery vs. cardiac

catheterization vs. non-cardiac

surgery controls

40/6/9 Cutaneous

(fossa triangularis

ear)

Glycocalyx thickness was reduced after cardiac surgery and returned to baseline values after 1 week;

MFI and PVD also declined and returned to baseline values after 24 h

Schinagl et al. (62) SDF Anemic children receiving RBC

transfusion vs. controls

19/18 Buccal mucosa Anemic children showed lower TVD lower and higher RBC velocity than controls; after transfusion, Hb

and TVD increased and RBC velocity decreased; TVD and RBC velocity did not reach levels of controls

Scolletta et al. (63) SDF Cardiac surgery:

cyanotic vs. a-cyanotic heart defects

7/17 Sublingual mucosa Microcirculatory parameters did not change over time and were not correlated to macrocirculation in

both groups; cyanotic children showed different time trends for PPV and TVD than a-cyanotic children

Gonzalez et al. (37) IDF Admission pediatric ICU 105 Sublingual mucosa Microcirculatory assessment only possible in 17%, mostly intubated and the more severely ill patients;

microcirculatory parameters were moderately correlated with BP, CVP, and lactate

Riedijk and Milstein (64) IDF Procedural sedation with propofol 7 Sublingual mucosa Propofol induction induced a decline of BP and an increase of TVD and PVD

BP, blood pressure; CVP, central venous pressure; FVD, functional vascular density; Hb, hemoglobin; HVM, handheld vital microscopy; IDF, incident dark field illumination; iNO, inhaled nitric oxide; MFI, microcirculatory flow index;

OPS, orthogonal polarization spectral; PPV, perfused vessel density (%); PVD, perfused vessel density; RBC, red blood cell; SDF, sidestream dark field; TH, therapeutic hypothermia; TVD, total vessel density; VA ECMO, veno-arterial

extracorporeal membrane; VV ECMO, veno-venous extracorporeal membrane.
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Genzel-Boroviczeny et al. demonstrated the effects of blood
transfusion on the cutaneousmicrocirculation of anemic preterm
neonates with OPS imaging (41). After a blood transfusion,
FVD increased, while systemic hemodynamics were unaltered.
Along the same lines, Schinagl et al. looked at the effect of
RBC transfusion on the buccal microcirculation of anemic
children with SDF imaging (62). Anemic children showed lower
TVD values and higher RBC velocities than controls. After
a transfusion, TVD increased and RBC velocities decreased,
although still not to values of controls. TVDwas highly correlated
to hemoglobin levels. It is possible RBC velocities increase to
compensate for the decreased oxygen delivering capacity of RBC
with anemia. As blood viscosity decrease and arteries dilate,
the peripheral resistance is lowered, probably the reason for
RBC velocities to increase (65). This would explain why RBC
velocities decrease after a transfusion, as these hemodynamic
compensating mechanisms are no longer necessary when the
oxygen delivering capacity has improved.

Following research findings in adults, the effect of
cardiopulmonary bypass on the microcirculation has also
been assessed in children. Nussbaum et al. looked at the effect
of cardiac surgery on cardiopulmonary bypass on the cutaneous
microcirculation with SDF imaging (61). After cardiac surgery,
glycocalyx thickness was reduced but recovered to baseline
values after 1 week. MFI and PVD also declined postoperatively.
In a similar population, Scolletta et al. looked at the sublingual
microcirculation, also comparing cyanotic and a-cyanotic heart
defects with SDF imaging (63). The sublingual microcirculation
was not altered over time, in contrast to previous findings in
cutaneous microcirculation. Cyanotic heart defects, however,
did seem to affect TVD and PPV. Top et al. attempted to assess
the effect of extracorporeal membrane oxygenation (ECMO),
another type of cardiopulmonary bypass applied in critical care.
They looked into the buccal microcirculation of neonates with
severe respiratory failure treated with veno-arterial ECMO with
OPS imaging (11). Before the start of ECMO treatment, FVD
values were lower than controls and after ECMO treatment FVD
values increased. In a similar study population, Top et al. showed
that FVD is preserved after starting ECMO treatment, while
FVD deteriorated in neonates who were only ventilated (47).

Future Perspectives
Research with HVM has revealed the added value of
microcirculatory monitoring as part of hemodynamic
monitoring to determine if oxygen delivery is sufficient to
meet metabolic demands, as adequate microcirculatory blood
supply is one of the prerequisites for meetingmetabolic demands.
However, clinical application is not possible before technical
improvements have been made and further research has been
conducted on microcirculatory guided therapy. This is especially
vital for children as most of the research has been conducted
in human adults and only rather small observational studies
have been performed in children. In this final part, we have
summarized important considerations from the previously
mentioned expert consensus with special focus on those which
are important for neonatal and pediatric patients (10).

Technological Innovations
One of the biggest challenges of microcirculatory monitoring
in children is acquiring imaging of sufficient quality due
to movement and pressure artifacts and lack of cooperation.
Currently, HVMmeasurements are limited to deeply sedated and
critically ill patients. Technological innovations are necessary
to ease the use in children and thus to have full access to the
potential of HVM. Hardware improvements should include
pressure recognition and quantification, artifact recognition
and warning signaling, and the possibility to perform single
spot measurements over a longer period of time, e.g., through
hands-free measurements. New software should be integrated
with RBC velocity measurements throughout the entire frame,
automated assessment of MFI, automated image stabilization
and quality assessment and, most importantly, automated
analysis software. Real-time monitoring will only be possible
if automated analysis software is integrated in the software of
the device. Finally, additional parameters are necessary to fully
assess microcirculatory function. As MFI is only a qualitative
measure for the convective capacity (i.e., blood flow) of the
microcirculation, a quantitative measure is needed to assess the
actual oxygen-carrying capacity of the microcirculation. This will
be possible through the measurement of capillary hematocrit,
as proposed by Ince et al.: tube hematocrit (the hematocrit
of capillary blood at a single moment in time) and discharge
hematocrit (the hematocrit flowing through capillaries per unit
of time) (10).

Future Research Objectives
In order to study microcirculatory disturbances and attempt
to correct these disturbances, first reference and critical values
have to be established. For this research objective, we also need
to account for differences between different microcirculatory
beds and between different generations of HVM and for
developmental changes in the microcirculation after birth and
through childhood. Also, expert consensus for assessment of the
buccal and cutaneous microcirculation in neonates and children
would be preferable as no such guidelines exist.

After reference values are established research could take
steps toward microcirculatory guided therapy. We need to
assess how different microcirculatory beds correlate to one
another under pathological conditions. For example, in adult
septic patients Edul et al. demonstrated the dissociation
between the sublingual and intestinal microcirculation in
response to fluid resuscitation (66). While responsiveness
of the sublingual microcirculation seemed to be dependent
on cardiac output, the intestinal microcirculation responded
irrespective of systemic hemodynamics. It cannot be excluded
that organ-specific reactivity also plays a role. Therefore,
under a variety of clinical conditions, such as laparotomy and
thoracotomy, individual organs should be measured alongside
the sublingual microcirculation and compared with the latter.
Also, we have to establish when loss of hemodynamic coherence
occurs in critically ill children as to account for differences
between macrocirculatory and microcirculatory disturbances
that need to be recovered. Then, it has to be clear when
recovery of macrocirculatory hemodynamics is sufficient to
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recover microcirculatory disturbances and when we need
to take additional steps to recover the microcirculation. To
illustrate, Dubin et al. demonstrated in adult septic shock
patients that while norepinephrine improved macrocirculatory
hemodynamics, it did not alter sublingual microcirculatory
parameters (67). Buijs et al. made similar observations in
neonates with congenital diaphragmatic hernia (6). Holmgaard
et al. showed that different levels of mean arterial pressure
did not alter the sublingual microcirculation in adults during
cardiopulmonary bypass (68).

The next step would be to assess which therapeutic strategies
could recover microcirculatory disturbances in children. In
adult research few studies have already looked into therapeutic
strategies. In septic patients, Dubin et al. also found that
microcirculatory monitoring could help distinguish which type
of fluid, crystalloid or colloid, would be more effective in
recovering microcirculatory blood flow during early goal-
directed therapy (69). Spronk et al. performed a small
observational study in adult septic shock patients and found
that infusion of nitroglycerinmight help resolve microcirculatory
disturbances as MFI improved (70). Following this finding,
Boerma et al. performed an RCT in a similar population, but here
infusion of nitroglycerin was unsuccessful in the recruitment of
the sublingual microcirculation (71). For therapeutic strategies
to be effective, target ranges need to be established for relevant
microcirculatory parameters. Pranskunas et al. underlined this
by demonstrating that microcirculatory monitoring could help
assess which (adult) patients were eligible for fluid therapy (72).
Patients with MFI < 2.6 were fluid responsive, as MFI increased
after fluid resuscitation, while in patients with MFI > 2.6 MFI
was unaltered. Van der Voort et al. tested an actual therapeutic
strategy incorporated with a microcirculatory target in a pilot
study with adults with septic shock (73). Recruitment of the
microcirculation in this resuscitation strategy did not resolve
organ dysfunction quicker than standard therapy, although
the study itself had some flaws in its design. However, this
study shows a potential way of looking into whether actively
recovering microcirculatory disturbances could help improve
patient outcome. Finally, one should also take intra-individual
variability in therapy response into account when looking at the
effectiveness of therapeutic strategies.

Although some observational studies have pointed toward
the existing association between microcirculatory disturbances
and outcome, strong evidence for the predictive value of
the microcirculation is lacking for children. It has yet to

be established that recovery of microcirculatory disturbances
will indeed improve patient outcome since there are only
two small negative trials, of which one also failed to recover
microcirculatory disturbances (71, 73). Based on these trials in
adults, there is currently no evidence to support the clinical use
of microcirculatory monitoring with HVM in children. However,
there might be in the future, since larger trials to evaluate the
microcirculation, similar to for example trials on high-frequency
oscillatory ventilation or inhaled nitric oxide for acute respiratory
distress syndrome, have not yet been carried out (74, 75). A good
example to follow would be the study on lactate-guided therapy
in critically ill adults performed by Jansen et al. (76). To perform
similar trials with microcirculatory monitoring, international
research collaborations are necessary as single centers will have
insufficient numbers of patients to prove any effect of therapeutic
interventions on the microcirculation of children. Nevertheless,
we should also be realistic regarding the number of patients and
consider the feasibility of such trials. To illustrate, to prove the
effect of ECMO treatment in pediatric acute respiratory distress
syndrome in an RCT, one would need more than 1,000 patients
per treatment arm (77, 78).

SUMMARY

Integrating microcirculatory monitoring in routine
hemodynamic monitoring may be important for the assurance
of adequate tissue oxygenation as it offers additional insight into
oxygen delivery. HVM is a promising tool for assessing otherwise
unnoticed disturbed oxygen delivery on a microcirculatory level.
Before application in neonatal and pediatric critical care is
possible, however, technological advancements and extensive
research on microcirculatory guided therapy are necessary.
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