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Extracorporeal membrane oxygenation (ECMO) is a lifesaving support technology for

potentially reversible neonatal cardiac and/or respiratory failure. As the survival and the

overall outcome of patients rely on the treatment and reversal of the underlying disease,

effective and preferentially evidence-based pharmacotherapy is crucial to target recovery.

Currently limited data exist to support the clinicians in their every-day intensive care

prescribing practice with the contemporary ECMO technology. Indeed, drug dosing to

optimize pharmacotherapy during neonatal ECMO is a major challenge. The impact

of the maturational changes of the organ function on both pharmacokinetics (PK) and

pharmacodynamics (PD) has been widely established over the last decades. Next to the

developmental pharmacology, additional non-maturational factors have been recognized

as key-determinants of PK/PD variability. The dynamically changing state of critical illness

during the ECMO course impairs the achievement of optimal drug exposure, as a result

of single or multi-organ failure, capillary leak, altered protein binding, and sometimes a

hyperdynamic state, with a variable effect on both the volume of distribution (Vd) and

the clearance (Cl) of drugs. Extracorporeal membrane oxygenation introduces further

PK/PD perturbation due to drug sequestration and hemodilution, thus increasing the

Vd and clearance (sequestration). Drug disposition depends on the characteristics of

the compounds (hydrophilic vs. lipophilic, protein binding), patients (age, comorbidities,

surgery, co-medications, genetic variations), and circuits (roller vs. centrifugal-based

systems; silicone vs. hollow-fiber oxygenators; renal replacement therapy). Based on the

potential combination of the above-mentioned drug PK/PD determinants, an integrated

approach in clinical drug prescription is pivotal to limit the risks of over- and under-dosing.

The understanding of the dose-exposure-response relationship in critically-ill neonates on

ECMO will enable the optimization of dosing strategies to ensure safety and efficacy for

the individual patient. Next to in vitro and clinical PK data collection, physiologically-based

pharmacokinetic modeling (PBPK) are emerging as alternative approaches to
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provide bedside dosing guidance. This article provides an overview of the available

evidence in the field of neonatal pharmacology during ECMO. We will identify the main

determinants of altered PK and PD, elaborate on evidence-based recommendations on

pharmacotherapy and highlight areas for further research.

Keywords: ECMO, pharmacokinetics, pharmacodynamics, critical illness, developmental pharmacology, neonate

BACKGROUND

Extracorporeal membrane oxygenation (ECMO) is an
established life-saving support technique for critically-ill
neonates with severe cardio-respiratory failure (1, 2). Being
a bridge, ECMO buys the time for cure, in part related to
drugs to treat and possibly reverse the underlying disease while
protecting the failing respiratory/circulatory systems from
iatrogenic negative effects with long term consequences (2).
Indeed, sustained and maximal mechanical ventilation may
lead to hemodynamic compromise and ventilation-induced
lung injury, as a result of oxygen toxicity, baro- bio-, and volu-
trauma (3). Generally, these critically-ill neonates are exposed
to polypharmacy, as they require anticoagulants to maintain the
hemostatic balance within the ECMO circuit, analgo-sedatives
to ensure patient comfort, cardiovascular agents to sustain
hemodynamics, anti-infectives to prevent or treat infections, and
possibly other drugs to manage underlying specific conditions or
complications (4, 5).

As in many of these patients the survival and overall
outcome rely on medications, effective pharmacotherapy is
essential to improve care and minimize side effects (5). Adequate
drug dosing is based on the understanding of two concepts:
(1) pharmacokinetics (PK), which explores “what the body
does to the drug” and provides the drug concentration-time
profile, through the evaluation of absorption, distribution,
metabolism, and excretion (ADME); (2) pharmacodynamics,
which represents “what the drug does to the body” and estimates
action and side-effects of a given medication, based on dose
and patient profile (6, 7). The main drivers of drug PK are
volume of distribution (Vd), which describes the dose required
to produce the desired peak concentration and clearance (Cl),
which is the volume of fluid cleared of drug from the body
per unit of time. Both Vd and Cl are primary determinants
of drug half-life (7). Safe and efficient prescription in neonatal
ECMO depends upon the knowledge of the above-mentioned
concepts and the understanding of the determinants affecting
drug PK and PD in the complex context of patient immaturity,
critical illness, (multi)organ failure and need for supportive
extracorporeal circuits (8).

Neonatal age is by itself a window of pharmacological
vulnerability (9). Drug PK and PD prediction, based on time-
dependent maturational changes (age, weight) is the cornerstone
of developmental pharmacology (10, 11). Additionally, critical
illness may contribute to impaired drug exposure, as a result
of multiple organ failure and changes in physiology, such as
hyperdynamic state, increased vascular permeability, catabolism,
and altered protein binding (8, 12). The need for ECMO further

complicates the issue, through the sequestration of drugs into the
circuit and the induction of PK specific variability (4, 13, 14).

Although physicochemical properties can be used to
predict the drugs’ bioavailability while on ECMO (15), the
pharmacotherapy in this setting remains too empirical, as a
result of limited evidence due to the lack of clinical studies and
ever-evolving technology.

Because of this, treating a critically-ill neonate on ECMO is
challenging and requires an integrated approach, to limit the
risks of under treatment or toxicity. In this review, we will
discuss current knowledge of ECMO-induced PK perturbations,
and subsequently discuss the relevance of these PK findings for
analgo-sedatives and antimicrobial and antiviral drugs, to end
with a discussion on approaches to further optimize neonatal
pharmacotherapy. However, pharmacotherapy for neonates on
ECMO still needs to be integrated with the physiological
maturation occurring in early infancy.

THE ROLE OF DEVELOPMENTAL
PHARMACOLOGY ON DRUG DISPOSITION

In neonates the evolving physiological maturation has a dynamic
impact on clinical pharmacology, thus resulting in inter- and
intra- individual variability in drug exposure (PK) and drug
effect (PD) (9). Growth, weight, body and plasma protein
composition, organ maturation, and energy requirements are the
main determinants of the developmental pharmacology, which
integrates the knowledge of the ontogenetic changes to deliver
safe and effective pharmacological treatment across the pediatric
age range (10, 16). While maturational PK considers the age-
related changes of the ADME process (17, 18), the maturational
PD takes into account the developmental variability of specific
organ function and receptor expression (11). An extensive and
contemporary description of the maturational covariates of the
developmental pharmacology is beyond the scope of this review
and it is available elsewhere (10, 11, 19).

THE ROLE OF NON-MATURATIONAL
DETERMINANTS ON DRUG DISPOSITION:
FOCUS ON PRE-ECMO DISEASE STATE

To objectivate non-maturational determinants and their impact
on drug disposition in critically ill neonates is essential to
integrate the concept of “precision dosing to optimize neonatal
pharmacotherapy” defined as “personalized, individualized,
tailored or precise pharmacotherapy” (20). Moreover, accuracy of
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drug formulations, drug prescription and new drug development
is needed to tune pharmacotherapy in the vulnerable neonatal
population (21). Non-maturational determinants such as
(perinatal) asphyxia/hypoxia, sepsis/systemic inflammatory
response syndrome (SIRS), multiple organ dysfunction
syndrome (MODS) are considered as clinically relevant
variables of drug disposition (22, 23). However, they are not well
understood in critically ill neonates due to dynamically changing
conditions in the single patient. There is a large inter individual
variability in the PK/PD of frequently used medications
(antimicrobials, analgosedatives, anti-convulsives, vasopressors,
and inotropes) in neonates under critical illness (24) and ECMO
(25, 26). These covariates are either predictable (i.e., related
to development or drug = maturational determinants), partly
predictable (i.e., related to treatment modality), or almost
non-predictable (i.e., related to disease = non-maturational
covariates). Changes in the Vd and Cl of drugs under critically
ill conditions may lead to a high intra- and inter-individual
PK variability (for different drugs 30–70%) resulting in either
insufficient or toxic plasma concentrations of drugs (27).
This may have an impact on the drug disposition and, as a
consequence, both under- and over-dosing may contribute to
unfavorable outcomes.

Perinatal Asphyxia—Hypoxia
Perinatal Asphyxia (PA) is defined by the American Academy
of Pediatrics (AAP) and the American College of Obstetricians
and Gynecologists (ACOG) as a condition of severely deficient
supply of oxygen to the body (oxygen deprivation) leading to
coma or death (28). In 2009, based on international guidelines,
therapeutic hypothermia (HT; 33–34◦C) has been recommended
to be used for therapy in asphyxiated (moderate to severe)
neonates (29). However, the decision to place on ECMO
newborns treated for perinatal asphyxia and hypoxic ischemic
encephalopathy (HIE) is based on criteria of HIE severity (30).
Following perinatal asphyxia, neonates may suffer from HIE
(69.4%), respiratory or acute kidney failure (AKI 47–61%),
cardiac and hepatic dysfunction, whose rates in the era of HT
(31) are similar to the pre-cooling period (32). Multiple organ
dysfunction syndrome (MODS), defined as the presence of at
least one organ dysfunction in addition to HIE, occurred in
58–88% of asphyxiated neonates (33) and contributed to higher
mortality rates (20.5–72.9%) (31). MODS may complicate the
course of neonatal ECMO, with a negative impact on survival
(34, 35). Moreover, after out of hospital pediatric cardiac arrest,
AKI is very common (64% of the enrolled cases, n = 282), and
severe (41% of the enrolled cases), without difference in incidence
in severe AKI between cases that either or not underwent HT
(36). As a rule of thumb, asphyxia may lead to changes in drug
disposition such as decreased or variable drug absorption (AUC,
Ka, tmax or F), increased (or unchanged) drug distribution (Vd)
and decreased drug elimination (CL) (37). However, data on
PK changes under asphyxia in neonates are sparse (ceftazidime,
amikacin, gentamicin, amoxicillin, and benzylpenicillin) (37–
41) and the same holds true for cardiac arrest in neonates and
changes in pH (42). Moreover, PK variability in asphyxiated
neonates has been reviewed in relation to the impact of HT

alone (43–46) or in combination to ECMO (47). Recently,
for anticonvulsive drugs such as phenobarbital, which has low
hepatic Cl and low protein bound drug HT was not found to be a
PK covariate (48, 49), in contrast to birth weight (BW), postnatal
age (PNA) (50), and disease severity (51). The disposition of
other drugs during neonatal HT has been evaluated in the recent
literature (52–56) and the relevant findings are summarized
in Table 1.

Sepsis/Systemic Inflammatory Response
Syndrome
There is lack of consensus for the definition of sepsis in
neonates (57). So far, the international consensus on pediatric
sepsis and SIRS, respectively, was established to address this
issue for all children (<18 years old) including term neonates
(≥37 weeks completed gestation) in 2005 (58). (59) showed
how mortality for MODS, in a pediatric intensive care unit,
was significantly higher among term neonates compared with
older children (75.4 vs. 50.9%) (59). During sepsis relevant
SIRS-related physiological changes occur, which contribute to
drug disposition (60). The main physiology and pharmacology
considerations in sepsis/septic shock are shown in Table 1.
Sepsis, and its related factors like tissue (regional) hypoperfusion,
MODS (systemic) hypoperfusion, acidosis, hypoalbuminemia,
SIRS, type of shock (hyperdynamic/hypodynamic), capillary
leakage syndrome, or pharmacotherapy (diuretics, vasopressors,
inotropic drugs) may lead to changes in PK, and therefore
PD parameters (Cmax, Cmin, AUC0-24/MIC of concentration,
and time dependent antibiotics, T > MIC of time-dependent
antibiotics, Cmax/MIC of concentration dependent antibiotics).
Moreover, sepsis and SIRS may induce a supraphysiologic renal
activity, defined as augmented renal clearance (ARC) with
enhanced renal pre-load and glomerular hyperfiltration (61).
ARC is an established physiological response to hyperdynamic
cardiovascular states in adult (61–63) and pediatric critical care
patients (64, 65). However, in the neonatal period ARC has
not yet been reported. In case of reduced renal functional
reserve, secondary to a previously impaired kidney function or
worsening organ perfusion, drug clearance may be compromised
(64, 66). In children, sepsis hasmajor impact on cytochrome P450
(CYP)3A activity (−90%), as has been illustrated withmidazolam
as probe drug (67). Such observations should be considered
while prescribing drugs for critically ill neonates on ECMO. The
interaction between the extracorporeal circuit itself with pre-
ECMO disease states needs to be further characterized (68–70).

THE ROLE OF NON-MATURATIONAL
DETERMINANTS ON DRUG DISPOSITION:
FOCUS ON ECMO

Extracorporeal membrane oxygenation interferes with the
expected attainment of a drug’s therapeutic level (71). In the
last decades, preclinical and clinical research have provided
preliminary evidence of the causative mechanisms for reduced
drugs’ bioavailability. Pending specific PK studies, the loading
dose (LD) is usually based on Vd, while the maintenance
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TABLE 1 | Pre-ECMO non-maturational determinants of drug disposition and pharmacology considerations.

Physiology

Perfusion status: changes in tissue (regional) perfusion (↓↑), organ (systemic) perfusion (↓↑), cerebral-, splanchnic-, liver-, and renal flow (↓↑), changes in cardiac output

(↓↑), SVRI (↓↑), MODS

Body water status: changes in total water volume (TV), tissue permeability, capillary leakage syndrome, intravascular volume (↓↑), extracellular water volume—ECV (↓↑)

Acid-base balance: acidosis

Protein status: hypoalbuminemia, α1-acid glycoprotein (increased plasma levels during acute phase decreases free drug plasma levels)

Pharmacology*

Absorption (AUC, F, Tmax, Ka): ↓ in asphyxia, ↓ or ↑ or = in sepsis

Distribution (Vd): ↑ or = in asphyxia, ↑ in hydrophilic drugs under sepsis, = in lipophilic drugs under sepsis

Elimination (CL): ↓ in asphyxia, ↓ or ↑ or = based on shock state (hyper/hypo-dynamic) and type of drug elimination (liver or kidney)

Metabolism*: ↓ in hypoxia and sepsis

Physicochemical properties of a drug

Route of administration: orally administered drugs F = 20–70%, intravenously administered drugs F = 100%

Drug solubility: hydrophilic/ lipophilic drugs, based on octanol/water partition coefficient—LogP

- LogP <1 = water soluble

- LogP 1–2 = weak water/more lipid soluble

- LogP >2 = lipid soluble

Protein binding capacity (albumin, α1-acid glycoprotein):

- Low binding <30%

- Moderate binding 30–70%

- High binding >70%

Elimination via liver:

- High hepatic CL drugs= ↑extraction drugs with ↑ intrinsic hepatic metabolizing capacity, dependency on hepatic blood flow

- Low hepatic CL drugs= ↓extraction drugs with ↓intrinsic hepatic metabolizing capacity, low dependence on hepatic blood flow, dependency on hepatocellular enzyme

activities phase I CYP P 450 and phase II (intracellular oxygen tension, cofactors)

Elimination via kidney:

- High/low renal CL drugs, dependency on renal filtration, secretion, and reabsorption

Concomitant medication*

Fluid resuscitation: Vd ↑ in hydrophilic drugs under sepsis, no changes in Vd in lipophilic drugs under sepsis

Circulatory support: CL ↓↑ in high/low hepatic lipophilic CL drugs. Renal CL↑ of active metabolites of lipophilic drugs or non-active metabolites of hydrophilic/weak

hydrophilic more lipid soluble drugs

Diuretics: renal CL↑ of active metabolites of lipophilic drugs or non-active metabolites of hydrophilic/weak hydrophilic more lipid soluble drugs

Drug-drug PK interactions:

Absorption variable or ↓ due to changes in gut perfusion (omeprazole, digoxin, fluconazole).

Vd ↓: – competitive protein binding (phenytoin, amiodaron, non-steroidal anti-inflammatory drugs)

- Biotransformation ↑↓ for inductors (barbiturates, dexamethasone) or inhibitors (midazolam, fluconazole via CYP 3A4,CYP2A6, CYP2C9, CYP2C19, CYP2D6a CYP2E1)

- Elimination due to filtration ↑↓, as changes in Vd may lead to changes in CL or changes in perfusion of vas afferent (aminoglycosides, vancomycin)

- Tubular secretion ↑↓ (morphine, furosemide)

- Reabsorption ↑↓ as a result of drug ionization and urinary pH (benzodiazepines)

Treatment modalities*

Therapeutic hypothermia (TH): changes in

- Absorption (↓)

- Distribution (↓ or ↑, no changes, or variable)

- Elimination (↓ or no changes)

Extracorporeal membrane oxygenation (ECMO): changes in

- Absorption (↓ or no changes)*

- Distribution (↑ or no changes)

- Elimination (↑or↓ or no changes)

*Limited data in neonates.

AUC area under the concentration curve, CL clearance, F bioavailability, LogP octanol/water partition coefficient, Ka rate constant of absorption, Tmax—the time at which the Cmax

(the maximum serum concentration) is observed, Vd volume of distribution, ↑, increase; ↓, decrease; = no changes.

dose (MD) is driven by the estimated Cl (72). Moreover, PK
changes are strictly dependent on equipment material and circuit
design (73). Most data come from ex vivo studies on silicone-
based oxygenators. Technological advances have added further
variability, through the introduction of ever-smaller circuits,

new biocompatible coatings and poly-methyl-pentene(PMP)
membrane oxygenators (74). Currently, we lack the knowledge
of the interaction of contemporary neonatal ECMO circuits and
pharmacotherapy. Hereby we summarize the available evidence,
stemming from in vitro and in vivo studies.
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Circuit-Drug Interaction
The modern neonatal circuitry includes cannulas (venous
cannula for drainage and arterial cannula for reinfusion or
a single double-lumen cannula, when allowed by patients’
size), polyvinyl chloride conduit tubing, a centrifugal pump,
and PMP hollow-fiber membrane oxygenator (75). Based
on patients’ conditions, an hemofilter or a continuous
renal replacement therapy may be added to the circuit
design (75).

Both size and material of each of the above-mentioned
components may lead to significant PK changes as a result of
three main mechanisms: (i) sequestration into the circuit; (ii)
increased Vd; and (iii) altered Cl.

Drugs’ Sequestration by the ECMO Circuit:
Components and Materials
Significant extraction of medications occurs in off-patient ECMO
systems as a result of a complex interaction among circuit
components and specific physiochemical properties of drugs,
notably molecular weight, ionization, hydrophilicity, and protein
binding (13, 15). The octanol-water partition coefficient (LogP)
is a measure of a drug’s lipophilicity (76). The higher the LogP
(>2), the higher the drug sequestration (13, 15, 77). Similarly,
highly protein bound drugs are more prone to be adsorbed into
the ECMO systems (14). These ex vivo findings were confirmed
by in vivo ovine ECMOmodels (77).

Equipment matters, as different materials of oxygenators,
tubing, coating, and pumps may have a variable impact on drug
disposition (15, 78–81).

Pediatric membrane oxygenator technology underwent
significant advancements over the last decades (82).
Improvement of materials, surface area and priming volume
may support pharmacotherapy. Indeed, the variability of
drug adsorption by different membrane oxygenators has been
acknowledged since the early 90’s (71, 83). Lipophilic drugs were
largely sequestered into silicone membranes, at variance with the
polypropylene ones (15, 71, 83). Similarly, the last-generation
polymethylpentene hollow fiber oxygenators have shown less
drug adsorption when compared to silicone-based membranes,
especially for the lipophilic drugs in the first hours after injection
in off-patients experiments (84).

Polyvinylchloride (PVC) tubing was found to be the primary
site for drug sequestration (85). According to in vitro data,
fentanyl was lost to the PVC tubing by 80% after 120min, with an
additional 5% lost to the oxygenators (85). Polymethylpentene-
based oxygenator had a slightly higher impact on fentanyl
disposition, if compared to the microporous polypropylene-
based one (85). In the same study, morphine was lost to
the PVC tubing by 40% after 5min, with almost no further
adsorption by the oxygenators (85). In contrast, recombinant
human albumin/heparin coating tubing showed no effect on
disposition of hydrophilic drugs, such as cephalosporine and
carbapenems (86). These findings were further supported in
a more recent ex vivo study, which evaluated beta-lactams
in ECMO circuits made up of polymethylpentene membrane,
centrifugal pump, heat exchanger, and PVC tubing (87). Results

confirmed that beta-lactams (except for ceftriaxone) were not
sequestered into the circuit (87).

Although the impact of coating has been neglected for
years, more recent in vitro studies provided evidence that
surface modification may affect drug disposition to some extent
(88). Coating is meant to mimic the endothelial surface to
enhance biocompatibility and it is generally defined as bioactive,
when it is based on heparin and nitric oxide, or biopassive,
if albumin and polymers such as phosphorylcholine are used
(89). In vitro results from a study specifically designed to
investigate the influence of coating on morphine and fentanyl
disposition have shown that the following four types of coating
were inert to drug absorption: synthetic albumin, heparin-free
biopassive polymer, recombinant human albumin ± heparin,
and covalently bonded heparin coatings. In contrast, two other
types of surface modifications were associated at 5min with a
significant reduction of morphine levels: poly2methoxylacrylate
polymer and covalently bonded heparin (88). No significant
differences were reported for fentanyl concentrations (88). These
findings further illustrate how drug disposition results from a
complex chemical and molecular interaction between individual
drugs and ECMO components’ individual characteristics. Indeed,
electrochemical properties, namely the electric charge and degree
of hydrophilicity of surface coatings, may contribute to modulate
drugs’ sequestration (90).

Although the influence of the type of pump itself has not
been defined, centrifugal pump-based circuits with hollow-fiber
membrane oxygenators have shown the least absorption for all
drugs (13, 15), and this phenomenon is most pronounced for
lipophilic drugs (15). Besides chemical drivers, mechanics could
be advocated to affect drugs’ PK, as blood is constantly exposed
to variable pressures and flow-rates over the extracorporeal run
(79). ECMO blood-flow is thought to affect drugs’ PK (91),
nevertheless the specific impact of blood-flow variability has not
yet been characterized.

In addition, the type of priming solution and temperature are
involved in the complex chemical mechanisms of drug loss and
stability during ECMO (92), as explained in the next paragraph.
Circuit age further affects pharmacotherapy: on one hand the
saturation of binding sites may smooth the tubing impact on PK;
on the other hand, it is not clear if the circuit acts as a reservoir,
by releasing drugs back into the patient with a potential risk of
cumulative effect and late toxicity (13, 71, 93). Thus far, the in
vitro circuit-drug interaction has been characterized over 24 h, no
data are available beyond this time frame.

ECMO-Induced Volume of Distribution
Increase
The connection of a neonate to the extracorporeal circuit
will affect the apparent Vd of drugs, through three main
mechanisms. Firstly, as previously mentioned, the direct drug
adsorption into the circuit is the driving factor (71, 93).
Secondly, the haemodilution from the priming solution has been
advocated for ECMO-related PK variability (92). In neonates,
the priming volume of contemporary circuits approximates 250–
300ml, which equals the circulatory volume of a 3 kg neonate.
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Furthermore, over the course of an ECMO run, the frequent
administration of blood products and crystalloids contribute to
worsen the hemodilution (94). Hydrophilic drugs are the most
affected, as their Vd is limited to the extracellular compartment,
with no intracellular drug reservoir available for retrograde
diffusion (72). The extension of the plasma compartment during
the ECMO start or in critical illness affects the LD, which is the
first dose needed to guarantee the therapeutic concentration (72,
95). LD is directly proportional to the enlarged Vd and, hence,
should be increased accordingly (95). The priming dilution, in
conjunction with electrolytes and temperature perturbations,
may affect also plasma proteins, especially albumin and alpha1-
acid glycoprotein, thus altering the plasmatic drug-binding (14).
Hypoalbuminemia is a multifactorial process, which results from
ECMO- and disease-driven physio-pathologic changes (96). The
increase of unbound or free drugs may expose ECMO neonates
to potential toxicity (97). Lastly, the ECMO-related physiologic
changes and the underlying disease state influence Vd, as a result
of the systemic inflammatory response (98–102).

ECMO-Induced Clearance Variability
Drug clearance relies on kidney and liver function, which
are usually altered on ECMO, as a result of the clinical
status and circuit-related factors (73, 94, 103). In the
early phase of extracorporeal circulation, the SIRS releases
inflammatory mediators and endogenous cytokines, thus leading
to vasodilatation, increased cardiac output and renal perfusion
(73, 94). In veno-arterial ECMO, non-pulsatile blood flow is
associated with a reduction of the glomerular filtration rate
(104). Moreover, the inflammatory state of the critically-ill is
associated with the downregulation of the expression and activity
of cytochrome P450 enzymes involved in the hepatic drug
metabolism (67). Low clearance and consequent rise of drug
levels might expose the patient to increased pharmacological
effect and toxicity (67, 73).

DISPOSITION OF ANALGO-SEDATIVES ON
NEONATAL ECMO

During ECMO, neonates are exposed to multiple sedatives and
analgesics, mostly for prolonged periods, to provide comfort,
pain relief, and safety (105). The extracorporeal circuit has a large
impact on sedatives and analgesics disposition, leading to high
sedative needs (106–109). Drug physicochemical properties may
assist in the dose prediction, which is titrated to clinical effect (5).
Indeed, lipophilic agents, like fentanyl, propofol, and midazolam
are highly sequestered into the circuit (15, 93, 110), especially in
the first hours of bypass (84).

In the neonatal age, prolonged and sustained analgo-
sedation is associated with clinical relevant adverse effects such
as tolerance, dependency, impaired brain development, and
iatrogenic withdrawal syndrome (105, 111). Among opioid-
sparing strategies, the daily interruption of sedation and analgesia
was shown to be feasible, safe, and effective (112). However,
sedation targets differ among ECMO centers, ranging from deep
to conscious sedation practice (5, 113). The use of alternative

non-opioid agents should be preferred (73, 84). Morphine and
paracetamol have a favorable PK profile (15, 84, 114), while
preliminary data on α2-adrenergic agonists dexmedetomidine
and clonidine suggest the need for increased dosing (81, 115).

In this section we will summarize current evidence of the
disposition of sedatives and analgesics on contemporary neonatal
ECMO circuits (Tables 2, 3) (15, 83, 84, 91, 93, 108, 110, 114, 115,
117–120, 134).

Benzodiazepines
Midazolam has been extensively studied in the neonatal ECMO
population. Moderate sequestration into the circuit has been
observed through in vitro experiments, based on both old (15,
93) and contemporary circuits (15, 84). Two PK studies are
available in the neonatal ECMO population, with contrasting
results. Although both described the increase of Vd, since
the start of ECMO (108, 117), Mulla et al. found a constant
Cl of midazolam in neonates on veno-venous ECMO, with a
prolonged elimination half-life leading to drug accumulation
after 48 h (108). In contrast, Ahsman et al. reported the increase
of midazolam Cl over time in neonates on veno-arterial ECMO
(117). These PK data suggest the need for an increased LD
in the early phase (first 24–48 h) of extracorporeal support,
following which dosage should be titrated down, given the risk of
accumulation of midazolam and its metabolites (108, 117) and,
consequently, prolonged sedation (135).

Opioids
Fentanyl is highly sequestered into the circuit (15, 92) and
dose escalation is required in neonates and infants exposed
to extracorporeal circuits (107, 136). Despite the technological
improvements, the impact of contemporary hollow-fiber-based
oxygenators remains high for lipophilic drugs, such as fentanyl
and sufentanil (84). Most centers use morphine as analgesic and
sedative during neonatal ECMO, because its PK profile is not
significantly altered. Clinical PK studies have reported a two-fold
increase of morphine Vd (91). The Cl decreased following ECMO
cannulation (119, 134) but increased over time, in relation to
creatinine clearance, reflecting age-related maturation of drug
excretion (91). Moreover, when compared to fentanyl, morphine
continuous infusions were associated with improved analgesia,
reduced drug withdrawal and length of stay (137). Therefore,
morphine remains the opioid of choice for neonatal ECMO. Dose
adjustments need to be titrated to clinical sedo-analgesic targets,
pending evidence on contemporary circuitry-related PK.

Non-opioid Analgesics
Based on preliminary in vitro studies, paracetamol has been
suggested as a promising analgesic during neonatal ECMO (84,
114). However, clinical PK evaluations are needed to provide
dosing recommendations.

Propofol
This highly lipophilic and protein-bound sedative-hypnotic
agent is largely sequestered into the ECMO circuit (93).
The drug-related toxicity and concerns for propofol infusion
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TABLE 2 | In vitro PK datasets of contemporary neonatal ECMO circuits.

References Drug Pump Timing (h) Drug loss (%)

Wildschut et al. (15) Cefotaxime Centrifugal 3 2

Cies et al. (116) Daptomycin Centrifugal 24 0

Wagner et al. (81) Dexmedetomidine Roller 24 76–90

Nasr et al. (110) Dexmedetomidine Centrifugal 48 51

Wildschut et al. (15) Fentanyl Centrifugal 3 66

Raffaeli et al. (84) Fentanyl Centrifugal 24 84

Nasr et al. (110) Fentanyl Centrifugal 48 68

Wildschut et al. (15) Meropenem Centrifugal 3 11

Wildschut et al. (15) Midazolam Centrifugal 3 36

Raffaeli et al. (84) Midazolam Centrifugal 24 40

Nasr et al. (110) Midazolam Centrifugal 48 26

Wildschut et al. (15) Morphine Centrifugal 3 68

Raffaeli et al. (84) Morphine Centrifugal 24 51

Nasr et al. (110) Morphine Centrifugal 48 4

Wildschut et al. (15) Paracetamol Centrifugal 3 56

Gillogly et al. (114) Paracetamol Roller 6 0

Raffaeli et al. (84) Paracetamol Centrifugal 24 49

Raffaeli et al. (84) Sufentanil Centrifugal 24 83

Wildschut et al. (15) Vancomycin Centrifugal 3 33

All experiments were reported to be performed on new and blood-primed circuits, based on hollow-fiber membrane oxygenators. Sample site is pre-membrane.

syndrome (PRIS) (138) call for caution in the prolonged use of
this drug during neonatal ECMO.

α2-Adrenergic Agonists
Clonidine use and prescription during neonatal and pediatric
ECMO is supported by a recent population PK study, which
suggested higher clonidine doses, based on the increase of Vd and
Cl in the specific setting of ECMO and renal replacement therapy
(115). Limited in vitro data are available for dexmedetomidine,
which is partially sequestered into the circuit: a LD may
be required, although recommendations for its long-term use
cannot be provided (81).

DISPOSITION OF ANTIMICROBIAL AND
ANTIVIRAL DRUGS DURING NEONATAL
ECMO

Infection remains a real threat for critically-ill neonates on
ECMO, with an incidence rate of 5.4 and 5.7% in respiratory
and cardiac runs, and reduced survival to 51 and 19%,
respectively (34). A timely and adequate antimicrobial therapy
is therefore pivotal to improve outcomes (139). However, the
goal to provide optimal antibiotic therapy is impaired by
the ECMO-induced PK changes, which can be only partially
predicted, based on current knowledge on drug-circuit-patient
interaction (Figure 1) (13, 15, 103). Moreover, antimicrobial
prescribing is further complicated by the lack of clinical titratable
endpoints (103). Therefore, PK and PD remain the best available
predictors of antimicrobial efficacy. Pending evidence-based
pharmacotherapy guidelines, neonates on ECMO are still at risk

of sub-optimal antibiotic exposure, contributing to treatment
failure and bacterial resistance (26). In this section we will
summarize current evidence of antimicrobial bioavailability on
contemporary neonatal ECMO circuits (Tables 2–4) (4, 15, 92,
116, 118, 121–133).

Beta-Lactams
Beta-lactams are hydrophilic time-dependent antimicrobials,
with a variable degree of protein binding and renal elimination
(150). Their killing activity is strictly related to the time the
unbound drug is above the minimum inhibitory concentration
(MIC). The knowledge of ECMO-related PK changes is limited
in novel circuitry and further complicated by the well-
known instability (i.e., temperature) of this class of antibiotics
(151). Based on in vitro observations, ampicillin showed a
moderate loss in older silicon-based neonatal systems (92).
The impact of contemporary circuits on cefotaxime seems
negligible (15).

Although the Vd of cefotaxime was increased during ECMO,
Cl was comparable to the one of non-ECMO neonates (121).
Based on a neonatal PK study, standard dosing regimen
of cefotaxime during ECMO provided supra-MIC plasma
levels (121). Therefore, given the large therapeutic window of
cefotaxime, dose adjustments are usually not needed.

Broad-spectrum carbapenem agents, such as meropenem,
may be required over the neonatal ECMO course (139). The
impact of the ECMO circuit on drug disposition consists of
a moderate drug sequestration (15), larger Vd, and higher
clearance (152). The latter factor is magnified when renal
replacement therapy is added to the circuit design (122).
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TABLE 3 | Summary of drug physicochemical properties, ECMO-induced PK changes, and drug dosing.

Drug class Medication LogP PB% ECMO-related PK changes Standard dosing in critically ill term

neonates

Dosing recommendation for neonates on

ECMO

References

Benzodiazepine Midazolam 3.89 97 In vitro: moderate sequestration

Clinical PK: Increased Vd

Loading dose 50–150 mcg/kg

Maintenance dose 10–60 mcg/kg/h

Consider increasing the loading dose in the early

phase of ECMO. Beware of drug/metabolites

accumulation over time.

(15, 84, 93,

108, 109,

117, 118)

α2-adrenergic

agonist

Dexmedetomidine 3.39 94 In vitro: moderate sequestration Loading dose 1 mcg/kg Although sparse, data suggest the need for a

loading dose.

(81, 110, 118)

No clinical PK Maintenance dose 0.2–0.7 mcg/kg/h

Clonidine 1.59 20–40 Clinical PK: increased Vd and clearance in a

population PK study of ECMO with CVVH

Maintenance dose 0.1–1 mcg/kg/h Although sparse, data suggest the need for higher

doses.

(115, 118)

Opioid

analgesics

Morphine 0.99 30–40 In vitro: mild to moderate drug loss in

contemporary ECMO systems

Loading dose 100 mcg/kg Analgesic of choice during ECMO at most centers.

Minimal dose adjustment may be required.

(15, 84, 91,

118, 119)

Clinical PK studies (older circuits): no changes Maintenance dose 10–40 mcg/kg/h

Fentanyl 4.12 80–85 In vitro: high drug loss Loading dose 0.5–3 mcg/kg Consider alternative drugs. Consider increasing

the dose, when used for procedural analgesia

(15, 83, 84,

93, 118)Clinical PK: need for higher doses Maintenance dose 0.5–2 mcg/kg/h

Sufentanil 3.4 NA In vitro: high drug loss (Pediatric dosage) Loading dose 0.25–2

mcg/kg

Limited data for dosing recommendations. (84, 118, 120)

No clinical PK available Maintenance dose 0.5–1.5 mcg/kg/h

Anesthetic

(phenolic

derivative)

Propofol 3.79 95–99 In vitro: high drug loss

No clinical PK available

Bolus 2.5 mg/kg Drug-related toxicity, propofol-related infusion

syndrome PRIS call for caution in the use of

propofol during neonatal ECMO

(93, 118)

Non-opioid

analgesics

Paracetamol 0.51 25 In vitro: conflicting data 7.5 mg/kg/6h Limited data for dosing recommendations. (15, 84, 114,

118)No clinical PK.

b-Lactam Ampicillin 1.35 15–30 In vitro: increased Vd, low-moderate drug

sequestration

50–70 mg/kg/8 h Standard dosing, given the large therapeutic

window.

(92, 118)

No clinical PK

Cefotaxime −1.4 35 In vitro: low drug sequestration in

contemporary systems

Postnatal age < 7 days: 100–150 mg/kg/day

in 2 or 3 doses

Standard dosing; perform TDM to verify adequate

supra-MIC levels.

(15, 118, 121)

Clinical PK: standard dosing is effective Postnatal age 7–28 days: 150–200 mg/kg/day

in 3 or 4 doses

Meropenem −0.69 2 In vitro: large increase in Vd and low-moderate

drug loss

Postnatal age < 7 days: 20 mg/kg every 12 h Standard dosing. Perform TDM to verify adequate

supra-MIC levels. Consider higher dosing or

continuous infusion in case of increased clearance

or RRT.

(15, 118, 122)

Clinical PK: increased Vd and increased Cl, in

ECLS + RRT

Postnatal age 7–28 days:20 mg/kg every 8 h

Meningitis: 40 mg/kg every 8 h

Glycopeptide Vancomycin −1.4 50 In vitro: large increase in Vd, minimal to

moderate loss

Conflicting clinical PK data in contemporary

circuits, in terms of impact on Cl

Postnatal age < 7 days: 10–15 mg/kg every

8/12 h

>7 days: 15 mg/kg every 6/8 h

Dosing guidelines based on age and renal

clearance. Suggested dose in neonates: 25

mg/kg/dose every 12–24 h. TDM for dosing

monitoring and adjustement.

(3, 15, 92,

118, 123–

125)

(Continued)
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Glycopeptides
Vancomycin is a hydrophilic time-dependent antimicrobial,
largely used in the NICUs for treatment of Gram-positive
infections (118, 153). Given the narrow therapeutic window and
the risk of nephrotoxicity, the PK profile of vancomycin has been
extensively evaluated both in vitro and in vivo neonatal settings
since the 90’s (154–156). Vancomycin Cl is strictly related to
renal function (155, 157) and the drug half-life was found to
be prolonged in ECMO patients (156). However, these findings
referred to older roller pump-based systems. Although data on
contemporary circuits are limited, recent neonatal PK studies
have revealed enhanced Cl, potentially leading to under-exposure
(123). An empiric dosing strategy of 25–30 mg/kg/dose every
12–24 h is suggested, with a close therapeutic drug monitoring
(TDM) (125).

Continuous vancomycin infusions were found to be
associated with earlier and improved attainment of target
concentrations compared to the intermittent modality in
neonates, with no difference in terms of adverse effects (158).
However, no evidence is available for the optimal infusion
modality during ECMO.

Another glycopeptide antimicrobial which may be used
during neonatal ECMO is teicoplanin. Although specific neonatal
data of teicoplanin disposition in the extracorporeal setting
are lacking, the evidence from an adult PK study suggests the
need for higher doses during ECMO (159). In this prospective
population PK evaluation, the predictive target attainment was
reduced during ECMO for every simulated dosing, despite the
Vd was lower and Cl was not affected by the extracorporeal
circuit (159). Based on the hydrophilic profile of the drug, the
hemodilution and protein binding could be addressed as the
main drivers for teicoplanin disposition on ECMO (159).

Aminoglycosides
Gentamicin is a hydrophilic antimicrobial with a relatively low
protein binding, largely used in the NICUs for the treatment
of infections due to Gram-negative bacteria (118, 153). During
ECMO, gentamicin has been found to have an increased
Vd, as a result of the large exogenous blood volume for
circuit priming and decreased Cl, leading to a prolonged
elimination half-life (4, 126, 128). The renal dysfunction, which
is a common multifactorial condition during ECMO, may
be considered as the main determinant of the prolonged
elimination half-life of gentamicin (72). Given the concentration-
dependent antimicrobial activity of aminoglycosides, it is
highly recommended to perform TDM to ensure adequate
antimicrobial exposure.

Antivirals
Oseltamivir is a neuraminidase inhibitor of both type A and B
influenza virus (160). This drug is approved by the Food and
Drug Administration (FDA) for the treatment of children older
than 2 weeks of age with flu (130, 161). Oseltamivir is an oral
pro-drug which is rapidly converted to oseltamivir carboxylate,
the active metabolite (150, 160). Based on previous pediatric
PK ECMO case series, the impact of ECMO on oseltamivir
disposition is negligible with no need for dosing adjustment
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FIGURE 1 | Determinants of drug disposition during neonatal ECMO.

(131). However, oral bioavailability was reported to decrease in
patients with impaired gastric motility and enteral absorption
(131). Although evidence in the neonatal setting is scant, adult
data support the lack of effect of ECMO on the oseltamivir’s
PK (162, 163).

FROM FRAGMENTED DATA TO
INTEGRATED KNOWLEDGE

Obviously, also in neonates and children on ECMO,
pharmacotherapy is a very important tool in the medical
management. As a result of the large PK-PD variability, drug
dosing is only to a very limited extent validated in the setting of
neonatal ECMO (164). Methodological development within the
field of clinical pharmacology and modeling should assist ECMO
physicians to improve our practices. The other way around,
modelers will need the data to get this job done.

A knowledge-driven improvement strategy necessitates
sufficient understanding of human developmental biology
to subsequently translate such knowledge into prediction
differences in drug absorption, distribution, metabolism, and
excretion (PK). Only once this PK is sufficiently well covered,
an appreciation of the developmental aspects of drug-receptor
or -target interactions (PD) can be considered. Physiologically-
based PK (PBPK) modeling is such a structured approach to
translate knowledge into prediction, but the development of such
modeling techniques necessitates the collaboration of clinicians
with researchers specifically skilled in modeling techniques

(165). PBPK approaches provide a potent systematic way to
make the most of already acquired knowledge (physiology,
system knowledge) to adapt drug dosing to the needs of children
on ECMO, as has recently been illustrated for fluconazole (166).

The aim is not to describe the workflow and technical
details related to the development of pediatric or neonatal PBPK
model (167, 168), but to illustrate how ECMO physicians and
clinical researchers can contribute to improved ECMO-related
pharmacotherapy in neonates and children by generating data
on ECMO related (patho)-physiology, including aspects related
to the initial indication to initiate ECMO, and by sharing PK
datasets and data on neonatal and pediatric equipment.

PBPK Methodology
In essence, PBPK is a structured method for data integration,
hypothesis testing and knowledge generation (167, 168).
Moreover, one may check consistency of data obtained from
different sources (in vitro, in vivo, in silico) or predict outcome
(PK, PD) of future experiments, hereby enabling decisionmaking
or optimization of study design. PBPK (“so-called bottom-
up”) applies mathematical models for mechanistic integration
of pharmacology principles, assumptions, and data along the
drug development process. It hereby integrates different types of
information, such as clinical data and in silico, in vitro, and in
vivo observations. PBPK hereby explicitly discriminates between
physiological properties of the population (system parameters,
like cardiac output, renal function, liver size, weight, plasma
protein, different between populations) and compound specific
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TABLE 4 | Overview of the Pubmed (ecmo, newborn, pharmacokinetics, n = 72) search on pharmacokinetics of 16 different compounds.

References Compound Protein

binding*

pKa* Comments

Pokorna et al. (140) Phenobarbital 20–45% 8.14 (acid) Hepatic, mostly via CYP2C19

Cies et al. (123) Vancomycin 50% 2.99 (acid) Mainly by renal route, renal transporters likely involved

9.93 (basic)

Kleiber et al. (115) Clonidine 20–40% 8.16 (basic) Renal (about 50%) and hepatic (about 50%), including CYP2D6

Niimi et al. (141) Anti-thrombin n.a. n.a. Protein, no specific elimination routes described

Watt et al. (132) Fluconazole 11–12% 12.71 (acid) Renal (90%) and hepatic (10%)

2.56 (basic)

Ahsman et al. (117) Midazolam 97% 6.57 (basic) Intestinal and hepatic metabolism, CYP3A

Ahsman et al. (121) Cefotaxime n.a. 3.18 (acid) Renal elimination (20–40%) and metabolism (desacetyl derivative is the

major metabolite)

4.15 (basic)

Ahsman et al. (142) Sildenafil 96% 7.29 (acid) Hepatic metabolism, CYP3A4 > 2C9

5.97 (basic)

Kendrick et al. (143) Amiodarone >96% 8.47 (basic) Almost exclusively hepatic, CYP2B8

Peters et al. (144) Morphine 30–40% 10.92 (acid) 90% hepatic, glucuronidation >> demethylation

9.12 (basic)

Mulla et al. (145) Theophylline 40% 7.82 (acid) Hepatic metabolism, demethylation, hydroxylation and N-methylation

(CYP1A2) to caffeine

−0.78 (basic)

Wells et al. (146) Ranitidine 15% 8.08 (basic) N-oxidation is the most relevant metabolite

Aebi et al. (147) Ribavirin n.a. 11.88 (acid) (de)phosphorylation

−1.2 (basic)

Wells et al. (148) Bumetanide 97% 4.69 (acid) 45% primary renal, oxidation 55%

2.7 (basic)

Bhatt-Metha et al.

(129)

Gentamicin Low,

0–30%

12.55 (acid) Primary renal, by glomerular filtration

10.18 (basic)

Pokorna et al. (149) Sufentanil 79–93%

(alpha-acid

glycoprotein)

8.86 (basic) Hepatic, oxidative N-, and O-dealkylation

*Data on protein binding and pKa values were retrieved on www.drugbank.ca [CYP, cytochrome P450; n.a., not available/applicable].

(chemical, pH, solubility) properties, not different between
populations (Figure 2). Using this approach, it has applications
in drug development for first-in-human, first-in-child, or first
in ECMO-patients, and became an established tool for drug
development and regulatory needs, like e.g., data in cases
with hepatic or renal impairment, drug-drug or drug-food
interactions to avoid the need to recruit an impossible number
of patients with very specific issues while still have sufficient
confidence in the dosing regimens. The final intention is to
generate dosing recommendations, or alternatively, simulations
to subsequently conduct PK studies, as highlighted in Figure 2

for the specific ECMO setting (#).

Why ECMO Physicians and Clinical
Researchers Are Needed to Develop Such
Models
As illustrated in Figure 2, the workflow to develop and build
confidence in PBPK models tailored to neonatal and pediatric
ECMO pharmacotherapy necessitates availability of in vivo PK

data (∗), data on disease state (∗∗), and on ECMO circuit
parameters (∗∗∗), and this is exactly why clinicians should become
aware of the usefulness of such data beyond compound specific
relevance (164, 165, 167, 168).

Availability of in vivo PK Dataset (∗, Figure 2)
To illustrate that there are indeed already quite some compound
specific PK observations, we conducted a structured search
in PubMed on 15 January 2019 with [ECMO, newborn, and
pharmacokinetics] as search terms. This resulted in 72 hits,
and additional search with “infant” resulted in 79 hits, but no
additional compounds. The results of this search are provided
in Table 4, reporting on the compounds (n = 16) retrieved
and supported by the most recent reference (115, 117, 121,
123, 132, 140–149). From a PBPK perspective, it is important
to realize that these compounds are quite different when
we consider protein binding, pKa (reflecting the chemical
characteristics of the compound) and can be used to evaluate
and optimize a variety of elimination routes, including renal,
phase 1, and phase 2 processes: a perfect mix to validate
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FIGURE 2 | Integrated approach for drug prediction through physiologically-based pharmacokinetic (PBPK) models during neonatal ECMO.

the models. So PK data sharing and collaboration is an
obvious need, since the data already exist and can be used
to predict PK for drugs not yet evaluated or even not yet
marketed (169).

Data on Disease State (∗∗, Figure 2)
Extracorporeal membrane oxygenation is a technique to treat
life threatening conditions, so data on these underlying disease
conditions are also needed to further develop ECMO related
P‘BPK models: it’s is not just the technique, but also the reason
for the technique that matters. To illustrate the feasibility to
integrated (patho) physiology, we refer to PBPK models for
carvedilol in children with cardiac failure (170) or intensive
care adult patients with hypo-albuminemia (171). In the
neonatal and pediatric ECMO, perinatal asphyxia, sepsis, or
post resuscitation are common settings. It has been proven
that disease affects drug PK (refer to previous section on pre-
ECMO disease) (37, 67). Besides such observations, clinical
researchers should also consider to build multi-center datasets
(as part of the ongoing ELSO registry initiatives) on inter-
and intra-patient trends of “real world” data. We hereby
refer to trends in fluid retention, albumin, creatinine, heart
rate, and cardiac output, energy expenditure or more specific
issues like alfa-1 glycoprotein (Table 4). This is because such
datasets can further feed and improve PBPK prediction,
including intra-patient trends with time (8, 172). This has
also recently been illustrated for e.g., alfa-1 glycoprotein
maturation (173).

Data on ECMO Circuit Parameters (∗∗∗)
Finally, equipment matters and data on newer extracorporeal
technology need to be considered. PBPK modeling will generate
further knowledge, which may guide both the development of
new ECMO devices and the refinement of current technology at
a biomedical engineering level.

CONCLUSIONS AND FUTURE
DIRECTIONS

Extracorporeal membrane oxygenation has an established role
in the care of critically ill neonates. The exposure to the
extracorporeal circuit impacts on drugs’ disposition, potentially
leading to undertreatment or toxicity, especially for drugs with
a narrow therapeutic index. Non-maturational determinants
(such as asphyxia/hypoxia, sepsis/SIRS, MODS) during pre-
ECMO predetermine large Vd for hydrophilic drugs due to
the underlying disease, while superimposed ECMO may lead
to larger Vd for lipophilic and, to a lesser extent, hydrophilic
drugs. Therefore, LD adjustment may be recommended to
achieve optimal drug levels in neonates on ECMO. CL is
influenced by renal (hydrophilic, high renal clearance drugs)
and/or hepatic functions (lipophilic, high liver clearance drugs)
under sepsis, asphyxia and treatment modalities (HT, ECMO),
and optimal maintenance dose adjustment should be achieved on
an individual basis (development, disease, genetics). Therefore,
TDM is suggested to optimize LD/MD in these critically ill
neonates. As drug dosing needs to be guided by PK or PD or
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PK/PD principles, the understanding of PK-PD changes during
(pre-) ECMO will assist in the prescribing optimization and,
eventually, contribute to improve patients’ outcomes.

In this review we have provided an overview of the
available evidence on the impact of both maturational and
non-maturational determinants of PK in critically-ill neonates
on ECMO. We subsequently have discussed the relevance
of these determinants on the disposition of analgo-sedatives
and antimicrobial and antiviral drugs during neonatal ECMO.
Future efforts should be directed toward a more integrated
approach, by combining existing knowledge to predict PK profile.
Sparse samplings of three different periods (pre-, during, post-
ECMO) may be adopted to better understand dynamically
changing drug disposition. Further PK in vivo/in vitro studieswill
provide insights into the role of contemporary ECMO systems
superimposed on maturational/non-maturational determinants.

Gathered knowledge into the maturational physiology-,
illness-, and ECMO-related PK impact should be used to inform
PBPKmodeling, which is emerging as an alternative and powerful
tool to provide bedside dosing guidance. Lastly, a prospective
validation of PK/PD studies is needed by well conducted clinical
trials to optimize dosing.

The final aim will be to apply pharmacotherapy in a goal-
directed fashion, by reaching optimal PD outcomes through

the individualization of the prescription, thus maximizing the
therapeutical benefits in these vulnerable patients.
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