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Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity with an

operational definition, various different clinical phenotypes, and a complex, multifactorial

etiology. Newer unbiased systems biology approaches have identified various “omic”

factors associated with the pathogenesis and prediction of BPD. Recent microbi “omic”

studies have discovered that airways of newborns harbor a low biomass but distinct

microbiome signature as early as at the time of birth. This early airway microbiome

may serve to prime the host immune system and may play a role in modulating the

infant’s future susceptibility to severe BPD development. Temporal changes are observed

in airway microbiome of preterm infants from birth to the diagnosis of BPD, with an

overall decrease in bacterial diversity, and development of a relative dysbiosis marked

by increased Gammaproteobacteria and decreased Lactobacilli abundance. This review

will summarize previous investigations of the airway microbiome in preterm infants,

appraise the utility of using the airway microbiome to predict BPD development, discuss

possible molecular mechanisms involved, and speculate on future microbiome-mediated

therapeutics for BPD.
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INTRODUCTION

Distinct microbial populations exist throughout the human body and have been the subject
of investigation relating to human disease pathogenesis, susceptibility, and progression. The
airway microbiome has been studied in the context of multiple pulmonary diseases including
chronic obstructive pulmonary disease, asthma, and cystic fibrosis (1–4). Bronchopulmonary
dysplasia (BPD), the most common chronic lung disease of prematurity, may result from
lung injury due to a range of factors including infection, respiratory support, edema, and
oxygen toxicity. Recent investigations have described differences in the airway microbiome of
preterm infants that may influence susceptibility of BPD development, suggesting another parallel
pathway contributory to abnormal lung development. In this manuscript, we review the potential
origins of the airway microbiome, plausible covariates that influence the airway microbiome,
investigations exploring associations between microbial communities and BPD susceptibility,
potential mechanisms for microbiome-derived lung maldevelopment, and future microbiome-
based targeted therapeutic approaches.
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ORIGINS OF THE INFANT AIRWAY

MICROBIOME

How, when, and from what source(s) does the infant’s
airway microbiome originate? It is unclear when the airway
microbiome is first established. Study of the in utero and
early postnatal microbiome suggests the possibility of a fetal
microbiome preceding birth. Ureaplasma and Mycoplasma have
been reported invaders of the amniotic cavity associated with
intraamniotic infection and preterm labor (5, 6) and have
been associated with BPD development and thus therapeutically
targeted (7, 8). A distinct placental microbiome has previously
been described and most closely resembles the oral microbiome
(9). More recent investigations of the placental microbiome
report that the placental microbiome is of low abundance and
low biomass (10, 11), but a very recent report from De Goffau
et al. (12) refutes this claim. According to De Goffau’s study,
placenta does not harbor amicrobiome butmay contain potential
pathogens. In healthy, term pregnancies, the amniotic cavity
likely remains sterile until amniotic membrane rupture (13).
Bacteria have also been detected from infant meconium samples
(14) and cord blood (15), further suggesting that the fetal
environment may not be sterile.

Our group conducted a study in which tracheal aspirate
samples from infants were collected at birth or within 6 h
of birth, and each sample was found to harbor a diverse
microbiome signature (16). As majority of these samples were
collected right at birth, most soon after cesarean sections, we
speculate that airway microbiome signature at birth could have
fetal origins. Previous studies of mother–infant dyads have
identified similarities between the microbiome of the amniotic
fluid and infant meconium highly abundant in Proteobacteria
and Firmicutes, followed by an increase in diversity and later
resemblance between the breast milk and infants’ intestinal
microbiome (17). The placental microbiome reported by prior
investigations (9), largely composed of Proteobacteria and
Firmicutes, also resembles that of the airway microbiome in
infants at birth that our group has reported (16). However, studies
of mother–infant dyads have not concurrently investigated the
amniotic fluid, placenta, and airway microbiome at birth, and the
actual origin of the early airway microbiome remains unknown.

WHAT FACTORS INFLUENCE THE AIRWAY

MICROBIOME?

Before discussion of the airway microbiome and BPD
susceptibility, it is critical to consider other clinical covariates
that may influence infants’ airway microbiome. A common
variate of investigation has been antibiotic exposure.
Intrapartum antibiotics have been reported to influence the oral
microbiome of infants, including a reduction in the abundance
of Lactobacillus (18). However, given the high risk for infection
in the preterm population, antibiotics are a frequent exposure
making such analyses challenging. In a longitudinal study of the
airway microbiome from tracheal aspirates in preterm infants, all
infants were exposed to antibiotics within the first 21 postnatal

days with a median duration of 12 exposure days (19). Other
studies in which fewer infants were exposed to antibiotics did
not report differences in bacterial diversity between exposed and
unexposed infants (20). We have previously reported a similar
airway microbiome at birth in infants, regardless of prenatal
antibiotic exposure. Additionally, despite multiple courses of
antibiotic exposure, we observed comparable dysbiotic changes
among infants that developed BPD (16).

Given that cesarean delivery may preclude exposure to vaginal
flora, the influence of delivery mode has been evaluated. Studies
analyzing the gut microbiome have demonstrated longitudinal
differences persisting for a year after birth in cesarean born
infants, including a decrease in Bacteroides abundance (21). Our
group has reported that the airway microbiome did not differ
based on whether infants were born via vaginal or cesarean
delivery mode (16). In another study, infants born by vaginal
delivery had an airway microbiome representative of vaginal
flora, while the airway microbiome of infants born via cesarean
delivery resembled the skin flora (22).

Breast milk influences the maturation of the intestinal
microbiome with little evidence analyzing the influence of
breast milk exposure and the airway microbiome. A study of
infant–mother dyads (N = 107) compared the microbiome of
the infant stool, breast milk, and areolar skin. While these
microbial communities were distinct, the infant gut microbiome
more closely resembled the maternal breast milk and areolar
microbiome compared to randomly chosen comparison groups
(23). Whereas, the intestinal microbiome may not seem relevant
to pulmonary disease, correlations between the gut microbiome
and lung diseases of childhood including asthma and cystic
fibrosis have previously been reported (24, 25). Interestingly,
breastfed infants have more abundant Lactobacilli and less
abundant Proteobacteria compared to formula-fed infants (21), a
similar differentiating feature of BPD-resistant infants compared
to BPD-susceptible infants (16). Additionally, a meta-analysis
comparing human milk to formula milk found decreased odds
of BPD development in human milk-exposed infants (OR 0.78;
95% CI 0.68–0.88); however, the quality of evidence was low
(26). More evidence is needed relating human milk to the airway
microbiome given the overlap inmicrobial composition observed
in breast milk-fed infants and BPD-resistant infants.

THE AIRWAY MICROBIOME AT BIRTH

Given the possibility that bacteria may be present in the
fetal environment, multiple investigators have described the
airway microbiome at birth. However, characterizing the airway
microbiome of infants presents several challenges including
inaccessibility of the lower airway, the requirement of an invasive
sampling technique (typically endotracheal intubation), and
a low biomass necessitating molecular techniques susceptible
to contamination. Despite these challenges, bacterial DNA
have been observed in tracheal aspirates collected at the
time of intubation in preterm infants (20) with changes
in diversity occurring after the third postnatal day (19).
From these studies, Proteobacteria (Acinetobacter spp.) and
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Firmicutes were the predominant phyla and Staphylococcus,
Ureaplasma parvum, and Ureaplasma urealyticum were the most
frequently identified organisms. Other observational studies
of tracheal aspirates in preterm infants have found a similar
predominance of Staphylococcus and Ureaplasma (27, 28). In
isolates taken at birth or within 6 h of birth, we have reported
a low biomass airway microbiome in both term and preterm
infants. Firmicutes and Proteobacteria were predominant
bacterial phyla with additional detection of Actinobacteria,
Bacteroidetes, Tenericutes, Fusobacterium, Cyanobacteria, and
Verrucomicrobia (16).

AIRWAY MICROBIAL SIGNATURES AND

BPD DEVELOPMENT

Before the plausible contributions of the airway microbiome to
BPD development are discussed, it is important to acknowledge
that BPD is a not a concise disease, but rather consists of
a range of clinical phenotypes resulting from heterogeneous
prenatal and postnatal exposures. However, an underlying
commonality to mechanisms of BPD development is pulmonary
inflammation secondary to exposures such as mechanical
ventilation, hyperoxia, pre- or postnatal infection, or fluid
retention (29). These insults all occur to a developing, premature
lung, thereby altering its developmental course. Nevertheless,
differences in the airway microbiome between healthy and
BPD susceptible preterm infants less likely represents an acute
infection of the airway and more likely reflects respiratory
dysbiosis, such as the predominance of Proteobacteria observed
in disease states such as chronic obstructive pulmonary disease
resulting in a dysregulated immune response (1, 2, 30).

A recent systematic review identified six studies that have
evaluated the airway microbiome in preterm infants that
developed BPD (31). The majority of included studies used
amplification of the variable regions of 16S rRNA for bacterial
sequencing (16, 19, 20, 27). In these studies, the airway
microbiome was first described either at birth or in the early
postnatal period and was subsequently characterized at different
postnatal sampling intervals. The airway microbiome of infants
developing BPD have been contrasted with different groups,
including full-term matched controls and preterm infants that
did not develop BPD. In comparing the airway microbiome
at birth between infants that did and did not develop BPD,
less bacterial diversity has been reported in infants that later
developed BPD (20) and we have reported a more diverse
microbiome in full-term post-menstrual age (PMA) matched
infants at birth compared to infants that develop BPD (16). These
differences in microbiome diversity may last into adulthood, as
adult survivors with a history of BPD have a less diverse airway
microbiome compared to preterm infants that did not develop
BPD and healthy controls (32).

Studies analyzing microbial signatures and the outcome
of BPD have found similar results but some institutional
differences. We have reported that BPD susceptible infants have
more abundant Proteobacteria and less abundant Firmicutes
compared to PMA matched infants. These changes in microbial

composition were also noted over time in infants developing
BPD. Regarding individual bacteria at birth later associated with
BPD development, Ureaplasma has been associated with an
increased risk for developing BPD (27, 28). Chorioamnionitis
has been cited as an independent risk factor for BPD for a
very long time and we reported that preterm infants born
to mothers with chorioamnionitis start off with decreased
Lactobacilli in their airways at birth. Over time, a decrease in
Acinetobacter abundance and increase in Staphylococcus and
Klebsiella abundance has been reported in infants that develop
BPD (20). However, these investigations of bacterial abundance
and BPD susceptibility do not detail the mechanism for altered
pulmonary development.

Recently, we conducted another study to using a software-
based method to predict the metagenome of the tracheal aspirate
microbiome from 16S rRNA sequencing data in extremely
preterm infants (born at ≤28 weeks’ gestation) and identified
functional host ortholog genes that were differentially abundant
in infants developing BPD compared to infants that did not
develop BPD (33). We also identified metabolites and metabolic
pathways that were differentially enriched in these samples by
use of untargeted mass spectrometry and mummichog. The
airway metabolome of infants developing BPD was enriched for
metabolites involved in fatty acid activation and androgen and
estrogen biosynthesis compared with infants that did not develop
BPD. These findings suggest that in extremely preterm infants,
the early airway microbiome may alter the metabolome, thereby
modifying the risk of BPD. While the etiology of differential
enrichment of sex steroid metabolic pathways remains unclear,
previous studies have suggested a role for sexual dimorphism in
BPD risk (33).

FROM ‘BIOME TO BPD: MECHANISMS OF

CONSIDERATION

Proposed mechanisms by which the airway microbiome results
in BPD development include immune system priming, oxidative
stress, and metabolic dysregulation. The immunomodulatory
role of the airway microbiome in human disease has been
well-described (34–36). Previous investigations have reported
a decrease in inflammatory cytokines (e.g., tumor necrosis
factor-α) in peripheral blood mononuclear cells following
exposure to Lactobacillus-derived factors (37). Additionally,
in in vitro studies of LPS-induced lung injury, inflammatory
cytokines derived from alveolar macrophages were reduced upon
exposure to Lactobacillus-derived factors (38). In vivo studies
also reported less recruitment of inflammatory cells to the
lung tissue with Lactobacillus administration (38). Instillation
of Lactobacilli into adult wild-type mice lungs preserves
alveolar architecture compared to germ-free mice controls (39).
Nevertheless, neonatal germ-free mice have relatively protected
alveolar structure in response to noxious stimuli such as
hyperoxia (40). The probiotic use of Lactobacilli has already been
demonstrated in the setting of enteropathogenic colonization and
viral infection (41).
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We have reported differences in exosome signatures between
infants who do and do not develop BPD. Exosomes are vesicles
produced by numerous cells and house molecular content,
and may participate in cellular communication and pathogenic
pathways, and may therefore provide clinical utility as a
biomarker for disease. In a large prospective study in extremely
preterm infants (born at <28 weeks’ gestation), exosomes were
longitudinally collected from tracheal aspirates and compared
between infants that did and did not develop severe BPD (42).
Infants developing severe BPD had 40 different micro RNA
signatures compared to non-BPD infants. Upon analyzing these
signatures in a validation cohort, low miR 876-3p expression
had a sensitivity of 91.7% for severe BPD prediction (42).
As previously discussed, Proteobacteria are more abundant in
infants that develop severe BPD and using an in vivo, hyperoxia-
based BPD mouse model, we compared the alveolar architecture
of hyperoxia exposed mice to hyperoxia exposed mice also
exposed to Proteobacterial LPS. Mice exposed to hyperoxia
and Proteobacterial LPS had the most significant reduction
in miR 876-3p expression supporting the role of miR 876-
3p as a potential biomarker for Proteobacterial-induced BPD
development and/or a therapeutic target (42). As miR 876-3p was
found to be a protective miRNA in BPD pathogenesis, gain of
function of miR 876-3p could be attempted in therapeutic studies
of chronic lung injury. Additionally, further studies utilizing miR
876-3p to validate BPD prediction at other sites, to monitor
therapeutic response to therapy, and/or predict other outcomes
in extremely preterm infants (e.g., long term pulmonary
morbidity) are needed. Interestingly based on bioinformatic
platforms, one of the top predicted targets of miR 876-3p is
androgen receptor (AR). We speculate that further study of miR
876-3p and its target AR has the potential to delineate the sex
predilection seen in BPD.

Given that a dysbiotic airway microbiome has been associated
with BPD development, we have recently investigated whether
germ-free mice exhibit a BPD phenotype after exposure to
hyperoxia (40). In these studies, pulmonary development was
similar between germ-free and non-germ-free (NGF) mice
under normoxic conditions. In a hyperoxic environment,
both NGF and germ-free mice exhibited evidence of alveolar
maldevelopment; however, more alveolarization, decreased
cytokine levels, and improved lung function were observed in
germ-free mice compared to NGF mice (40). These experiments
suggest that while the airway microbiome may not be a necessary
exposure for lung maldevelopment, it may have an additive or
synergistic role.

PROBIOTICS: A PLAUSIBLE

THERAPEUTIC OPTION FOR BPD?

Several randomized trials have evaluated the effect of enteral
probiotics and lung disease. In adults, probiotic exposure
reduced ventilator-associated pneumonia compared to placebo
in mechanically ventilated patients and reduced pulmonary
exacerbations in patients with cystic fibrosis (43, 44). In

a meta-analysis of probiotics in the context of allergic
rhinitis, Lactobacillus-based probiotics were the probiotic used
in the majority of studies and 22 randomized trials were
identified. Probiotic-exposed patients had a reduction in
symptom scores, an improvement in quality of life scores, and
improved immunologic parameters compared to placebo (45).
A randomized controlled trial of probiotics in children with
asthma reported a reduction in asthma severity in probiotic
exposed children compared to placebo and Lactobacillus-based
probiotics may also reduce nosocomial infections in children
(44, 46). Previous studies using enteral probiotics to reduce either
necrotizing enterocolitis (NEC), a devastating gastrointestinal
disease of prematurity, or late onset sepsis have not demonstrated
a reduction in BPD (47). However, the influence of enteral
probiotics on the airway microbiome has not been evaluated and
randomized trials of aerosolized probiotics in preterm infants
have never been conducted. Future studies are warranted to
specifically target the lungs in animal models of respiratory
diseases such as BPD, CF, and COPD. There may be a potential
role of inhaled respiratory probiotics in the years to come.

FUTURE INVESTIGATION

Although bacteria such as Lactobacilli may be lung protective,
there have been no studies demonstrating this protective role
in animal models of neonatal chronic lung disease. Once the
benefits of reversing the respiratory dysbiosis by using respiratory
probiotics are established in small- and large-animal models,
randomized controlled trials in extremely preterm infants would
be needed. Despite numerous studies of associations between the
microbiome and BPD development, further investigation into
how a dysbiotic microbiome mechanistically predisposes infants
to BPD development is also warranted. As the relative abundance
of microbiota results from various environmental pressures
including nutrient availability, temperature, and oxygen, as well
as other determinants of temporospatial patterns including rate
of reproduction, bacterial elimination, and immigration (30),
it is unclear how such variables influence and may explain
differences in the airway microbiome between BPD-resistant and
-susceptible infants. Moreover, it remains unclear as to whether
the microbiome causes or is associated with BPD development.
As the origin of the airway microbiome remains uncertain
and may precede birth, microbial targets upstream of airway
colonization have not yet been identified.
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