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Introduction: Cerebral palsy (CP) is the most common motor impairment in children.

Skeletal muscles in individuals with CP are typically weak, thin, and stiff. Whether

epigenetic changes at the ribosomal DNA (rDNA) promoter are involved in this

dysregulation remains unknown.

Methods: Skeletal muscle samples were collected from 19 children with CP and 10

typically developed (TD) control children. Methylation of the rDNA promoter was analyzed

using the Agena Epityper Mass array and gene expression by qRT-PCR.

Results: Biceps brachii muscle ribosome biogenesis was suppressed in CP as

compared to TD. Average methylation of the rDNA promoter was not different between

CP and TD but negatively correlated to elbow flexor contracture in the CP group.

Discussions: We observed a negative correlation between rDNA promoter methylation

and degree of muscle contracture in the CP group. Children with CP with more severe

motor impairment had less methylation of the rDNA promoter compared to less affected

children. This finding suggests the importance of neural input and voluntary muscle

movements for promoter methylation to occur in the biceps muscle.

Keywords: cerebral palsy, skeletal muscle, epigenetics, ribosome biogenesis, DNA methylation

INTRODUCTION

Cerebral palsy (CP) is initiated by a non-progressive insult to the developing brain (1) and is the
most common cause of motor impairment in children (2). Although the brain injury is stable in
itself, motor symptoms typically worsen over time (3). Skeletal muscles of individuals with CP are
weaker, thinner, and stiffer as compared to typically developed (TD) individuals (4, 5). Contracture
formation, i.e., a progressive shortening of skeletal muscle, is believed to be a major contributing
factor to poor function. The underlying cause of contracture formation is unknown, but believed to
be multifactorial (6). The hypothesis of an early onset of impaired growth of the muscle has gotten
increased attention during the last years, with several independent research groups presenting
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deficiencies in both skeletal muscle stem cell number (7) and
function (8), and de novo synthesis of ribosomes in mature
skeletal muscle of individuals with CP (9).

Ribosome biogenesis is crucial for skeletal muscle
hypertrophy, and if impaired, skeletal muscle growth is stunted;
for example, catch-up growth following early protein restriction
is associated with attenuated ribosome biogenesis (10). We
recently showed that adolescents with CP undergoing surgery
due to fixed contractures of the elbow flexors display impaired
skeletal muscle ribosome biogenesis as compared to age-matched
typically developed adolescents (11). The rate-limiting step of
ribosome biogenesis is believed to be transcription of the rDNA
genes by RNA polymerase (Pol) I, producing the 45S pre-rRNA
transcript. We observed that the 45S pre-rRNA transcript
was less abundant in CP muscle vs. age-matched TD muscle,
suggesting that skeletal muscle in CP has impaired growth
potential (9).

The rDNA genes exist in several 100 copies throughout
the genome, arranged in tandem repeats as clusters on 4–5
chromosomes, but not all genes are active at the same time.
Out of these hundreds of gene copies, a subset is believed
to be permanently deactivated by DNA methylation of the
promoter region (12). Typically, tissues and cell types with
high metabolic demand and a need for high synthetic capacity
of protein have hypomethylated rDNA and thus higher rDNA
transcriptional activity and higher abundance of the 45S pre-
rRNA transcript. Conversely, in the event of a non-growth
milieu such as malnutrition and/or reduced protein intake in
mice, rDNA transcription is reduced and the rDNA promotor
is typically methylated to a higher degree (13). While rDNA
methylation may be a powerful regulator of ribosome biogenesis,
essentially nothing is known about rDNA promoter regulation in
human skeletal muscle in health or disease.

The purpose of the current investigation is to determine
whether (1) rDNA promoter methylation in CP children differs
from that of TD children, (2) decreased rDNA transcription
observed in CP muscle is associated with hypermethylation of
the promoter region, and (3) if rDNA promoter methylation
is associated with severity of the motor impairment (i.e., Gross
Motor Functional Classification System, GMFCS, and Manual
Ability Classification System, MACS) and degree of contracture.

METHODS

Participants
Nineteen children and adolescents (mean age, 15.5 years; range,
9–18 years; three females/16 males) with CP, scheduled for
surgical lengthening of the biceps tendon or botulinum toxin
injection of the biceps brachii, were included in the study. Their
gross motor function, if and how well they could perform self-
initiated movements especially regarding sitting, walking, and
wheeled mobility, was classified on a five-level scale according
to the GMFCS, Gross Motor Function Classification System.
Individuals in GMFCS I had functional gross motor skills, while
individuals in GMFCS V had severe limitations that impaired all
voluntary movements. Individuals in GMFCS III need walkers
and often use a wheelchair (14). Their ability to use their

hands was classified on a five-grade scale according to MACS,
the Manual Ability Classification System. The manual ability is
classified irrespective of which hand is used or if both hands are
used. It is thus also a measure of cognition as it affects the ability
to use the hands if one or both have an impairment. Individuals
in MACS I handle objects easily and successfully, and those in
MACS III handle objects with difficulty and need help, while
individuals in MACS V do not handle objects and require total
assistance (15).

All patients had a developed contracture of the elbow flexor
muscles, resulting in an extension deficit of the elbow. Passive
range of motion of the elbow joint was measured with a
goniometer. Full extension with a straight elbow was denoted
as 0◦, and any extension deficit (flexion contracture) was noted
as x◦.

Fifteen out of 19 samples were available for DNA analysis
and 15 out of 19 samples for gene expression, although not
all samples were from the same individuals. For subject details
on sex, age, contracture, GMFCS, and MACS, see Table S1.
Skeletal muscle samples were obtained intraoperatively under
general anesthesia and were frozen in isopentane cooled on
liquid nitrogen. All children had fasted a minimum of 10 h
before surgery. Control skeletal muscle samples were obtained
postmortem from children and young adults who had sustained
accidental deaths (n= 10, mean age, 15.1 years; range, 7–21 years;
two females/eight males, Table S2). All samples were stored in a
−80◦C freezer until analysis.

RNA/DNA Extraction, cDNA Synthesis, and
qPCR
Skeletal muscle biopsies (∼25mg) were homogenized in
TRIzol reagent (Invitrogen, Carlsbad, CA) using a handheld
homogenizer (Omni International, Kennesaw, GA). RNA and
DNA were extracted according to the information provided
by the manufacturer (Invitrogen). RNA was quantified using a
NanoDrop VR 2000 (Thermo Scientific, Gothenburg, Sweden),
and integrity assessed by agarose gel electrophoresis. DNA was
resuspended in 8mM NaOH, then centrifuged at 4◦C at 12,000
× g to remove insoluble material. The DNA was transferred
to a new tube and pH adjusted with HEPES: All samples were
stored at −20◦C until further use. Five hundred nanograms of
RNA was reverse-transcribed with the VILO cDNA Synthesis Kit
(Invitrogen) according to the manufacturer’s recommendations.
Fast SYBR Green Master Mix (Applied BiosystemsTM, Foster
City, CA) was used for qPCR, in a QuantStudio 3 Real-Time
PCR Systemsmachine (Thermo Fisher Scientific,Waltham,MA).
PCR data were normalized by the geometric mean of three
stable reference genes (GAPDH, EMC7, VCP). Primer sequences
are available upon request. Melting curves were performed for
every primer pair to confirm a single-product amplification. All
samples were run in duplicates, and qRT-PCR data were analyzed
using the−211CT method.

DNA Methylation Analysis
Quantitative methylation analysis was performed using the
EpiTYPER methodology (16) and the MassARRAY R© System
(Agena Biosciences, San Diego) according to the manufacturer’s
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FIGURE 1 | Suppressed transcriptional activity of rDNA genes but similar rDNA promoter methylation in skeletal muscle of children with cerebral palsy (CP) compared

to typically developed (TD) children. (A) 45S pre-rRNA transcription (ITS-5.8S) in CP and TD (TD set as 100%). TD (open circles, n = 9) and CP (black circles, n = 15).

Geometric mean of GAPDH, EMC7, and VCP was used for qRT-PCR normalization. (B) Average rDNA promoter methylation in CP and TD. TD (open circles, n = 9)

and CP (black circles, n = 15). *denotes significantly different from TD, p < 0.05.

recommendations and protocols. In the method, a targeted
amplification of bisulfite converted DNA is followed by in vitro
transcription, RNase cleavage, and subsequent fragment mass
analysis by Matrix-Assisted Laser Desorption/Ionization Time
of Flight Mass Spectrometry (MALDI-TOF MS) to quantify
CpG sites.

PCR primers were adapted fromD’Aquilla et al. (17). EpiTect-
methylated and non-methylated bisulfite–treated control DNA
(Qiagen) was used to evaluate the quantitative recapture of
methylation ratios of the amplicons. The amplicon used in
this study met the quality criteria of methylated and non-
methylated data points measured at >79 and <5% methylation
ratios, respectively, as well as standard deviation percentages
<5%. Samples were run in duplicate, and standard deviation
percentages >20% were removed from the study. The remaining
data points correlated with R2 0.72. Bisulfite conversion efficiency
was evaluated by analyzing one non-CpG C:s in a small subset
of the study samples. All data were checked by manually and
visually inspecting the mass spectra.

Statistical Analysis
Statistical analysis was performed with Prism 8 (GraphPad
Software, Inc., CA). Values are reported as means ± SD.
Differences in mRNA transcript levels and rDNA methylation
percentage was assessed by the Student t-test (data normality
investigated with Shapiro–Wilks test). Pearson’s correlation
coefficient (r) was used to investigate any potential correlation
between rDNA promoter methylation, rDNA transcription,
subject age, and elbow flexor contracture. Significance level was
set at p < 0.05 for all statistical comparisons.

Ethics
The ethical review board of Karolinska Institutet, Stockholm,
Sweden, approved the study (Dnr 01-012, addendum 2018/1739-
32, 04-324/2). The autopsy specimens were collected in
agreement with Swedish laws and regulations on autopsy and
transplantation with approval by the National Board of Health
and Welfare. Informed written consent was obtained from all
participants with CP and the parents of those younger than
18 years.

RESULTS

Biceps muscle ribosome biogenesis, as indicated by 45S pre-
rRNA abundance, was suppressed (−24%, p = 0.03 in CP as
compared to TD (Figure 1A). The abundance of 45S pre-rRNA
in the CP group was not related to age (r = −0.08, p = 0.77) or
extension deficit of the elbow (r = −0.03, p = 0.92) and was not
influenced by severity of CP. Average methylation of the rDNA
promoter was not different between CP and TD (21.6± 6.9 [95%
CI 18.1–25.1] vs. 19.1 ± 3.3 [95% CI 17.1–21.2], Figure 1B).
In total, five unique CpG sites in the promoter were assessed
(Figures 2A,B) and no statistically significant differences were
seen between CP and TD (Figures 2C–G). Within the CP
group, more severely affected children had a significantly lower
percentage of methylated rDNA genes as compared to less
affected children (GMFCS IV–V vs. GMFCS I–II; 24.5 ± 6.0 vs.
17.1± 6.0, p= 0.037 and MACS IV-V vs. MACS I-III; 24.1± 5.5
vs. 14.5± 5.7, p= 0.01). Moreover, the degree of methylation was
inversely correlated to the flexion contracture of the elbow joint
(r = −0.57, p = 0.03 in the CP group (Figures 3A–C), but not
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FIGURE 2 | Ribosomal DNA methylation is not different at five unique sites in the Upstream control element (UCE) or the core promoter in skeletal muscle of children

with cerebral palsy (CP) compared to typically developed (TD) children. (A) Schematic of the rDNA tandem repeats (top) and regions within one rDNA gene copy

(bottom). IGS, Intergenic spacer; rDNA, ribosomal DNA; 5
′
ETS, 5

′
Externally transcribed spacer; ITS1, Internally transcribed spacer 1; ITS 2, Internally transcribed

spacer 2, and 3
′
ETS, 3

′
Externally transcribed spacer. (B) Specification of investigated CpG sites within the rDNA promoter. UCE, Upstream core element. (C–G)

Degree of methylation (%) of the rDNA promoter in CP and TD. TD (open circles, n = 8–9) and CP (black circles, n = 13–15).

FIGURE 3 | Average rDNA promoter methylation in cerebral palsy (CP) muscle negatively correlates to severity of impairment. Average promoter methylation (%) in

children with CP divided accordingly to (A) GMFCS level I–II (n = 9) and GMFCS IV–V (n = 6); (B) MACS I–III (n = 11) and IV–V (n = 4). * denotes significantly different

from GMFCS I–II and MACS I–III, p < 0.05. (C) Correlation analysis of average rDNA promoter methylation (%) and extension deficit (degrees) in CP children (n = 15).

R2 and significance level indicated in graph.
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related to age (r = −0.14, p = 0.62) or 45S pre-rRNA levels (r =
0.30, p= 0.34) in either group.

DISCUSSION

This study addresses the effect of damage to the developing
brain, i.e., CP on methylation of the rDNA promoter in skeletal
muscle biopsies. We show that although rDNA methylation did
not differ at the group level between CP and TD, the degree of
promotermethylationwithin the CP groupwas related to severity
of the disorder (GMFCS andMACS) and correlated negatively to
flexion contracture of the elbow joint.

Reduced ribosome biogenesis has been linked to stunted
catch-up growth following protein malnutrition in animal
models (10) and muscle cells in vitro (11, 18) and has been
suggested to, at least in part, explain anabolic resistance in
the elderly (19). We have previously shown that ribosome
biogenesis is reduced in CP muscle and that this is associated
with reduced protein levels of key transcription factors, e.g.,
UBF and TIF-1A, regulating RNA polymerase (Pol) I activity
(11). In this report, we aimed to provide further insight into the
reduced de novo synthesis of rRNA in CP muscle by exploring
CpG methylation of the rDNA promoter. Increased degree of
methylation within the promoter region of a protein coding
gene is typically repressive of gene activity whereas reduced
methylation of the promoter region has a stimulatory effect on
gene expression (20, 21). Likewise, promoter methylation of the
rDNA genes has been shown to influence RNA Pol I activity
and 45S pre-rRNA abundance in different cancers, however in a
less clear manner. Methylation at the rDNA promoter correlated
negatively with 45S pre-rRNA abundance in hepatocellular
carcinoma (22) and CD34+ cells in patients withmyelodysplastic
syndrome (23). Other studies have shown the opposite or no
relationship between methylation of the rDNA promoter and
rDNA transcriptional activity (24, 25). In our study, 45S pre-
rRNA levels did not correlate to rDNA promotor methylation in
neither TD nor CP muscle; this is the first information on rDNA
promoter methylation in human skeletal muscle. Moreover, 45S
pre-rRNA levels did not correlate to contracture severity or
GMFCS level in individuals with CP. Thus, the effect of rDNA
promoter methylation on Pol I transcription in skeletal muscle
is not fully understood and tentatively suggests other modes of
regulation. The varying number of rDNA genes from individual
to individual likely influences transcription and results in a
less clear regulatory role of promotor methylation for gene
output, as at least in theory, an individual with a higher copy
number of rDNA genes could still maintain a high level of
transcription despite a high average promotormethylation. As we
did not assess rDNA copy number in this study, a more detailed
investigation of rDNA gene regulation in CP muscle is beyond
the scope of the current report.

In the current study, we observed that children categorized as
having amore severe impairment, i.e., in themore severe GMFCS
and MACS categories, had a lower percentage of methylation
of the promoter region, together with a negative correlation
between muscle contracture of the biceps brachii and percentage

of methylation of the promoter region in CP muscle. In line
with these data, the severity of manual ability (MACS) and
contractures in CP are known to correlate (26). A tentative
interpretation of our results could be that typical neuromuscular
development andmotor activity shape the methylation landscape
of the rDNA promoter and that a brain insult at an early age
offsets this epigenetic imprinting. Thus, voluntary muscle use
could be a factor of importance for establishing the methylome
of the rDNA genes in skeletal muscle. There is to our knowledge
currently no information about the effects of physical activity,
neither acute nor chronic, on CpG methylation of the rDNA
genes in skeletal muscle. Future studies are warranted to
determine the effect of rDNAmethylation on rDNA transcription
and muscle size regulation in health and disease.

A more speculative explanation is that more-affected children
with CP have been suggested to have an inadequate one-
carbon metabolism and thereby DNA methylation capacity (27).
Data supporting this claim was published by Schoendorfer
et al. showing altered red blood cell volume and deranged
biochemical markers of the methylation cycle in children with
CP as compared to TD control children (27). The authors suggest
that the underlying cause for the reduce methylation capacity
could be due to poor nutrition, a well-known phenomenon, as
almost 45–50% of children with CP have been reported to be
undernourished (28, 29). However, speaking against a general
inability to methylate DNA, as suggested by Schoendorfer et al.
is a series of papers published in recent years that investigate
differences in global DNA methylation between CP and TD
children, i.e., DNA methylation in white blood cells. Two of
these studies are case (CP) vs. control (TD) studies (30, 31),
and two are studies on monozygotic twins discordant for CP
(32, 33). All of these studies indicate that distinct epigenetic
imprinting is evident in CP and that this is detectable very early
on, even before 1 year of age. A recent study has observed
a positive effect of a demethylating agent, i.e., 5-azacytidine
(5-AZA), on the functionality of isolated skeletal muscle stem
cells (satellite cells) from individuals with CP in culture (8).
However, the differentially methylated genes in CP include both
hypermethylated and hypomethylated genes as compared to
TD children, clearly showing the dynamic nature of the DNA
methylome in CP. Thus, our results and previously published
data suggest that a treatment such as 5-AZA targeting a single
epigenetic event (DNA methylation) is likely not a successful
therapy on a large scale in a clinical setting. For example,
in one of the aforementioned studies, among the top 200
differentially methylated genes in white blood cells in CP, roughly
half were hypomethylated as compared to TD children (30).
With this in mind, a clear and noteworthy difference between
the aforementioned studies and our investigation is the level
of specificity, related to both the target gene (rDNA) and the
target organ (skeletal muscle rather than global methylation of
nucleated blood cells).

The results of the current investigation should be viewed
in light of its limitations. The sample size is low, which limits
the statistical power of the study. Thus, although we did not
observe any difference in rDNA promoter methylation between
TD and CP subjects, a better-powered study is needed to be
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able to confirm these results. All skeletal muscle biopsies from
adolescents with CP were taken from skeletal muscle with a
fixed contracture; thus, only correlations could be made and
no causation assessed. Moreover, as all muscle samples from
TD subjects were collected post-mortem following an accidental
death, no information on pROM of the elbow joint is available
for TD subjects.

In conclusion, the reduced ribosome biogenesis in CP as
compared to TD individuals was not related to rDNA promoter
methylation. Interestingly, children classified as having a more
severe CP had lower percent rDNA promotor methylation.
Moreover, we observed a negative correlation between rDNA
promoter methylation and flexion contracture. This finding
suggests the importance of neural input and voluntary muscle
movements, significant for people in the less severe GMFCS and
MACS groups, for rDNA promoter methylation to occur. More
research is needed on epigenetic changes in CP skeletal muscle
and the potential influence of such modifications on growth and
contracture development.
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