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Oxidative stress results from excessive reactive oxygen species formation and/or

inadequate antioxidant defense. Premature and critically ill infants are especially

susceptible due to an immature intrinsic antioxidant system that cannot fully compensate

for a free radical load. Oxidative stress is also associated with endothelial dysfunction and

alterations in Endothelin-1 (ET-1) signaling pathways. However, the effects of the complex

interaction between oxidative stress and ET-1 in newborns are not well-understood.

The objective of this pilot study was to determine the relationship between levels

of common oxidative stress biomarkers [glutathione (GSH), malondialdehyde (MDA)]

and ET-1 in newborns of different gestational ages. In a level IV NICU, 63 neonates

were prospectively enrolled and divided into groups based on gestational age at birth:

Early Preterm (24 0/7–30 6/7 weeks), Late Preterm (31 0/7–36 6/7 weeks), and Term

(37 0/7–42 weeks). Umbilical cord (1.5mL) and 24(±4) h of life (24 h) (1mL) blood

samples were collected for GSH, MDA, and ET-1 analyses. GSH, MDA, and ET-1

were determined using established methodology. Mean cord MDA levels for all age

groups, Early Preterm (2.93 ± 0.08 pg/ml), Late Preterm (2.73 ± 0.15 pg/ml), and

Term (2.92 ± 0.13 pg/ml), were significantly higher than those at 24 h of life (p < 0.001).

Mean cord ET-1 levels were significantly higher than 24 h samples in both Early and Late

Preterm groups (p < 0.05). Cord and 24 h ET-1 levels did not correlate with MDA and

GSH levels at birth (r2 = 0.03, p > 0.05 and r2 = 0.001, p > 0.05, respectively) or 24 h

of life (r2 = 0.001, p > 0.05 and r2 = 0.03, p > 0.05, respectively). Preterm neonates

exposed to prenatal corticosteroids (1.87 ± 0.31 pg/ml) had lower cord MDA levels

than non-exposed neonates (2.85 ± 0.12 pg/ml) (p < 0.05). Both cord and 24 h OS

markers were significantly higher in neonates treated with oxygen therapy (p< 0.005 and

p < 0.05, respectively) than those who did not receive supplemental oxygen. Oxidative

stress markers (MDA and GSH) and ET-1 levels act independently. MDA is higher in cord

blood than at 24 h of life regardless of gestational age. In preterm neonates, ET-1 levels

are higher in umbilical cord blood compared to 24 h of life.
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INTRODUCTION

Redox homeostasis relies on the critical interplay between
reactive oxygen species (ROS) production and the ability of the
body’s antioxidant defense system to subsequently inactivate
it. Under physiological conditions, generated ROS (made up
of free radicals and non-radical forms) activate redox-sensitive
transcriptions, ion channels, and enzymes (e.g., protein kinases)
(1). Excessive free radicals are then neutralized by antioxidants
that are either endogenous/enzymatic (e.g., superoxide
dismutase, catalase, and glutathione) or exogenous/non-
enzymatic (e.g., vitamins A, C, E, and selenium) (2, 3). However,
alterations in this fragile balance—known as oxidative stress—are
caused by excessive ROS formation, impaired ROS inactivation
due to an overwhelmed intrinsic antioxidant defense, or a
combination of both. Oxidative stress (OS) results in damage to
lipids, proteins, and nucleic acids followed by cellular injury and
even cell death (4, 5).

In the neonate, redox homeostasis is burdened at birth
during the transition to extrauterine life which involves a series
of physiological changes that significantly increase both ROS
production and the potential for OS (6, 7). While mature and
healthy infants are able to adapt to these changes, preterm, and
sick neonates are at a greater risk for OS-related injury due to
immature endogenous and insufficient exogenous antioxidant
protection (8, 9). In addition, the threat of OS injury in
the preterm infant is exacerbated if perinatal conditions (e.g.,
preeclampsia, hypoxia, and respiratory distress) or treatments
(e.g., oxygen therapy) reduce their antioxidant capacity and
increase ROS production further (10, 11). ROS have been
implicated in the pathogenesis of many neonatal morbidities,
such as retinopathy of prematurity, hypoxic-ischemic brain
injury, intraventricular hemorrhage, and chronic lung disease
(10, 12).

Interestingly, OS has also been shown to be associated with
endothelial dysfunction in cardiovascular disease and alterations
in both ET-1 and nitric oxide (NO) signaling pathways (13, 14).
As a potent vasoconstrictor, ET-1 plays a key role in vascular
homeostasis. The effects of the complex interaction between
OS and ET-1 on neonatal cardio-respiratory adaptation and
morbidities are not well-understood.

Therefore, the purpose of this pilot study was to determine
the relationship between oxidative stress markers and ET-1
levels during the early neonatal period in newborns of different
gestational ages who were admitted to the NICU.

MATERIALS AND METHODS

Study Population
Sixty-three subjects were enrolled into this prospective,
observational pilot study that was conducted over a 21-month
period in a Level IV NICU. All study procedures were approved

Abbreviations: AGA, Appropriate for gestational age; ET-1, Endothelin−1; GA,

Gestational age; GSH, Glutathione; h, Hours; MDA, Malondialdehyde; NICU,

Neonatal intensive care unit; NO, Nitric oxide; OS, Oxidative stress; ROS; Reactive

oxygen species; SGA, Small for gestational age.

by the local Institutional Review Board and performed only
after written parent permission was obtained. Inclusion criteria
required both inborn status and a gestational age (GA) at birth
between 24 0/7 and 42 0/7 weeks. Infants were ineligible if they
presented with a congenital malformation that was incompatible
with life or any other condition that would compromise the
infant’s safety, in the opinion of the investigator.

Following enrollment, subjects were divided into groups
dependent upon their birth GA in order to discern differences
related to GA: Group 1—Early Preterm (24 0/7–30 6/7 weeks),
Group 2—Late Preterm (31 0/7–36 6/7 weeks), and Group 3—
Term (37 0/7–42 weeks). Data was collected on all enrolled
subjects through their first week of life. Table 1 depicts maternal
and infant demographic data analyses by group.

Blood Sample Collection for Oxidative
Stress Markers and ET-1 Analyses
Under aseptic conditions, 1.5mL of umbilical cord blood was
collected in EDTA-containing tubes at the time of delivery. At
24 (±4) hours (h) of life, an additional 1mL blood sample was
drawn from an indwelling catheter or heel stick. The samples
were immediately placed on ice and/or refrigerated. Within
4 h of collection, all specimens were processed and frozen at
−70◦C to ensure stability until laboratory analyses of ET-1 and
OS markers [reduced glutathione (GSH) and malondialdehyde
(MDA)] were performed at Midwestern University, Chicago
College of Pharmacy, Downers Grove, IL.

Additional laboratory results (i.e., bilirubin at 12 h and/or 24 h
of life) analyzed in this study were performed solely as a part of
the neonates’ standard of care. These additional levels were only
included in the analyses if drawn within ±4 h of the 24 h-of-life
research sample.

Estimation of Oxidative Stress
Marker Levels
Lipid Peroxidation Measurement
MDA, the indicator of lipid peroxidation, was estimated
according to the method of Okhawa et al. (15). The reagents:
acetic acid [1.5mL (20%) pH 3.5], thiobarbituric acid [1.5mL
(0.8%)], and sodium dodecyl sulfate [0.2mL (8.1%)], were added
to 0.1mL of processed blood sample. The mixture was then
heated at 100◦C for 60min. The mixture was cooled with
tap water and 5mL of n-butanol: pyridine (15:1% v/v) and
1mL of distilled water, was added. This mixture was shaken
vigorously. After centrifugation at 4,000 rpm for 10min, the
organic layer was withdrawn and absorbance wasmeasured using
a spectrophotometer at 532 nm.

Glutathione Measurement
Measurement of Glutathione: GSH was measured according to
the method of Ellman (16) with minor modification. Briefly,
the sample was centrifuged with 5% trichloroacetic acid to
centrifuge out the proteins. To 0.1mL of this homogenate,

2mL of phosphate buffer (pH 8.4), 0.5mL of 5
′

5 dithiobis (2-
nitrobenzoic acid) (DTNB) and 0.4mL of double-distilled water
was added. The mixture was vortexed and the absorbance read at
412 nm within 15min using a spectrophotometer.
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TABLE 1 | Demographics by age group.

Group 1: early preterm Group 2: late preterm Group 3: term

(24 0/7–30 6/7 weeks) (31 0/7–36 6/7 weeks) (37 0/7–42 weeks)

(n = 24) (n = 26) (n = 13)

MATERNAL DATA

Age (yrs.) 28.9 ± 5.43* 31.1 ± 4.82* 30.1 ± 6.16*

Prenatal steroids (n) (%) 20 (83.3%) 9 (34.6%) 0 (0%)

MODE OF DELIVERY (n) (%)

Vaginal delivery 10 (41.7%) 11 (42.3%) 5 (38.5%)

Cesarean section 14 (58.3%) 15 (57.7%) 8 (61.5%)

APGAR SCORES

1min 6.4 ± 2.08* 7.8 ± 1.54* 7.3 ± 1.55*

5min 8.2 ± 1.27* 8.9 ± 0.33* 8.6 ± 0.65*

MATURITY (GA) (wks.)

Gestational age 28.8 ± 2.17* 33.8 ± 1.28* 38.4 ± 1.57*

WEIGHT (g)

Birth weight 1194.8 ± 369.65* 2175 ± 412.73* 2971.5 ± 397.73*

INTRAUTERINE GROWTH (n) (%)

Small for GA 6 (25%) 4 (15.4%) 5 (38.5%)

Large for GA 0 (0%) 2 (7.7%) 0 (0%)

GENDER (n) (%)

Female 9 (37.5%) 11 (42.3%) 3 (23.1%)

Male 15 (62.5%) 15 (57.7%) 10 (76.9%)

ETHNICITY (n) (%)

African American (non-Hispanic) 3 (12.5%) 1 (3.8%) 0 (%)

Asian 1 (4.2%) 3 (11.6) 3 (23.1%)

Caucasian 13 (54.1%) 18 (69.2%) 9 (69.2%)

Hispanic 7 (29.2%) 4 (15.4%) 1 (7.7%)

*Mean ± SD.

Estimation of ET-1 Levels
Plasma ET-1 concentrations were estimated in duplicate using
a commercially available enzyme immunoassay kit (Enzo Life
Sciences, Farmingdale, NY) (17) following the manufacture’s
protocol. Briefly, plasma samples and standards were added to
wells coated with a monoclonal antibody specific for ET-1. The
plate was then washed after 24 h of incubation and horseradish
peroxidase (HRP) labeled monoclonal antibody was then added.
After 30min of incubation the plate was washed and a solution
of 3,3_,5,5_-tetramethylbenzidine substrate was added which
generates a blue color. Hydrochloric acid (1N) was added to stop
the substrate reaction and the resulting yellow color was read at
450 nm using DTX 800 Multimode detector and the data was
analyzed with Multimode Detection Software (Beckman Coulter,
Inc., Harbor Boulevard, Fullerton, CA). The measured optical
density is directly proportional to the concentration of ET-1.

Statistical Analyses
All data are reported as mean± SD andmean± SEM. Evaluation
of the relationships between ET-1, OS markers and OS-related
factors was calculated using Pearson’s coefficient of correlation
test. Significance between groups was determined using student-t
test and Two-way analysis of variance test (ANOVA) followed by
Tukey’s multiple comparisons test. A p < 0.05 was considered as

statistically significant. Statistical analyses were performed using
GraphPad Prism 8.0 (San Diego, CA, USA).

RESULTS

Umbilical Cord and 24h Oxidative Stress
Markers by GA
Mean cord MDA levels for all age groups, Early Preterm (2.93 ±
0.08 nmol/L), Late Preterm (2.73± 0.15 nmol/L), and Term (2.92
± 0.13 nmol/L), were significantly higher than those obtained at
24 h of life (p < 0.001) (Figure 1).

Mean GSH levels did not differ significantly (p > 0.05)
between umbilical cord and 24 h samples among any of the three
GA groups.

Umbilical Cord and 24h of Life ET-1
Levels by GA
The mean umbilical cord ET-1 levels were significantly higher
(p < 0.05) than 24 h samples in both the Early and Late
Preterm groups. No significant difference (p > 0.05) was found,
between mean ET-1 umbilical cord and 24 h levels in the Term
group (Table 2).
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FIGURE 1 | MDA levels by gestational age groups. Mean cord MDA levels,

Early Preterm (2.93 ± 0.08 nmol/L), Late Preterm (2.73 ± 0.15 nmol/L), and

Term (2.92 ± 0.13 nmol/L), were significantly higher than those obtained at

24 h of life (p < 0.001).

TABLE 2 | Umbilical cord and 24 h of Life ET-1 levels by GA.

Specimen

type

Groups Umbilical

cord

24-h of life p-value

Plasma ET-1

(pg/mL)

Preterm 1

24–30 6/7 wks

(n = 24)

7.57 ± 0.82*

(1.58–14.25)∧

4.90 ± 0.71*

(0.14–14.83)∧

0.0146

Preterm 2

• 31–36 6/7 wks

(n = 26)

5.77 ± 0.70*

(0.14–13.89)∧

3.82 ± 0.51*

(0.14–8.94)∧

0.0289

Full term

• 37–42 wks

(n = 13)

7.67 ± 1.02*

(0.14–12.88)∧

5.99 ± 0.98*

(1.67–12.97)∧

0.247

*Mean ± SEM, ∧Range.

Umbilical Cord and 24h Oxidative
Stress Markers
Only a weak negative correlation was found between the two OS
markers, MDA and GSH, in cord blood (r2 = 0.025, p > 0.05 and
r2 = 0.0005, p> 0.05, respectively) and 24 h samples (r2 = 0.0007,
p > 0.05 and r2 = 0.032, p > 0.05, respectively).

ET-1 Levels and Oxidative Stress Markers
by GA
Cord and 24 h ET-1 levels did not correlate with MDA and GSH
levels at birth (r2 = 0.03, p > 0.05 and r2 = 0.001, p > 0.05,
respectively) or at 24 h of life (r2 = 0.001, p > 0.05 and r2 = 0.03,
p > 0.05, respectively).

ET-1 Levels and Oxidative Stress Markers
by Size-at-Birth Subgroups
Analysis of size differences in both the early and late preterm
groups demonstrated no significant difference (p> 0.05) between
umbilical cord and 24 h levels of ET-1,MDA, or GSH in either the

TABLE 3 | Oxidative stress markers and oxygen therapy.

OS markers O2 therapy

(n = 23)

No O2 therapy

(n = 40)

p-value

Umbilical Cord

MDA

2.78 ± 0.14*

(1.31–3.58)∧

1.83 ± 0.23*

(1.33–3.47)∧

0.0049

24 h MDA 1.42 ± 0.08*

(0.89–1.67)∧

0.84 ± 0.12*

(0.59–2.20)∧

0.0013

Umbilical Cord

GSH

0.62 ± 0.07*

(0.49–0.94)

0.36 ± 0.07*

(0.47–1.19)

0.0221

24 h GSH 0.61 ± 0.08*

(0.45–1.12)∧

0.37 ± 0.06*

(0.45–0.94)∧

0.0227

*Mean ± SEM, ∧Range.

small for gestational age (SGA) or appropriate for gestational age
(AGA) subgroups.

Oxidative Stress Markers
Oxidative Stress Markers and Apgar Scores
The 1-min Apgar score did not correlate with MDA or GSH
in cord (r2 = 0.0006, p > 0.05 and r2 = 0.0225, p > 0.05,
respectively) or 24 h blood samples (r2 = 0.0001, p > 0.05 and
r2 = 0.01319, p > 0.05, respectively). Similarly, no correlation
was found between the 5-min Apgar score and MDA and GSH
levels in cord (r2 = 0.0004, p > 0.05 and r2 = 0.0081, p > 0.05,
respectively) or 24 h samples (r2 = 0.00085, p > 0.05 and r2 =

0.0078, p > 0.05, respectively).

Oxidative Stress Markers and

Prenatal Corticosteroids
The mean umbilical cord MDA levels in preterm neonates
exposed to prenatal corticosteroids (1.87 ± 0.31 pg/ml) were
significantly lower (p < 0.05) than those obtained from neonates
whose mothers did not receive prenatal corticosteroids (2.85 ±

0.12 pg/ml). However, no significant difference (p > 0.05) was
found between 24 hMDA levels. GSH levels (both umbilical cord
and 24 h) did not differ significantly (p > 0.05) between these
two subgroups.

Oxidative Stress Markers and Oxygen Therapy
MeanMDA and GSH levels were significantly higher in neonates
who received oxygen therapy at the time of delivery or thereafter
in umbilical cord (p < 0.005 and p < 0.05, respectively) and 24 h
blood samples (p < 0.005 and p < 0.05, respectively) than those
obtained from neonates who were not exposed to supplemental
oxygen (Table 3).

Oxidative Stress Markers and Mode of Delivery,

Gender and Race/Ethnicity
The mode of delivery (vaginal or cesarean section) or gender of
the neonates did not affect a significant difference (p > 0.05)
between OS markers levels in umbilical cord (p > 0.05) or 24 h
samples. Similarly, no significant differences (p > 0.05) were
found when analyzing neonatal race/ethnicity withMDA or GSH
levels in umbilical cord or 24 h-blood samples.
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DISCUSSION

The changes in equilibrium between generated pro- and
antioxidants that result in ROS lead to oxidative stress. Multiple
factors, such as hyperoxia, hyperglycemia, hypoxia, enhance free
radical production (18). Newborns are especially prone to OS-
related injury due to an immature antioxidant defense and
exposure to high oxygen concentrations, infections, and perinatal
distress (9, 19). Preterm and low birth weight newborns have a
significantly reduced antioxidant capacity that may predispose
them to an OS-related injury (10). Recently, both in-vitro and in-
vivo specific biomarkers for OS have been introduced into the
field of pediatrics (5, 20).

Black et al. suggested OS could be associated with alterations
in the ET-1 signaling pathways, and conversely, ET-1-induced
vasoconstriction may be dependent on the production of
superoxide anion (21). ET-1 is a potent vasoconstrictor
peptide involved in the development of persistent pulmonary
hypertension, hypoxic brain injury, and bronchopulmonary
dysplagia (22). A number of studies have implicated oxidative
stress in the development of endothelial dysfunction and the
pathogenesis of cardiovascular disease. Furthermore, oxidative
stress has been shown to be associated with alterations in both
the ET-1 and nitric oxide (NO) signaling pathways. Reactive
oxygen species (ROS) generated in oxidative stress is known to
regulate cellular level of ET-1 and facilitates its secretion (13,
14). Oxidative stress is also known to decrease the bioavailable
NO which leads to potentiate ET-1 signaling. This evidence
suggests the link between ET-1 and oxidative stress. The present
study found no correlation between ET-1 and two important OS
biomarkers (MDA and GSH) in cord and 24 h blood samples.
These findings could be explained by the complexity of the
transitional perinatal period that may reflect a mixed maternal
and neonatal redox status (23).

The results of our study demonstrated that ET-1 levels
were higher in umbilical cord blood compared to 24 h-of-
life samples in both Early and Late preterm groups. ET-1 is
known to contribute to placental vasoconstriction and could
enhance ROS production. Recent studies reported that maternal
endothelial dysfunction may be related to OS and could impact
fetal development and outcome (24).

MDA is an OS biomarker extensively used to detect lipid
peroxidation. Data from our study has demonstrated that MDA
levels in all neonatal age groups were significantly higher in cord
blood than those obtained at 24 h of life (25, 26). Our results
indicate that during the period of transition to extrauterine life,
lipid peroxidation in neonates surges at the time of delivery with
a subsequent decline to lower levels compared to GSH levels that
reflect mostly DNA and protein antioxidant defense (27, 28).

Oxygen as a highly reactive species is a potent trigger of free
radical production (29). Our results showed that OS marker
levels were significantly higher in neonates that received oxygen
therapy at or after delivery compared to neonates who were not
administered supplemental oxygen. Oxygen therapy could be one
of the factors increasing OS marker levels in neonates.

Hypoxia, paradoxically, can also increase the formation of
free radicals (i.e., superoxide anion) (2). Sridhar et al. reported

that 1- and 5-min Apgar scores are reliant on cord MDA levels
in neonates with intrauterine growth restriction (30). However,
Abessolo et al. found no correlation between antioxidant
enzymes (i.e., superoxide dismutase, glutathione peroxidase) and
the 5-min Apgar score (31). No significant correlation was found
between both OS markers (MDA and GSH) and Apgar scores in
our study.

Our findings also demonstrated that umbilical cord MDA
levels of preterm neonates exposed to prenatal corticosteroids
were significantly lower than those obtained from preterm
neonates whose mothers did not receive it. Crowther et al.
have shown that exposure to prenatal corticosteroids reduces
respiratory distress syndrome and oxygen therapy requirements
of neonates post-delivery (32). Therefore, prenatal steroids
could interfere with redox homeostasis directly via the lipid
peroxidation pathway and/or indirectly by affecting neonatal
morbidities, such as respiratory distress syndrome (33).

Recent studies have reported that an elevated maternal OS
marker—protein carbonyls—is associated with a lower birth
weight, smaller head circumference, and an increased risk of
reduced fetal growth (delivery of an SGA newborn). Evidence
has also been published that markers of lipid peroxidation (but
not proteins or DNA) were significantly higher in an intrauterine
growth retardation group of patients (34, 35). Our study found no
significant difference between levels of OS markers in SGA and
AGA preterm groups. Pathophysiological causes of intrauterine
growth restriction are complex including, maternal nutrition
and chronic diseases, preeclampsia, various fetal and placental
determinants affecting uteroplacental and fetal blood flow (36).

LIMITATIONS

A limitation of our study was an inability to evaluate a possible
correlation between OS markers and hyperglycemia. This was
due to a large variation in draw times of blood glucose samples
obtained as a part of the neonates’ standard of care. Only a small
number of glucose levels were drawn within ±4 h period of OS
marker sampling.

CONCLUSION

Oxidative stress marker malondialdehyde (MDA) is higher in
cord blood than at 24 h of life regardless of gestational age. In
preterm neonates, ET-1 levels are higher in umbilical cord blood
compared to 24 h of life.
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