
ORIGINAL RESEARCH
published: 26 August 2020

doi: 10.3389/fped.2020.00512

Frontiers in Pediatrics | www.frontiersin.org 1 August 2020 | Volume 8 | Article 512

Edited by:

Elisabeth M. W. Kooi,

University Medical Center

Groningen, Netherlands

Reviewed by:

Gerda Meijler,

Isala Women and Children’s

Hospital, Netherlands

Ana Alarcon,

Hospital Sant Joan de Déu

Barcelona, Spain

*Correspondence:

Christine Pazandak

cortelyouc@wustl.edu

Specialty section:

This article was submitted to

Neonatology,

a section of the journal

Frontiers in Pediatrics

Received: 09 March 2020

Accepted: 20 July 2020

Published: 26 August 2020

Citation:

Pazandak C, McPherson C,

Abubakar M, Zanelli S, Fairchild K and

Vesoulis Z (2020) Blood Pressure

Profiles in Infants With Hypoxic

Ischemic Encephalopathy (HIE),

Response to Dopamine, and

Association With Brain Injury.

Front. Pediatr. 8:512.

doi: 10.3389/fped.2020.00512

Blood Pressure Profiles in Infants
With Hypoxic Ischemic
Encephalopathy (HIE), Response to
Dopamine, and Association With
Brain Injury
Christine Pazandak 1*, Christopher McPherson 1, Maryam Abubakar 2, Santina Zanelli 2,

Karen Fairchild 2 and Zachary Vesoulis 1

1Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO,

United States, 2Department of Pediatrics, University of Virginia, Charlottesville, VA, United States

Objective: To describe mean arterial blood pressure (MABP), responsiveness

to dopamine, and relationship to brain injury in infants with moderate/severe

hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). We

hypothesized that, when utilized, dopamine would rapidly and effectively increase MABP

in treated patients.

Methods: Continuous arterial blood pressure measurements were prospectively

recorded from infants with moderate/severe HIE undergoing TH in a multi-institutional

cohort from 2010 to 2018. Treatment with dopamine was at the discretion of the medical

team for hypotension/hypoperfusion. MABP values of treated infants were compared

to those obtained at an equivalent time period in control infants receiving TH but not

dopamine (24 h after birth). MRI was obtained per unit protocols and included T1/T2/DWI

sequences. Injury was classified as no injury/mild injury or moderate/severe injury using

a standardized scoring system. Seizures were confirmed with conventional EEG.

Results: Eighteen infants were treated with dopamine and were similar to untreated

controls (n = 36) with the exception of lower cord gas pH (6.92 ± 0.2 vs. 7.07 ± 0.2,

p < 0.05). Dopamine was initiated at a mean of 24 h after birth. MABP was significantly

lower in the dopamine group at the start of therapy (39.9 ± 2.0 vs. 49.1 ± 1.3, p < 0.01)

and 1 h later (44.3 ± 2.0 vs. 49.8 ± 1.1, p < 0.05). However, after 9 h of treatment,

dopamine increased the MABP by an average of 9 mmHg and MABP values were

similar to untreated controls for the remainder of the observation period. There were

no significant differences in rates of seizures, brain injury, or death.

Conclusion: Neonates with moderate/severe HIE treated with dopamine during

TH had MABP significantly lower than controls. The majority of infants responded

to dopamine monotherapy following adequate volume resuscitation. An association

between requirement for dopamine and severity of brain injury was not detected.

Keywords: neonate, neurology, dopamine, blood pressure, hypoxic ischemic encephalopathy, seizures, brain
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INTRODUCTION

Hypoxic-ischemic encephalopathy (HIE) secondary to birth
asphyxia is a significant cause of neonatal morbidity and
mortality, affecting 1-8/1,000 live births in developed countries
(1). Throughout the world, HIE is responsible for one-
tenth of all disability adjusted life years (2). Although birth
asphyxia may be caused by a myriad of perinatal events
including umbilical cord accidents, placental abruption, fetal
entrapment, and fetal blood loss, the underlying mechanism
of injury follows a common pathway (3). In each case,
injury arises from an imbalance between oxygen supply and
demand leading to a clinical syndrome known as HIE. The
clinical presentation of HIE is broad with signs and symptoms
ranging frommild encephalopathy to multi-organ system failure,
autonomic instability, absence of primitive reflexes, seizures, and
death (4, 5).

Therapeutic hypothermia (TH) became the standard of
care for moderate to severe HIE after multiple randomized
control trials demonstrated a reduction in the combined
outcome of death or moderate-severe disability (6–9). TH exerts
a neuroprotective effect by leveraging kinetic properties of
temperature-dependent enzymatic reactions within the body,
thus slowing the rate of oxygen consumption and demand for
ATP (10, 11) and preventing secondary energy failure. Although
TH improves outcomes in patients with HIE, brain injury
and adverse neurodevelopmental outcomes are still common.
Adjunctive interventions in targeted populations are needed to
further reduce morbidity and mortality.

One potential adjunctive target for intervention is optimizing
cerebral perfusion. For infants with HIE, both the underlying
disease process and the treatment of HIE have the potential to
negatively impact the hemodynamic status of the infant, and
this is frequently manifested as hypotension (12). Studies of
the optimal approach to hemodynamic support in neonates are
lacking in general, and existing literature is primarily focused on
premature infants. While the goal of therapeutic hypothermia is
to improve metabolic mismatch, it may not be enough in many
cases, prompting the use of adjunctive measures.

The response to one of the most common interventions,
dopamine, in a population of HIE infants has only been
reported in a single small study (12) leaving clinicians with
limited data for guidance. Dopamine, a sympathomimetic
amine that acts through direct stimulation of alpha-, beta-
, and dopaminergic receptors and indirect stimulation of
dopamine2 receptor causing the release of norepinephrine,
remains the most commonly used medication to treat neonatal
hypotension (13). Although there is a wealth of observational
and randomized studies evaluating the efficacy of dopamine
for the treatment of hypotension in the preterm population
(14–16), there are limited neonatal data (17) and inconsistent
animal data (18–21) regarding the efficacy of dopamine in
asphyxiated infants.

In this study, we evaluate the blood pressure response to
dopamine in infants diagnosed with hypotension/hypoperfusion
after moderate/severe HIE treated with TH. In addition, we
explore the relationship between the requirement for dopamine

treatment and brain injury. We hypothesized that a subset of
infants with HIE would require treatment with dopamine for low
mean arterial blood pressure (MABP) and that dopamine would
rapidly and effectively increase MABP in treated patients.

MATERIALS AND METHODS

Study Design and Patient Population
This retrospective, multi-center case-control study was
conducted in the neonatal intensive care units (NICU) of
St. Louis Children’s Hospital (SLCH) and University of Virginia
Children’s Hospital (UVa) from 2010 to 2018. Both centers are
Level IV units serving patients from urban, suburban, and rural
populations. Infants were included in the study if they underwent
TH for the treatment of neonatal encephalopathy as determined
by a modified Sarnat exam (22) and had an intra-arterial catheter
placed for invasive blood pressure monitoring. Treatment with
dopamine was at the discretion of the medical team and given
for signs or symptoms of hypotension/hypoperfusion.

Cases were determined by exposure to dopamine and were
matched to controls 1:2 by gestational age and gender. Infants in
the control group were otherwise identical except for exposure to
dopamine. Infants were excluded if there was a known congenital
or genetic anomaly at the time of birth. To prevent confounding,
infants were excluded if they were exposed to other inotropes or
vasopressors (i.e., norepinephrine, epinephrine, and milrinone).
Infants were also excluded if blood pressure data were not
available at the time of dopamine initiation or the comparable
period in control infants.

Institutional Practices
At SLCH and UVa, universal arterial and venous cord gas
screening is performed at all inborn deliveries. At both
institutions, standardized encephalopathy exams are performed
within the first 6 h of life for infants ≥ 34 weeks who are at risk
for neonatal encephalopathy (defined as a pH < 7.10 or a base
deficit <12 at SLCH and pH < 7.0 or base deficit <16 at UVa).
TH treatment is initiated within 6 h of birth for all infants with
qualifying exams.

The standard whole-body TH protocol includes 72 h of
servo-controlled hypothermia at 33.5◦C followed by 12–24 h of
rewarming to 36.5◦C. At SLCH, conventional EEG is performed
for a minimum of 24 h with at least one non-sedated MRI
completed within 14 days of life; at UVa, conventional EEG is
performed for the entire duration of cooling and rewarming
and non-sedated MRI is completed immediately after rewarming
(days 3-5) or after day 10 (if unable to obtain an early MRI).

To prevent shivering and maximize the benefits of TH,
sedation is provided to infants at both institutions per protocol.
At SLCH, morphine is utilized for sedation with an initial bolus
(50 mcg/kg) followed by a continuous infusion (10 mcg/kg/h
for 12 h and then decreased to 5 mcg/kg/h) for the duration
of cooling. At UVa, continuous infusion of either fentanyl
0.5 mcg/kg/h or dexmedetomidine 0.2 mcg/kg/h (from 2014
to 2016) are used during cooling. At both centers, increased
infusions or bolus doses of sedatives were given as needed
for agitation.
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Dopamine is the first-line medication used to treat
hypotension/hypoperfusion in an infant with HIE undergoing
TH at both institutions and is often given in conjunction with
or following a normal saline bolus. In this study, dopamine was
initiated and escalated at the discretion of the clinical treatment
team. If the infant did not respond to dopamine and a second
agent was needed, blood pressure data were not analyzed during
that time period.

Data Collection
Clinical Factors
Clinical characteristics were obtained from the electronicmedical
record including maternal age, antenatal magnesium exposure,
mode of delivery, gestational age, worst degree of encephalopathy
in the first 6 h, birth weight, Apgar scores (1, 5, and 10min), cord
gas pH, intubation and mechanical ventilation in the first 96 h,
and inborn/outborn status.

EEG Monitoring
Both institutions utilize conventional video EEG to monitor for
the presence of seizures. Electrodes are placed using the standard
International 10–20 system, modified for neonates and EEG
monitoring is initiated as soon as possible after cooling starts.
Seizures were defined using the aCNS consensus definition,
namely a rhythmic electrographic event which is of sudden onset,
repetitive and evolving, with a duration of at least 10 s (23).

Medication Data
A comprehensive review of themedication administration record
was performed. The following information was collected for
dopamine, morphine, fentanyl, dexmedetomidine, midazolam,
and vecuronium: cumulative bolus dose (mg/kg or mcg/kg),
infusion start date/time, infusion stop date/time, initial infusion
dose (mcg/kg/min, mcg/kg/h, or mg/kg/h), maximum infusion
dose, and cumulative infusion dose. Additionally, the dose
(mcg/kg/min) of dopamine at 1, 3, 6, 9, 12, 18, 24, 36,
48, and 72 h after dopamine initiation was collected. The
number of normal saline boluses in addition to dates/times
and dose (mL/kg) were collected. The date/time, dose (mg/kg),
and frequency of hydrocortisone administration were collected.
Exposure to anti-epileptic medications (dates/times and doses
in mg/kg), including phenobarbital, fosphenytoin, midazolam,
and levetiracetam, were also recorded. Initiation of maintenance
anti-epileptic dosing was noted.

Transfusion Data
The number, dates, and times of packed red blood cell (pRBC),
platelet, and fresh frozen plasma (FFP) transfusions were
extracted from the transfusion record.

Neuroimaging
After completion of TH, all surviving neonates underwent
non-contrast, non-sedated MRI examination following
institutional MRI guidelines. Brain MRI imaging was
performed with either a Siemens 1.5-T Avanto/Aera or 3.0-
T Trio/Skyra/Prisma (SiemensMedical, Erlangen, Germany) and
included T1/T2/DWI sequences. MRI images were reviewed by
pediatric neuroradiologists blinded to blood pressure outcomes

and scored using a standardized HIE scoring system (24). Briefly,
this system examines five regions of the brain (cortex, white
matter, cerebellum, subcortical gray matter and brain stem)
assigning points based on increasing severity of injury across
each of the three sequences. Using neurodevelopmental outcome
data for validation, injury can be classified in four categories:
no injury (score=0), mild injury (score=1–11), moderate injury
(score=12–32), and severe injury (score=33–138).

Given the small sample size, injury was classified as a binary
variable using the categorical output of the scoring system;
normal/mild injury vs. moderate/severe injury. If two scans were
obtained in the same infant, the scan with the worst injury
was recorded.

Blood Pressure Analyses
Blood pressure data was obtained via umbilical arterial lines that
were placed at the discretion of the clinical treatment team. Per
standard clinical practice, umbilical arterial lines are placed in
a manner so that the tip of the catheter lies between the sixth
and eighth thoracic or the third and fourth lumbar vertebrae
on radiograph. Continuous, invasive arterial blood pressure
measurements were recorded using a pressure transducer which
interfaces with the umbilical arterial catheter and patient monitor
(SLCH: IntelliVue MP70 or MX800, Philips Medical, Andover,
MA and UVa: GE CARESCAPE B850, GE Medical System,
Chicago, IL).

MABP data were prospectively collected with a sampling rate
of 0.5Hz and archived in a database (BedMasterEx, ExcelMedical,
Jupiter, FL). The files were then converted to a MATLAB (The
Math Works, Natick, MA) matrix for analysis. As blood pressure
is known to increase in a linear fashion following birth (25,
26), comparison of average MABP at equivalent time points in
the case and control groups was essential. For infants in the
case group, T0 was defined at the time of dopamine initiation.
Empiric evaluation of the case group revealed that dopamine was
consistently started around 24 h of life. For infants in the control
group, T0 was defined as the point 24 h following birth.

From T0, we calculated the average MABP over a 10-min
interval centered at the time points of 1, 3, 6, 9, 12, 18, 24, 36, 48,
and 72 h. In the instance where a MABP value was not available
for an infant at a specific time point, an average MABP was
calculated from the remaining infants.

Statistical Analyses
Clinical factors were compared between cases and controls
by using Chi-square or Fisher’s exact test for categorical
variables and Mann–Whitney U-test for continuous variables
(IBM, Statistics SPSS, 25). Statistical significance was accepted
as p < 0.05.

RESULTS

Cohort Characteristics
During the study period, 98 infants were diagnosed with
moderate-severe encephalopathy and had arterial lines placed at
SLCH. Of those 98 infants, 30 were excluded due to poor data
quality, exposure to other inotropes, or congenital anomalies.
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The remaining 68 patients included seven infants treated only
with dopamine. After matching controls in a 2:1 fashion, 16
controls, and seven cases remained. At UVa, 78 infants were
diagnosed with moderate-severe encephalopathy and had arterial
lines placed during the study period. Of those 78 infants, 28 were
excluded due to the same exclusions listed above. The remaining
60 patients included 11 patients treated only with dopamine.
After matching controls in a 2:1 fashion, 20 controls and 11 cases
remained in the study.

The final cohort consisted of 54 infants with 18 cases
matched to 36 controls. Many of the clinical and demographic
characteristics between the cases and controls were statistically
similar (including severity of encephalopathy at start of TH), but
the two groups differed with respect to their cord gases with
dopamine-treated infants demonstrating lower pH indicating
more severe asphyxia (6.9± 0.2 vs. 7.1± 0.2, p < 0.01, Table 1).

The cases in this cohort received more hydrocortisone and
cumulative fentanyl, but similar amounts of morphine compared
to controls (each institution has different sedation protocols).

TABLE 1 | Clinical and demographic characteristics of study cohort.

Dopamine

treatment

(cases),

n = 18

No dopamine

treatment

(controls),

n = 36

P-value

Gestational age at birth, mean ±

SD, weeks

39 ± 1.7 38 ± 1.5 0.70

Male sex, n (%) 11 (61) 21 (58) 0.85

Mode of delivery

Vaginal, n (%) 6 (33) 18 (50) 0.25

C-section, n (%) 12 (66) 18 (50)

Birth weight, mean ± SD, grams 3257 ± 541.3 3333 ± 498.9 0.20

Race

Caucasian, n (%) 12 (67) 28 (78) 0.38

African American, n (%) 6 (33) 6 (17) 0.17

Asian, n (%) 0 1 (3) 1.00

Native American, n (%) 0 1 (3) 1.00

Maternal age, mean ± SD, years 27 ± 6.9 28 ± 5.4 0.62

Clinically diagnosed

chorioamnionitis, n (%)

2 (17)a 2 (6) 0.26

Antenatal Magnesium Exposure,

n (%)

1 (6) 2 (6) 1.00

Apgar scores, median

(interquartile range)

(1, 5, and 10min)

1 (2.3) 2 (2) 0.14

3 (2) 4 (4) 0.24

4 (4)b 5 (3)b 0.82

Cord pH, mean ± SD 6.92 ± 0.2 7.07 ± 0.2 <0.01c

Intubated within 96 h of life, n (%) 16 (89) 22 (61) 0.04c

Inborn, n (%) 9 (50) 19 (52) 0.85

Worst severity of encephalopathy in first 6 h, n (%)

Mild 1 (5) 6 (17) 0.43

Moderate 14 (78) 27 (75)

Severe 3 (17) 3 (8)

aClinically diagnosed chorioamnionitis has 6 missing data points in the dopamine treated

group, b1 infant did not have 1-min Apgar score and 3 infants did not have assigned

10-min Apgar scores, cdenotes significance at the p < 0.05 level.

There were no other differences in pharmacologic interventions
(Table 2). Although there was a trend toward increased seizures
confirmed by conventional EEG and a greater incidence of
moderate to severe brain injury in the dopamine-treated group,
these differences were not statistically significant. Additionally,
there was no significant difference in the rate of death between
the two groups (Table 3).

Data Quality
The average age at the start of the recording was 5.6 ± 3.5 h and
the average length of each recording was 66.4± 3.5 h. The average
duration of dopamine therapy was 66.1± 38.8 h. One dopamine-
treated infant had one missing blood pressure reading at 96 h
of life. The control group had 1, 3, 5, and 13 missing MABP
measures at 48, 60, 72, and 96 h of life, respectively. Missing data
can be attributed to discontinuation of the umbilical arterial line
by the clinical treatment team prior to the end of the study period.

Volume Resuscitation
There was no statistically significant difference
between dopamine-exposed and control infants in the
frequency or volume of normal saline boluses given for

TABLE 2 | Summary of medications received with 96 h of life.

Dopamine

treatment

(cases),

n = 18

No dopamine

treatment

(controls),

n = 36

P-value

Morphine, n (%) 7 (39) 16 (44) 0.70

Morphine, cumulative infusion

dose, mcg/kg/h, mean ± SD

541.1 ± 245 642.3 ± 337 0.45

Fentanyl, n (%) 12 (67) 20 (56) 0.43

Fentanyl, cumulative infusion dose,

mcg/kg/h, mean ± SD

102.5 ± 32 63.1 ± 24.9 <0.01a

Dexmedetomidine, n (%) 1 (6) 0 0.33

Midazolam, n (%) 4 (22) 4 (11) 0.42

Vecuronium, n (%) 0 0

Hydrocortisone, n (%) 3 (17) 0 0.03a

Phenobarbital, n (%) 7 (39) 9 (25) 0.29

Phenobarbital maintenance, n (%) 3 (17) 4 (11) 1.00

Fosphenytoin, n (%) 1 (6) 0 0.33

Levetiracetam, n (%) 1 (6) 2 (6) 1.00

Levetiracetam maintenance, n (%) 1 (6) 2 (6) 1.00

adenotes significance at the p < 0.05 level.

TABLE 3 | Neonatal outcomes.

Dopamine treatment

(cases),

n = 18

No dopamine

treatment (controls),

n = 36

P-value

Seizures, n (%) 7 (39) 6 (17) 0.07

MRI injury, moderate to

severe, n (%)

5 (28) 6 (17) 0.30

Death, n (%) 2 (11) 0 0.12

adenotes significance at the p < 0.05 level.
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hypotension/hypoperfusion. Similarly, there was no difference in
the frequency or volume of pRBC transfusion for the treatment
of anemia. In contrast, the dopamine-exposed infants had a
greater frequency of exposure to platelet and FFP transfusions
compared to controls (p < 0.05, Table 4).

TABLE 4 | Summary of volume and blood product resuscitation received within

96 h of life.

Dopamine

treatment

(cases),

n = 18

No dopamine

treatment

(controls),

n = 36

P-value

NS, n (%) 15 (83) 24 (67) 0.33

NS, average total cumulative

volume, mls/kg, mean ± SD

32 ± 16 25 ± 18 0.19

pRBC transfusion, n (%) 5 (28) 3 (8) 0.10

pRBC, average total cumulative

volume, mls/kg, mean ± SD

25 ± 8 15 ± 0 0.25

Plt transfusion, n (%) 5 (28) 2 (6) 0.03a

Plt, average total cumulative

volume, mls/kg, mean ± SD

32 ± 16 23 ± 11 0.57

FFP transfusion, n (%) 8 (44) 7 (19) 0.05a

FFP, average total cumulative

volume, mls/kg, mean ± SD

46 ± 38 18 ± 9 0.09

NS, Normal saline; pRBC, packed red blood cell; FFP, fresh frozen plasma, adenotes

significance at the p < 0.05 level.

Blood Pressure Outcomes
Compared to controls, the dopamine-exposed infants had a
significantly lower mean MABP at T0, a difference of ∼9 mmHg
(p < 0.01, Figure 1). In the 1-h period following T0, the mean
MABP increased by an average of 4 mmHg for the dopamine-
exposed infants, compared to no change in the control infants.
The average MABP in the dopamine-exposed infants continued
to increase over time and matched the starting (T0) average
MABP of the control infants at the 9th h of dopamine treatment.

In addition to the absolute differences in average MABP, the
two groups of infants had markedly different MABP trajectories.
The dopamine-treated infants had irregular changes in MABP
with time, increasing more rapidly after dopamine initiation
before appearing to plateau at 49–50 mmHg. This stands in
contrast to the control infants who continued to have a smooth,
uninterrupted increase in MABP as postnatal age increased.

DISCUSSION

This study provides a comprehensive evaluation of blood
pressure changes occurring in infants with neonatal
encephalopathy undergoing TH with reliable data from
continuous, invasive blood pressure monitoring. We found
that infants with neonatal encephalopathy undergoing TH
and treated with dopamine received more blood products and
generally responded to dopamine treatment, although a small
subset required exogenous adrenal replacement. Additionally,
although there was a trend toward a greater number of seizures

FIGURE 1 | Hemodynamic changes: MABP in dopamine treated infants vs. controls.
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and increased incidence of moderate to severe brain injury for
dopamine-treated infants, it did not meet statistical significance.
There was no difference in mortality between the groups.

Infants requiring dopamine treatment in our cohort had
similar demographic and clinical characteristics compared to
controls but were more severely asphyxiated as demonstrated
by the lower pH in the cord blood. Despite this difference,
those more severely asphyxiated received a similar frequency
and volume of fluid resuscitation compared to the control
group, a finding in line with previously published data (12).
However, we found that dopamine-treated infants required
more platelet and fresh frozen plasma transfusions compared to
controls. This is consistent with previous literature indicating
that encephalopathy and TH are associated with coagulation
abnormalities such as thrombocytopenia and disseminated
intravascular coagulation (27–29). In fact, Sweetman et al. found
that coagulation profiles during the first few days of life could
predict early clinical outcomes, such as the need for therapeutic
hypothermia and severity of encephalopathy (27). As all infants
in this study were treated with TH, the association between
dopamine treatment and blood product administration is most
likely the result of a greater degree of asphyxia (as indicated by
the lower pH in the cord blood) and subsequent coagulopathy.

This study is the first to report the blood pressure response
to dopamine of infants diagnosed with HIE undergoing TH and
is strengthened by the availability of concurrent, continuous, full
EEG monitoring. Only one previous study, published by DiSessa
et al., describes the cardiovascular effects of dopamine in severely
asphyxiated neonates (17). However, this study was performed
before the advent of TH, only included 14 total infants, and
randomized infants to a prophylactic treatment of dopamine
with a maximum dose of 2.5 mcg/kg/min. Similar to DiSessa,
we found that dopamine generally increased blood pressure
in asphyxiated infants after adequate volume resuscitation;
however, response was more rapid in the previous study. The
more granular data during the first 96 h of life in infants in
the current cohort compared to DiSessa’s average of 4 hourly
time points pre- and post-dopamine administration allowed us
to detect delayed normalization of blood pressure in neonates
with moderate/severe HIE undergoing TH requiring dopamine
compared to untreated controls.

We noted a clinically important, although not statistically
significant, difference in seizure incidence between dopamine-
exposed and control infants. Seizures are a common sequela of
an initial ischemic injury, portend a worse outcome (30–32),
and represent ongoing cerebral injury, potentially partially due
to inadequate cerebral perfusion. While cerebral perfusion was
not directly measured in this study, it is concerning that seizures
tended to accompany other signs of impaired systemic perfusion.
Indeed, instability of blood pressure and the severity of HIE are
likely to be intrinsically linked, causing a pathologic synergism
which exposes the brain to further injury and manifests as
seizures. Fortunately, this observation hints at the possibility
of intervention; if an impaired perfusion state can be detected
earlier and addressed, additional seizure-related injury might be
partially avoided. The etiology and evolution of brain injury in
infants with HIE is complex and results from the interaction

between the initial perinatal insult and later NICU challenges.
Although it is not possible to differentiate the exact degree of
risk posed by postnatal events, the mechanism of additional
injury is plausible and addressable; identifying early markers of
inadequate cerebral perfusion and associated intervention trials
are urgently needed.

By design, infants who did not respond to dopamine were
excluded from this study. By using a group of control infants
who received no inotropes and a case group who received
a single agent, this comparison could be made with the
fewest confounders and have the greatest generalizability for
typical treatment of the typical infant. While dopamine non-
responders deserve investigation, this line of investigation would
be confounded by the small number of infants in this group and
the broad diversity of second-line treatments (e.g., milrinone,
dobutamine, norepinephrine, ECMO) which have very different
mechanisms of action.

We did not find significant differences in frequency of brain
injury on MRI between the dopamine-exposed and control
infants. This result was surprising, as there is considerable
evidence that hypotension/hypoperfusion states are associated
with impaired cerebral autoregulation, a known risk factor
for brain injury (33–36). Disruption of autoregulation allows
for pathologic perfusion states to occur, in both directions,
and potentiates ischemia-reperfusion injury. While the results
of this study suggest a link between asphyxia and altered
hemodynamics, MABP measures alone likely provide an
inadequate view of cerebral perfusion.

There are several potential reasons for the null finding in this
study. First, it is possible that need for dopamine is not linked
with additional risk for brain injury and that injury is merely
the result of the original hypoxic-ischemic event. More likely is
that MABP is a crude measure of perfusion; MABP is captured
via pressure catheter at the level of a large vessel and may not
reflect the complex of factors which govern perfusion in more
distal vessels. Indeed, the entire concept of normal or adequate
blood pressure threshold in neonates remains in question (25). Of
note, the mean MABP measurements of the dopamine-exposed
infants in this study was still above the widely accepted threshold
of MABP > gestational age in weeks (37).

The methodology of this study was practical in nature,
utilizing readily available measurements of MABP. These results
suggest that the interaction between systemic and cerebral blood
flow requires interrogation at the cerebrovascular level. The use
of transcranial Doppler ultrasound to measure cerebral blood
flow velocity and evaluate the resistive index might provide
one such alternative. While this approach directly measures
cerebral blood flow velocity, it is not practical for continuous
monitoring due to tissue heating (38, 39) and may interfere with
other monitoring devices such as EEG electrodes, a significant
disadvantage compared to MABP which has no such challenge.
Near-infrared spectroscopy (NIRS) monitors are non-invasive
optical devices capable of measuring cerebral saturation, a proxy
for cerebral blood flow, and could be useful in assessment
of cerebral autoregulation and adequacy of cerebral perfusion.
Although NIRS devices are commercially available, they are not
yet universally applied for clinical purposes. Similar challenges
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exist when trying to find adequate exposed scalp to apply a NIRS
probe when concurrent EEG monitoring is being performed.
Despite this potential challenge, both methods offer valuable
additional insight into cerebral blood flow adequacy after hypoxia
and should be included in future studies.

Additional limitations to this study include small sample
size, which could have limited our power to detect clinically
significant differences in seizures or brain injury, and minor
practice variations between the two centers. For example,
fentanyl and morphine may have different hemodynamic effects
influencing the response to dopamine between the two centers. In
addition, differences in timing and interpretation of MR imaging
limit the external validity of these findings. It is possible that
the differences in radiographic brain injury were sufficiently
subtle that they could not be captured when combining
infants into normal/mild or moderate/severe categories. Finally,
some scans were performed during the time frame where
pseudonormalization (40) may have impaired the ability to detect
injury, dampening the overall difference between groups.

Considering these limitations, this study highlights the
limitations of current clinical practice, namely that the use
of MABP and its response to hemodynamic support is
inadequate to judge the status of cerebral perfusion and is
not helpful for prediction of which infants will have brain
injury or seizures. This underscores the urgent need for
development of more specific therapeutic endpoints in this
population. Future studies should include concurrent measures
of cerebral autoregulation (measured using Doppler ultrasound
and/or NIRS) and consistent prospective imaging to more
fully establish the link between hypotension/hypoperfusion,
impaired cerebral blood flow, and risk of brain
injury in HIE.

CONCLUSION

For infants with hypoxic-ischemic encephalopathy (HIE),
both the underlying disease process and therapeutic
hypothermia (TH) have the potential to negatively impact
the hemodynamic status, and this is frequently manifested
as hypotension/hypoperfusion. Dopamine generally increases
blood pressure in patients with moderate/severe HIE undergoing

TH and facilitates sustained MABP similar to untreated controls
during cooling and rewarming. Future studies should include
concurrent measures of cerebral autoregulation and consistent
prospective imaging to more fully establish the link between
hypotension/hypoperfusion, impaired cerebral blood flow, and
risk of brain injury in HIE.
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