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Congenital and perinatal infections are transmitted from mother to infant during

pregnancy across the placenta or during delivery. These infections not only cause

pregnancy complications and still birth, but also result in an array of pediatric morbidities

caused by physical deformities, neurodevelopmental delays, and impaired vision,

mobility and hearing. Due to the burden of these conditions, congenital and perinatal

infections may result in lifelong disability and profoundly impact an individual’s ability

to live to their fullest capacity. While there are vaccines to prevent congenital and

perinatal rubella, varicella, and hepatitis B infections, many more are currently in

development at various stages of progress. The spectrum of our efforts to understand

and address these infections includes observational studies of natural history of disease,

epidemiological evaluation of risk factors, immunogen design, preclinical research of

protective immunity in animal models, and evaluation of promising candidates in

vaccine trials. In this review we summarize this progress in vaccine development

research for Cytomegalovirus, Group B Streptococcus, Herpes simplex virus, Human

Immunodeficiency Virus, Toxoplasma, Syphilis, and Zika virus congenital and perinatal

infections. We then synthesize this evidence to examine how close we are to developing

a vaccine for these infections, and highlight areas where research is still needed.
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INTRODUCTION

Congenital and perinatal infections are caused by pathogens that infect a pregnant woman and can
be passed to the fetus during pregnancy by infecting and crossing the placental barrier or infecting
the newborn during delivery in the birth canal. By definition, these infections are different from
neonatal and childhood diseases that are contracted after birth. When passed to the newborn, these
infections can lead to developmental defects, physical deformities, and lifelong disability. Maternal
infection of the placenta may also lead to complications in pregnancy such as intrauterine growth
restriction, miscarriage, and stillbirth. Given immunological and biological alterations that occur
in pregnancy, the course of infection and immunity can be more severe in pregnancy, which dually
impacts maternal health and ability to recover. Moreover, pregnancy is a time during which many
treatments may be contraindicated, which limits options upon diagnosis. In these settings, vaccines
are a valuable tool to prevent congenital infections. While there are three licensed vaccines to
prevent congenital infections, many more are in development.
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In this review, we outline key strategies for vaccine design to
prevent congenital and perinatal infection and highlight the three
licensed vaccines. Then we detail vaccine development efforts,
protective immunity, and design considerations for congenitally
transmitted pathogens that threaten the health of newborns:
Cytomegalovirus, Group B Streptococcus, Herpes simplex virus,
Human immunodeficiency virus, Toxoplasma, Syphilis, and
Zika virus.

STRATEGIES FOR VACCINES TO PREVENT

CONGENITAL INFECTIONS

There are two broad strategies for immunization to prevent
congenital infections: (1) vaccinating women prior to pregnancy
to generate protective maternal immunity; (2) providing passive
or active immunization during pregnancy to boost immunity
and prevent congenital transmissions with possible exposures
later in pregnancy or at delivery. Vaccines against congenital
infections depend on eliciting protective immune responses
against the congenitally transmitted pathogen, that are sustained
at a protective level at least through pregnancy. A protective
threshold of antibodies or immune responses is ideally required
prior to pregnancy to prevent maternal infection, and thereby
prevent congenital transmission. Therefore, defining immune
correlates is critical to the design and development of vaccines
to prevent congenital infections.

For vaccinations delivered before pregnancy, high rates of
seroconversion across populations and long-lasting immunity
are critical features. As with the Rubella vaccine provided
in childhood, vaccine-elicited immunity must protect diverse
populations of women during a wide range of ages when theymay
be pregnant. As most pregnancies are unplanned, the optimal
vaccine to prevent congenital infections must be administered
well before the earliest age groups for women’s reproductive age.

Importantly, active and passive vaccine-based strategies work
together with other measures that support in preventing and
controlling congenital infection. Infant health can also be
improved if a worse secondary disease can be prevented,
after the congenital infection or exposure. For example, with
perinatal Hepatitis B exposure, a birth dose of vaccine and
immunoglobulin protects the newborn from liver disease
over their lifetime. Administration of drugs after birth is a
secondary prevention measure intended to reduce morbidity
and mortality by preventing disease progression after exposure.
Moreover, there are complementary measures to reduce risk of
transmission and severity of disease such as maternal or neonatal
treatments, and public health measures to reduce exposure
during pregnancy by limiting population-wide transmission.
Specifically, these include programs to promote condom use or
control mosquitoes, depending on the route of transmission.
Though there are guidelines to screen for disease early in
pregnancy, implementation of TORCH pathogen screening
and standard of care vary widely. In low resource settings
in particular, limited antenatal care access results in missed
opportunities for prevention of congenital infections (1, 2).
Systemic structural barriers and failures of prevention and

treatment strategies indicate a need to complement interventions
with vaccines to prevent congenital diseases.

There are three licensed vaccines for prevention of congenital
infections: Rubella, Hepatitis B, and Varicella, which all use
the strategy of immunization in childhood to elicit long lasting
immunity prior to pregnancy, as well as provide passive
immunization of the infant during pregnancy. These vaccines
serve as successful examples that inspire and guide the many
more in development.

Rubella
Rubella infection in pregnant women, especially during the
first trimester, can lead to serious fetal consequences including
spontaneous abortion, infant death, and congenital rubella
syndrome (CRS). CRS describes a range of birth defects including
hearing impairment, cataracts, congenital heart disease, and
neurological impairment (3). To prevent CRS, the measles
mumps and rubella combined MMR vaccine is recommended
as a two-dose series after 12 months of age (4). As a live-
attenuated virus vaccine, the MMR vaccine is contraindicated for
administration during pregnancy (4). In the pre-vaccine era, the
US epidemic of 1964–65 resulted in 6,250 spontaneous abortions,
2,100 infant deaths at birth or soon after, and CRS in 20,000
infants, leading to deafness, blindness, and mental impairment
(5). More recently, lack of high levels of vaccine coverage and
concern for waning of immunity has led to prenatal screening
of women and recommendations of immunization at least 1
month prior to conception in unvaccinated women who desire
to become pregnant (6). The WHO regions of the Americas
and Europe have achieved CRS elimination, whereas globally,
vaccine coverage is suboptimal and 31% of countries have yet to
introduce the vaccine and benefit from this protection (7).

Hepatitis B
The vaccine for Hepatitis B virus (HBV) is offered as a three-
dose vaccine starting at birth and has achieved 84% global
coverage as of 2015 (8, 9). Chronically infected pregnant women
may transfer the virus to their infant at delivery. Thus, HBV
screening is recommended in pregnancy (8). For mothers with
an active infection or immunity below the correlate of protection
a combination of infant immunoglobulin prophylaxis, active
vaccine and antiviral therapy is recommended (8). Since earlier
infection in life leads to a greater likelihood of chronic liver
disease, cancer, and death, intervention at birth after perinatal
exposure is crucial. A birth dose of the vaccine reduces the risk for
neonatal infection by 72% and up to 90% when combined with
HBV immunoglobulin post-exposure prophylaxis (10, 11). If left
untreated, 70–90% of perinatally infected infants develop chronic
infection by 6 months (12). While passive immunoprophylaxis
provides temporary protection, the vaccine offers longterm
protection (13).

Varicella
Varicella zoster-virus is the causative agent of chickenpox and
shingles. The live-attenuated VZV vaccine is recommended for
infants older than 12months and is intended to reduce morbidity
and mortality from childhood infection (14). The vaccine elicits
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lifelong protective immunity (14). Historically, the virus would
infect nearly everyone by middle ages, with greatest incidence
of disease in elementary school years with low rates of maternal
infection (15). Rarely, maternal infection during pregnancy can
lead to congenital varicella syndrome, which is characterized by
limb hypoplasia, skin abnormalities, encephalitis, neurological
impairment, and low birth weight (16). Prenatal assessment
of women for varicella immunity and vaccination at least 1
month prior to conception is recommended, though this is
not regularly performed or feasible in the event of unplanned
pregnancies (14). If a pregnant woman lacks immunity, is
exposed to the pathogen, or becomes infected, VariZIG, a human
VZV immunoglobulin, is offered as post-exposure prophylaxis
for the mother and pre-term neonate depending on exposure
risk (17). VariZIG is a passive immunization strategy that is
most effective within 96 hours of exposure but is also approved
within 10 days of infection (17, 18). Thus, far, most countries
have not adopted the childhood varicella vaccine, due to cost and
concerns of incomplete coverage leading to greater risk of disease
in pregnancy as compared to childhood (19).

SPECIAL CONSIDERATIONS FOR DESIGN

OF MATERNAL VACCINES

Many maternal vaccination strategies to date are aimed at
providing fetal and infant immunity to these pathogens by
transfer of protective antibodies (20–23). Transfer of IgG across
the placenta into the fetal compartment during pregnancy may
have a role in preventing congenital and perinatal infections (24).
Antibodies of the IgG isotype begin to cross the placenta around
gestational week 13 when the neonatal Fc receptor, FcRn, starts
to be expressed on the placenta (25, 26). Many qualities of the
IgG antibodies may contribute to the efficiency of transplacental
transfer, including IgG subclass, antibody avidity, and gestational
stage (27–29). Placental transfer of antibodies is most efficient
for the IgG1 subclass, followed by IgG4, IgG3, and IgG2 with
decreasing efficiencies (25). This is due to IgG glycosylation and
varying binding affinities of the Fc region of the IgG subclasses
to the FcRn (30, 31). Since IgG1 are elicited more in response
to proteinaceous antigens than polysaccharide antigens, vaccine
antigens can be designed to incorporate proteinaceous elements
of the pathogen.

However, high titers of placentally transferred antigen-specific
IgG in the infant may also reduce the magnitude of the infant’s
de novo immune responses to vaccines containing that antigen
(32–34). This is best studied in the context of the measles
vaccine, which is a live-attenuated replicating vaccine. While
morbidity and mortality are reduced in children vaccinated
against measles in the presence of maternal antibodies, protective
neutralizing antibody responses are not established until booster
doses when maternal antibody has waned (35, 36). This
phenomenon, known as maternal antibody interference, and has
been documented with many types of vaccines, including live-
attenuated, inactivated, and protein or polysaccharide (subunit
or conjugate) vaccines (37–49). Thus, vaccine design and timing
must be guided by the requirements for IgG transfer to optimize

prevention of congenital infection, as well as requirements for
neonatal immunity prior to the age of greatest risk of exposure.

PROGRESS IN VACCINE DEVELOPMENT

FOR PERINATAL AND CONGENITAL

INFECTIONS

For each pathogen, we detail transmission route, disease burden,
evidence for current clinical guidance, key features of protective
immunity, and vaccine design considerations. These crucial
aspects are synthesized to evaluate progress and gaps remaining
toward vaccine development.

CYTOMEGALOVIRUS (CMV)

In utero transmission of CMV is the most common congenital
viral infection as ∼1 in every 200 babies, or 30,000 infants
annually, are born with congenital CMV (cCMV) in the US
(50–54). While CMV infection is typically asymptomatic in
healthy adults, including pregnant women, the major challenge
for prevention of cCMV stems from viral latency, which allows
CMV to persist and reactivate over a lifetime (55–57). In the
most severe cases, vertical transmission of CMV can lead to
fetal loss; more commonly, cCMV infection can cause severe
defects and sequelae in the neonate, including hearing loss
and developmental delays and which occur in an estimated
20% of cCMV-positive infants (53, 58, 59). This leads to
lifelong disability. The risk of placental CMV transmission is
greater for seronegative women who have primary infection
during pregnancy (30–50%) than for chronically infected women
experiencing secondary infection or viral reactivation (1–4%),
indicating that the maternal adaptive immune response can be
protective (50, 53, 60–63). However, reactivation of latent CMV
or re-infection in seropositive pregnant women accounts for the
majority of congenital infections because 60–90% of the global
population is seropositive for CMV, with higher prevalence in
developing countries (64–66).

CMV is shed in body fluids such as urine, saliva, breast
milk, and semen and is typically transmitted via physical and
mucosal contact with such fluids (50, 67–71). Consequently,
direct contact, breast feeding, organ transplants, and blood
transfusions are the possible routes of transfer in addition to
congenital transmission from mother to the fetus. CMV can be
transmitted vertically in any trimester of pregnancy, indicating
that the target population for a vaccine to prevent cCMV would
be women of child-bearing age prior to conception (72–78). The
risk of transmission is greatest in the third trimester, but the risk
of the child developing sequelae is greatest when transmission
occurs early in gestation (61, 74, 79). People who spend a
significant amount of time around young children, including
childcare workers, teachers, and parents, are especially at risk.
In high-income countries, maternal exposure through toddlers
at daycare is a key route of exposure to the virus for pregnant
women. As of now, there is no licensed vaccine for prevention
of cCMV, despite over 40 years of research. The development
of a CMV vaccine has been designated as a top priority by
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the National Academy of Medicine, and preclinical and clinical
research efforts are on-going (80).

Current Guidance
There is no clinical guidance to test for maternal CMV
infection in the prenatal period. Because CMV infection in most
adults is asymptomatic, cCMV infection during pregnancy is
typically identified by abnormal fetal ultrasound findings, such as
echogenic fetal bowel, cerebral ventriculomegaly, periventricular
calcifications, and fetal growth restriction, which leads to
maternal CMV testing (63, 77, 81, 82). Maternal infection is
identified by detecting viral DNA via PCR in serum or urine or
by assessing CMV-specific serum antibodies and avidity (63, 83).
Congenital infection is determined via amniocentesis, generally
only when maternal infection has been confirmed and after 21
weeks of gestation (63, 84–86). Testing for CMV at birth is
becoming more commonplace, but traditionally, doctors will
only order a CMV test if a baby shows multiple symptoms that
can be associated with cCMV, such as low birth weight, jaundice,
and/or microcephaly (50, 67, 87–90). However, CMV testing
is recommended for newborns with documented sensorineural
hearing loss regardless of the presentation of other symptoms or
sequelae (89).

Several studies highlight the safety of administering
hyperimmune globulin (HIG) treatment in pregnancy and
benefits such as controlling maternal viral load, lowering rates
of congenital transmission, and reducing severity of neonatal
infection. Though the evidence remains divided as to the value
of this intervention: two observational studies, a case-control,
and a non-randomized study reveal that HIG lowered rates
of vertical transmission, whereas two follow-up randomized
placebo-controlled trials did not confirm this finding (91–95).
More recent studies indicate that high-dose HIG and maternal
DNAemia independently predict congenital transmission,
suggesting that multiple factors should be considered for
prevention of cCMV by HIG (96).

Though treatment options are currently limited, there is
guidance for preventing CMV infection during pregnancy,
including limiting new sexual partnerships and, more
importantly, exposure to young children and their various
bodily fluids. Given that exposure to urine and saliva from
toddlers is an important route of transmission, pregnant
women frequently exposed to young children are encouraged
to take personal precautions such as washing their hands often,
especially after changing diapers, and avoiding sharing food,
drinks, and eating utensils with young children (67, 97–99).

Protective Immunity
Animal models that have been employed to study placental
CMV infection, include guinea pigs and non-human primates.
Traditionally, the guinea pig model has been used to study
cCMV infection because guinea pig CMV is capable of crossing
the placenta in pregnant guinea pigs, while other small animals
cannot model the placental viral transmission (100, 101). Pre-
clinical vaccine candidates include vectored viral glycoproteins,
glycoprotein B (gB) protein, the pentameric complex of CMV
involved in cell entry, and combinations of surface proteins

(102). These candidates show promising results in the guinea
pig animal model with respect to reduction of maternal viral
load and improved fetal health (103–107). Recently, a pregnant
rhesus macaque model of cCMV following primary infection
during pregnancy was developed. Early studies using this model
found that CD4+ T cell depletion prior to challenge produces
a consistent measurable phenotype of cCMV transmission (108,
109). In the absence of CD4+ T cells, passive infusion of potently
neutralizing antibodies against rhesus macaque CMV (RhCMV)
was protective against placental RhCMV transmission (110).
This model promises to further our understanding of maternal
protection against placental transmission of CMV as the rhesus
macaque immune system better models that of humans and
there is significant functional homology between the RhCMV
and human CMV (109, 111, 112). Thus far, these studies indicate
the importance of CD4+ T cells in a protective maternal CMV
immune response and the protective effect of humoral immunity
(108, 110, 113).

To date, the most effective CMV vaccine candidate tested
in clinical trials is comprised of gB, one of the glycoproteins
responsible for viral entry into cells upon infection (114),
with a MF59 squalene adjuvant. This is currently the only
preventative platform against viral acquisition that has completed
phase II clinical trials (115). This vaccine was tested in
cohorts of post-partum women, adolescent girls, and transplant
recipients, and resulted in a partial efficacy of 50% against
CMV acquisition as well as successfully prevented viremia in
transplant recipients (115–117). Studies that stem from these
trials continue to inform the immune correlates associated with
protection from acquisition. While CMV neutralizing antibodies
have been implicated in reducing placental transmission in
the context of primary infection during pregnancy (103, 110),
CMV neutralization titers did not correlate with protection in
the gB/MF59 vaccine trials (118–124). Rather, non-neutralizing
antibody effector functions, such as antibody-dependent cellular
phagocytosis, have recently been implicated in mediating
protection in the gB/MF59 vaccine trials, within the target
population of adolescent girls and postpartum women (118,
124, 125). This suggests that non-neutralizing antibody effector
functions may be an important part of CMV immunity in
addition to neutralizing antibody responses.

Another vaccine strategy has been to target T cell responses
to viral proteins in order to mediate robust viral clearance
from tissues. This is supported in the context of congenital
infection by the finding that CD4+ T cells are important for
preventing placental transmission in the rhesus macaque model
of primary infection during pregnancy (108). The focus of
vaccine candidates tested in pre-clinical studies has been on
pp65 and IE1, as they contain T cell epitopes present in many
seropositive individuals (126–130). Pre-clinical studies using
pp65 or homologs as the vaccine immunogen have yielded
improved pregnancy outcomes, indicating that cellular immunity
against tegument proteins can be protective in the context of
congenital infection (128).

Neutralizing humoral immunity has been targeted throughout
vaccine development efforts and is achieved by vaccinating
against exposed glycoproteins (gB, gH, and pentameric complex)
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important for viral entry into the cell. Neutralizing antibody
responses have been associated with reduced transmission during
pregnancy in observational human cohorts as well as non-
human primates (119–123). But neutralizing antibody responses
were only minimally elicited in the partially protective gB/MF59
vaccine trial (118, 124). While single immunogen vaccinations
are capable of producing both humoral and cellular immune
responses, it is possible that a CMV vaccine must include
multiple antigens to effectively activate protective neutralizing
and non-neutralizing humoral immunity and cellular immunity
(131). One pre-clinical study using an mRNA vaccine platform
to deliver multiple antigens was able to elicit robust neutralizing
antibody titers and T cell responses, showing promise for both
the mRNA vaccine platform and a multi-antigenic approach to
CMV vaccines (127, 132).

Vaccine Design Considerations
The target population for a vaccine to prevent cCMV includes
all women of child-bearing age, both seronegative women at
risk of primary infection and seropositive women at risk of
cCMV infection following re-infection or reactivation. While the
optimal vaccine strategy would be effective in both groups, it
may also be feasible to target the seropositive group alone as
this group constitutes the majority of cCMV cases (133–135).
Currently, the emphasis of vaccine developers is on women,
and not men, because of the pregnancy-related transmission
that vaccine efforts aim to prevent. Though men may facilitate
transmission to pregnant women, the value of including men is
unclear as of now.

A protective vaccine against cCMV must function in one
or both of the following capacities: (1) prevent acquisition in
seronegative mothers or reinfection in seropositive mothers;
(2) reduce systemic viral load, infection of the placenta, and
subsequent fetal infection (123, 136). Preclinical studies of
protective immunity indicate that CD4+ T cells are critical to
viral control in pregnancy and that neutralizing antibodies alone
toward surface glycoproteins may be insufficient for prevention
of cCMV. Thus, the ideal vaccine will likely need to activate
a polyfunctional antibody response in addition to a timely
CMV-specific cellular response to achieve protection (123, 130).
Moreover, strain-specific differences in CMV may modulate
vaccine immunity and further studies on vaccine design are
required to evaluate the value of including viral components
frommultiple strains. For example, there are five genotypes of gB
which form two phylogenetic supergroups, and vaccination with
one genotype may induce adaptive responses that are protective
against only a subset of CMV strains (137). These findings may
also support the idea that multiple antigens or antigen genotypes
are needed in an effective vaccine to prevent CMV infection.

How Close Are We
A CMV vaccine is likely not as close as hoped due to limited
knowledge of protective immunity, even after more than 40 years
of research and high prioritization by the National Academy
of Medicine. Greater opportunities for research and advocacy
for universal CMV testing of neonates and identification of

protective immunity are needed to be able to identify and treat
congenital CMV and develop an efficacious vaccine.

GROUP B STREPTOCOCCUS

The gram-positive bacterium, group B streptococcus (GBS),
colonizes the maternal vaginal tract and can lead to stillbirths
and infection of the neonate by exposure during labor or an
ascending infection of the amniotic fluid (138). Globally, 1
in 5 pregnant women are colonized by GBS, and 1% of all
stillbirths are attributable to maternal GBS infection (139, 140).
While only 1–2% of infants born to GBS colonized mothers
have invasive bacterial disease, an estimated 10–50% of these
cases are fatal (138, 141) Vertical transmission may lead to early
onset of neonatal GBS disease in the first week of life, whereas
late onset disease occurs in 7–90 days of life and is typically
due to postnatal exposure to the pathogen from the colonized
mother or the environment. Infant disease is characterized by
sepsis, pneumonia, and respiratory distress, and in a subset,
even meningitis. Of those infants who survive meningitis, 30–
40% have neurodevelopmental impairments, leading to lifelong
morbidity (142, 143). While peripartum intravenous antibiotic
treatment with penicillin substantially reduces the incidence of
early-onset disease, it does not confer any immunity to the
newborn nor protect from late-onset disease (144). Also, some
GBS isolates in the US and Japan have demonstrated decreased
susceptibility to penicillin, indicating that antibiotic treatment
may not be an adequate long term solution (145, 146). A vaccine
is needed to protect infants from early as well as late onset
GBS disease.

Current Guidance
The CDC and WHO recommends that all pregnant women who
are colonized with GBS should be treated with antibiotics during
labor. The indication for antibiotic prophylaxis include a GBS-
positive culture of a vaginal or rectal swab upon screening in
late pregnancy, pre-term labor (<37 weeks), chorioamnionitis,
prolonged labor, or ruptured membranes before labor (147, 148).
This is because high levels of maternal colonization, fever, and
prolonged rupture of membranes are risk factors for early-
onset GBS disease in newborns (149, 150). With 98% of women
receiving GBS testing in the US, incidence of early onset GBS
has decreased to 0.25 per 1,000 (151, 152). Yet, there are several
challenges to implementation of timely screening in low resource
settings (153).

Protective Immunity
Capsular polysaccharide (CPS)-specific maternal IgG levels
correlate with protection from neonatal GBS disease. In
the mouse model, infusion of human CPS IgG protected
from challenge, indicating the antibodies are sufficient for
mediating serotype-specific protection from disease (154, 155).
Observational studies of natural immunity to GBS infection in
the US, Europe, and South Africa indicate that the threshold for
protection against early onset neonatal disease is maternal CPS-
specific IgG in the range of 0.5–10µg/mL (156–160). While the
association between the magnitude of maternal IgG and neonatal
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protection is consistent across populations, further studies
are needed to confirm an appropriate correlate of protection
that can serve as an endpoint in vaccine trials. Specifically,
standardization of CPS-specific IgG binding and functional
assays, antigens, and reference sera will facilitate progress (161).
GBS-binding antibodies mediate several functions; including
opsonizing bacteria, direct complement mediated killing, and
phagocytosis. These functions are cumulatively measured by in
vitro opsonophagocytic assays. One study shows that maternal
IgG concentrations >1µg/mL facilitate GBS killing and reduce
risk of early onset neonatal disease by 81 and 78% for serotypes
Ia and III (158). In contrast to antibodies, CPS-specific immune
cell activation is associated with clearance of homotypic GBS
rectovaginal colonization during pregnancy, but not with the
magnitude of CPS-specific IgG and opsonophagocytic activity,
which are required for protection (162). Altogether these data
indicate that antibodies are crucial to protection from GBS.

In order to protect newborns from early and late onset GBS,
antibodies must be transferred across the placenta and remain at
protective levels in the infant through 3 months of age, a time
period of greatest risk of GBS disease. The concept of maternal
immunization to promote transplacental transfer of IgG and
protect neonates from GBS infection has been tested in baboons,
mice, and rabbit models. These studies show increased survival
in offspring of vaccinated animals upon challenge with serotype
matched GBS, and functionally equivalent levels of antibody
transfer frommother to offspring (163–165). Cumulatively, these
studies support further development of glycoconjugate vaccines
that elicit strong CPS-specific IgG in pregnancy for prevention of
neonatal GBS.

Vaccine Design Considerations
The leading vaccine candidates are CPS-protein conjugate
vaccines. Specifically, the CPS conjugated to CRM197 (a non-
toxic diphtheria toxin carrier protein) or tetanus toxoid, have
been tested in Phase II vaccine trials as well as pregnant
women. Since 5 GBS serotypes (Ia, Ib, II, III, IV) account
for 97% of global neonatal GBS disease, vaccine candidates
are designed to include one or multiple CPS antigens from
these serotypes (166). Tetanus toxoid conjugate vaccines have
been shown to be safe and immunogenic in non-pregnant as
well as pregnant women (167–169) Antibody responses have
been dose-dependent and elicited opsonophagocytic activity
against matched GBS serotypes in vitro (167–169) In Phase II
studies, administration of a second dose of a trivalent CPS-
CRM197 vaccine candidate in non-pregnant subjects shows
seroconversion with >8µg/mL CPS type-specific IgG in >94%
of participants for each serotype (Ia, Ib, and III). Antibody
responses to glycoconjugate vaccine candidates peaked in their
opsonophagocytic activity 4 weeks after immunization, declined
substantially by 1 year, but persisted through 2 years (170). More
recently, antibodies against the GBS surface proteins alpha and
rib have been associated with less neonatal disease, suggesting
that vaccines based on these conserved bacterial proteins may
provide cross-serotype protection (171). These trials suggest that
the glycoconjugate platform is effective immunogenic in the
critical window of pregnancy.

Many features of disease and immunity support a maternal
vaccine in pregnancy as the optimal strategy for prevention of
neonatal GBS: (1) the risk to newborns is greatest in the days
after birth, before a time when they may mount their own
immune response; (2) transplacental transfer of antibodies at
a protective level is feasible; (3) vaccine elicited immunity of
current candidates is greatest in the weeks after immunization
and wanes thereafter, supporting immunization immediately
preceding the window of greatest risk to the newborn.

How Close Are We
Due to the low neonatal disease incidence amongst live births
(1–3 cases per 1,000), the sample size to test efficacy with the
endpoint of reduced perinatal transmission may not be feasible
(161). Therefore, identifying correlates of protection for each
serotype that are consistent across countries will be a crucial
pathway to vaccine licensure (172). What remains now is to
clearly define the correlate of protection with further studies
across populations and standardization of binding and functional
antibody responses. With nearly 30 years of clinical trial data and
strong safety and immunogenicity profile of vaccine candidates in
pregnancy, a GBS maternal vaccine is feasible in the near future.

HERPES SIMPLEX VIRUS (HSV)

The prevalence of HSV types 1 and 2 among adolescents and
young adults is 47 and 11% in theUS, and type 2 is associated with
genital herpes (173). Neonatal herpes infection affects ∼every 1
in 3,200 births (174, 175). The majority (85%) of neonatal HSV
infections are acquired peripartum during vaginal birth, 10%
are acquired after birth from maternal mucosal virus shedding
and 5% are acquired in utero (176). Evidence suggests that
cesarean delivery is an option to reduce the risk of neonatal
HSV, though not protective in all cases (177–179). Whereas,
acyclovir administration in late pregnancy reduces viral shedding
at delivery, impact on neonatal HSV has not been quantified
(180, 181). Notably, risk of transmission is highest for pregnant
women with a primary HSV infection during pregnancy (30–
50%), as compared to seropositive women with recurrent HSV in
pregnancy (1%) (177). These transmission rates indicate that pre-
existing maternal immunity has a protective role in preventing
vertical HSV transmission.

Current Guidance
There are three patterns of HSV disease in newborns that can
be identified within the first 3 weeks after birth. The first is
localized cutaneous infection involving skin, eyes, and mouth
observed in 45% of neonatal HSV infections (182). The second
is infection of the central nervous system (CNS), which is
observed in 30% of infants (182). The third is a disseminated
infection that encompasses multiple organs in 25% of HSV-
infected newborns (182). Though intravenous administration
of 60 mg/day of acyclovir for 3 weeks has reduced infant
mortality, ∼29% of infants with disseminated disease and 4%
of infants with CNS disease continue to die within the first
year of life (183). Moreover, neonatal infection may lead to
the development of a latent viral reservoir and reactivation of
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infection (184). Relapse of HSV infection can worsen disease and
survival prognosis with conditions such as recurrence of skin
lesions, infection of CNS, and severe neurologic and behavioral
impairments (184–186). Though treatment has reduced infant
mortality, preventative measures are needed to eliminate infant
mortality due to congenital HSV and curb worsening neurologic
pathologies resulting from reactivation of latent viral reservoir.

Protective Immunity
Immune responses that protect against HSV infection are
characterized by a robust tissue-resident T cell responses,
which can lower viral burden in the genital tract and decrease
transmission of infection to dorsal root ganglia, where HSV
may establish latent infection and reactivate to cause recurrent
disease later in life. It has been found that depleting T cells
prior to HSV2 challenge in mice leads to more severe disease
as compared to B cell depletion, indicating the prominent role
of T cell responses (187, 188). Moreover, when HSV infection
is not active, vaginal biopsies reveal increased levels of effector
CD8+ T cells, indicating the importance of this cell type in viral
control (189).

Maternal antibodies also have a role in supporting clearance
of HSV infection and providing passive protection to the fetus.
B cells and their corresponding antibodies reduce the time
to resolving viremia upon infection as compared to B cell
depleted mice, but passive transfer of antibodies alone does
not prevent infection in naïve mice (187). Recent findings
from murine models of maternal immunization indicate that
protection of pups from passively transferredmaternal antibodies
is associated with antibody-dependent cellular cytotoxicity
(ADCC), suggesting that ADCC-mediating antibodies may be
more relevant to neonatal protection than neutralizing antibodies
(190). Importantly, evaluation of intravaginal vaccines in the
guinea pig and mouse models indicate that this vaccination route
increases levels of IgG and IgA in the genital tract, the site of
primary exposure to HSV (191, 192). These studies demonstrate
that while HSV-specific antibodies can support viral clearance,
they cannot alone prevent infection and recurrent disease.

There are several ways in which vaccines strive to elicit
protective cell-mediated immunity. Recently a single replication
HSV2 vaccine candidate with a deletion in the viral cell
entry protein, glycoprotein D, was tested in mice and
showed protection from lethal challenge (193). Intriguingly,
this protection correlated with Fc receptor activating antibody
titers and not neutralizing titers, reinforcing the importance of
antibodies that facilitate immune cellular activity (193). While
subcutaneous vaccination strategies have led to increased levels
of circulating HSV-specific CD8+ T cells, this does not translate
to higher levels of HSV-specific CD8+ T cells migrating to
the genital tract, leading to ineffective protection and the need
for novel strategies to elicit tissue-specific immunity (194).
New vaccination approaches, such as the “prime and pull”
strategy, are being developed to boost tissue-specific immunity.
To test this strategy, mice and guinea pigs were immunized
subcutaneously with attenuated HSV2 or a combination of HSV2
glycoproteins, and this “primed” systemic immune response was

“pulled” toward the vaginal tract by topical application of toll-
like receptor agonists (imiquimod) or chemokines that attract
CD8+ T cells (CXCL9 and CXCL10) following vaccination (195,
196). This protected mice from lethal HSV2 challenge, and led
to substantial increases in the magnitude of and longevity of
HSV-specific CD8+ T cells in the vaginal tract as compared
to subcutaneous vaccination alone (196). In addition to robust
and lasting mucosal immunity, identifying appropriate topical
products that “pull” the immune response, but do not cause
unwanted inflammatory responses will be a key factor in the
success of such innovative vaccine strategies (196). Altogether,
these studies indicate that preventing maternal primary or
secondary HSV infection requires robust mucosal immunity and
long lasting HSV-specific tissue-resident CD8+ T cells.

Vaccine Design Considerations
Despite progress in our understanding of protective immunity,
vaccine candidates tested in guinea pig andmouse animal models
have not translated to effective candidates in vaccine trials (197).
There are several subunit and live-attenuated vaccine candidates
that have been tested in vaccine trials (198). The Herpevac
trials which contained the glycoprotein-D subunit of HSV2
demonstrated partial efficacy of 58% in protecting against HSV1
in seronegative women, and an overall efficacy of 20% against
both HSV1 and HSV2 (199). Analysis of immune responses
that led to protection in this subset indicated high neutralizing
antibodies as a correlate of protection (200). Similarly, the
Chiron HSV vaccine composed of HSV2 glycoprotein-B and
glycoprotein-D subunits elicited neutralizing antibodies but
failed to protect against HSV2 infection (201). These trials
were halted due to low efficacy against HSV2 and indicate
that neutralizing antibodies alone are insufficient in preventing
primary infection, viral persistence, or recurrence of disease.
Achieving greater efficacy will likely require a more robust
cellular response and adjuvants tailored to the desired CD8+ T
cell response.

Other platforms such as replication defective live-attenuated
HSV2 (HSV529) andDNA vaccine encodingHSV2 glycoprotein-
D (COR-1) are being tested in Phase 1 trials to improve cellular
responses (202, 203). Thus far, these candidates are shown to be
safe in humans, and the HSV529 elicits neutralizing antibodies
and modest CD4+ T cell responses in HSV seronegative
vaccinees (202). In addition, there are other subunit vaccines
in preclinical development that are assessing combinations of
different viral antigens with novel adjuvants to stimulate CD4+
and CD8+ T cell responses (204, 205).

How Close Are We
The primary strategy to prevent congenital HSV is to
immunize prior to conception to confer HSV immunity during
pregnancy and reduce likelihood of reactivation and congenital
transmission. In the absence of a vaccine that induces sterilizing
immunity, even a partially effective vaccine that controls viral
shedding could reduce congenital disease burden since isolation
of HSV from the mother’s vagina at delivery is associated
with a 300-fold increase in the risk of neonatal infection
(177). While the vaccines candidates tested thus far do not
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protect adequately from HSV2 acquisition, it is unclear if they
would limit vertical transmission with differential efficacy, since
analyses were conducted in non-pregnant populations. Testing
of diverse vaccine candidates in clinical and pre-clinical trials
gives hope that a vaccine to protect from perinatal HSV infection
is feasible.

HUMAN IMMUNODEFICIENCY VIRUS (HIV)

HIV can be vertically transmitted frommother to infant in utero,
during delivery, or postnatally during breastfeeding. In 2018,
∼1.7 million children worldwide under the age of 15 were living
with HIV and over 160,000 infants were newly infected with HIV
primarily via mother to child transmission (MTCT) (206). While
HIV-infected infants could remain asymptomatic for years, HIV
can progress to AIDS if left untreated, characterized by a severely
damaged immune system with a CD4+ T cell count <200
and increasing frequency of severe, opportunistic infections. In
the absence of interventions during or after pregnancy, rates
of mother to child transmission (MTCT) are between 30 and
40% but the introduction of antiretrovirals therapies (ART)
during pregnancy and breastfeeding has reduced MTCT rates
to as low as 2% (207). Since the majority of HIV-positive
individuals are started on ART following diagnosis, the primary
observed impacts of HIV infection are typically related to the
lifelong treatment. While ART inactivates replicating virus, the
drugs cannot abolish the latent viral reservoir that results from
infection, causing lifelong dependence on this drug. While
ART in HIV-infected children prevents disease progression to
AIDS, ART has been associated with metabolic complications
including lipodystrophy, dyslipidemia, insulin resistance, lactic
acidosis, and loss of bone density (208). Thus, additional options
to support current prevention strategies against perinatal HIV
transmission are needed to eliminate the pediatric HIV epidemic.

Current Guidance
It is recommended that all pregnant women be tested for HIV
during their first antenatal visit. Subsequent, testing in the
third trimester is advised for pregnant women with negative
initial HIV antibody tests if they are considered at increased
risk of HIV acquisition, or reside in jurisdictions with elevated
HIV incidence or that require third-trimester testing (209).
According to the World Health Organization’s (210) clinical
treatment recommendations, all pregnant and breastfeeding
women regardless of WHO clinical stage and CD4+ T cell
count should receive the Option B plus treatment strategy, which
consists of triple combination fixed-dose ART, immediately upon
diagnosis and continued for life. A primary risk factor for MTCT
of HIV is maternal plasma viral load, other risk factors include
maternal disease progression, CD4+ T cell counts, mode of
delivery, prematurity, and breastfeeding (211).

Protective Immunity
In the absence of ART, the rate of MTCT of HIV is
<50%, suggesting that there exist maternal immune factors
that contribute to protection. Identification of these immune
correlates of protection could inform the types of immune

responses that maternal HIV immunization strategies may need
to elicit to prevent transmission to an infant (24). Maternal
antibodies against conserved portions of the HIV envelope
(Env) have been suggested to have protective effects against
transmission although the results have not been consistent across
studies. Factors such as the magnitude of maternal IgG responses
to the third variable loop or CD4 binding site of the HIV env
gene, and the magnitude of neutralizing antibody responses
against easy-to-neutralize (tier 1) viral variants were predictive
of reduced risk of MTCT in the US-based Women and Infants
Transmission Study (WITS) cohort (212). Whereas, increased
risk of MTCT was associated with antibodies against CD4+ T
cell binding sites in the HIV envelope and HIV’s variable loop
1 and 2 (V1V2) (213). Moreover, the presence of gp41 epitope-
specific antibodies is associated with reduced risk of transmission
in HIV subtype C-infected mother-child pairs (214). These
conflicting results indicate that while there are potentially
protective humoral immune responses against HIV Env, these
responses differ depending on virus clade, transmission mode,
and maternal antiretroviral use (213, 215, 216).

Maternal autologous virus neutralizing antibody responses are
another immune factor that has been increasingly studied in the
context of MTCT of HIV. MTCT is characterized by a virus
genetic bottleneck in which infant infection is established by a
single or a few maternal transmitted-founder (T/F) viral variants
(217–219). Though the maternal and infant factors that drive
selection of infant T/F variants are not well-understood. Recent
studies have found that infant T/F viruses aremore neutralization
resistant to paired maternal plasma neutralizing antibodies as
compared to maternal non-transmitted viral variants (218).
However, some studies have indicated that transmitting mothers
as compared to non-transmitting mothers have higher breadth
and potency of neutralizing antibody responses (220). These
infant T/F viruses are generally neutralization sensitive to most
broadly neutralizing antibodies (bnAbs). Yet, a recent study has
revealed the occurrence of escape of the infant transmitted virus
variant from a mother’s plasma bnAb response, indicating that a
single specificity bnAb response will not be sufficient to eliminate
MTCT (221). Together, these studies suggest the potential for
boosting maternal autologous virus neutralization by eliciting
multispecific bnAb responses to further prevent MTCT (218).

Current research into passive and active immunization
strategies for preventing MTCT is being conducted in both
non-human primate (NHP) models and clinical trials. In the
simian immunodeficiency virus (SIV) model, SIV-exposed
infant macaques were protected against transmission by
passive immunization with hyperimmune globulin (222).
Rhesus macaque models utilizing chimeric simian-human
immunodeficiency virus (SHIV), in which includes the
HIV envelope, have also shown that post-exposure passive
immunization of infants or mother-infant pairs with neutralizing
monoclonal antibodies led to complete protection from virus
acquisition (223, 224). Human clinical trials have tested
treatment of HIV-infected pregnant women and infants with
HIV hyperimmune immunoglobulin (HIVIG) in order to
assess HIVIG safety and efficacy when combined with ART
drugs like nevirapine and zidovudine (225, 226). While HIVIG
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administration had no adverse effects on pregnancy, there was no
statistically significant difference in HIV perinatal transmission,
showing that results from the promising NHP model did not
translate to efficacy in humans (225, 226). Preliminary maternal
HIV vaccination trials have established the safety and feasibility
for delivery of viral envelope-based alum-adjuvanted vaccines
in HIV-infected pregnant women on ART (227). Though the
efficacy of this approach remains to be tested.

Vaccine Design Considerations
A promising area of research is the development of a pediatric
HIV vaccine that can elicit lifelong bnAb responses targeting
locations on the HIV Env protein. Passive administration of
bnAbs to NHPs can prevent transmission and establishment
of viral infection, providing proof of principle that bnAbs
of sufficient breath and potency could induce protective
immunity (224). Current approaches to bnAb elicitation explore
use of multi-component sequential regimens that incorporate
HIV Env epitope-specific immunogens, antibody lineage-based
immunogens, and/or germline-targeting immunogens to drive
antibody maturation from B cell precursors toward bnAbs (228).
Yet, these approaches are likely to require long term multi-
dose, immunization strategies. BnAb targeting vaccines are of
particular interest as a vaccination strategy to elicit long-term
protective HIV immune responses in early childhood that will
provide protection into adolescence, prior to the risk of sexual
transmission. Recent studies have suggested that HIV-infected
children are able to develop broader and more potent virus
neutralization earlier than adults and via a distinct mechanistic
pathway, highlighting potential advantages of the childhood
immune landscape for eliciting broadly neutralizing antibodies
compared to adults (229–232).

How Close Are We
Despite more than 40 years of intensive research and investments
in the field, HIV continues to be a challenging pathogen to
address as it mutates away from vaccine immunity, presents
highly complex epitopes, and consists of a spectrum of strains
with high viral diversity. While clinical trials and the non-human
primate model have revealed trends in immunity required to
control the virus, these trends have varied across populations
and viral strains leading to several hurdles for vaccine design
(233). Promising strategies like the elicitation of bnAbs do not
have a licensed precedent in medicine and have not been tested
in clinical trials. Therefore, much research is still required to
generate an effective vaccine for elimination of perinatal and
lifelong infection with HIV.

TOXOPLASMA

Toxoplasma gondii is a parasite prevalent in the world with up to
one third of the world population infected (234). The percentage
of women infected in child bearing years varies depending on
the region. In developed countries, between 10 and 50% are
infected, however in the tropics this rate can be as high as 80%
(235). Such a high global prevalence of this parasite is facilitated
by its partial life cycle in feline species, which co-inhabit with

humans, ability to infect ubiquitous mammals and birds that
we eat and live around, and ability to survive in the external
environment without degradation. To do this, Toxoplasma gondii
has a particularly complex life cycle with two main stages: the
sexual life cycle which occurs in felines and results in oocysts
that are transmitted in cat feces, and the asexual life cycle occurs
in mammals or birds (236). The parasite takes different forms
in each phase of its life cycle allowing it to adapt to each
host and infect. The two life cycle phases that may progress
in humans are known as, tachyzoites, which rapidly replicate,
and the bradyzoites, which are the more inactive and form
cysts in tissues (236). Not only do these cysts inhibit organ
function, but they also contain concentrated amounts of parasites
which facilitate vertical transmission. Consequently, the parasite
is typically transmitted by ingesting contaminated undercooked
meat and unwashed vegetables or fruit, and directly through
handling and subsequent incidental ingestion of the parasite in
cat feces or contaminated soil (234).

Infection results in the disease Toxoplasmosis. Most
immunocompetent individuals have no symptoms (subclinical),
however pregnant women and immunocompromised
individuals such as HIV-infected individuals and transplant
patients can have life threatening complications due to cysts and
infection of organs like muscles, brain, heart, lung or placenta
(237). Specifically for the fetus and newborn, toxoplasmosis
can result in hydrocephaly, intellectual disability, seizures or
death (237). Timing of congenital infection by trimester of
pregnancy and severity of injury to the fetus are inversely related.
During the first trimester of pregnancy infection results in a
low transmission frequency (<6%) to the fetus but has the most
detrimental consequences if transmission does occur (234).
Whereas, infection in the third trimester transmission is much
more common (60–80%), but results in lesser severity of disease
in the fetus (234).

Current Guidance
There is no vaccine for T. gondii, and in fact vaccines are not
a high priority given effective treatment options in pregnancy
and widespread prevention counseling in prenatal clinical visits.
Prevention of Toxoplasma congenital infections is based on
following proper hygiene guidelines during pregnancy, such as
washing hands, avoiding eating raw or undercooked meat or
unwashed vegetables, and importantly, not handling cat feces
(238). Systematic Toxoplasma screening is recommended for all
pregnant women, as early in the pregnancy as possible, and is
based on serology to assess for the presence of T. gondii IgM
antibodies. If detected, infection is treated with pyrimethamine
and sulfadiazine, which kill the replicating tachyzoite stage of
the parasite (239). Since pyrimethamine may be teratogenic
in early pregnancy, it is only recommended after 18 weeks
of gestation (240). These treatments are highly effective for
prevention of congenital T. gondii infection, and have shown to
reduce incidence of congenital infection up to 60% as compared
to historical controls without treatment (240). However, if
congenital infection does occur then newborns are also offered
these treatments. One of the main drawbacks to the current
treatment approach is that T. gondii has multiple stages in its
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lifecycle and the drugs have less efficacy against the slow dividing
bradyzoites (239).

Protective Immunity
Immunological control of T. gondii infection requires both innate
and adaptive immune responses. A TH1 response through toll-
like receptor (TLR) sensing of the parasite in tissues followed
by IL-12 and IFNγ production are critical for control of
cyst formation (241). Also, dendritic cells and neutrophils are
important to parasite control as depletion of these immune cells
results in an increased burden of cysts and downstream health
complications (242, 243). CD4+ and CD8+ T cell responses
and a robust antibody response including IgM, IgA, and IgE
antibodies develop by 2 weeks post infection, suggesting an
essential role for T cells, mucosal antibodies, and/or extracellular
antibody effector functions (234). The importance of T cell
responses is demonstrated in HIV patients, where there is a
lack of ability to control the infection in patients with reduced
CD4+ T cells and also in mouse models lacking CD4+ T cells
(244, 245). Although reinfection can occur, a prior exposure to
this pathogen and immune response limits spread of the parasite
throughout the body. Given that natural immunity does not
prevent reinfection, a vaccine would have to provide more robust
immunity than natural infection to be effective.

Vaccine Design Considerations
The multiple life stages of parasites are particularly complex
for vaccine design, as these pathogens change substantially over
the course of infection. Thus far, there are no licensed vaccines
to prevent parasitic diseases, and treatments have been largely
effective given their low rates of mutation as compared to viral
and bacterial pathogens (246). A vaccine may require targeting
of important immune responses required for prevention of
infection such as MHC class I restricted CD8+ T cells and
IFNγ (247).

In pregnant women prior immunity to T. gondii is
not sufficient to prevent transmission to the fetus although
transmission and severity of injury to the fetus is reduced
(248). Vaccine development has been ongoing for the last 30
years, with a focus on prevention of tissue cyst development
and vertical transmission in livestock and felines, which are
the primary sources of human exposure to the pathogen (249).
Blocking the pathogen prior to cyst formation is critical as
cysts shield parasites from immune detection and responses,
and thereby enable infection and transmission. Thus, parasite
control mediated by vaccine-elicited immunity is more feasible
before to cyst formation. An example of this approach is
the licensed Toxovax R© vaccine for sheep. Toxovax R© is a live
attenuated vaccine consisting of the S48 strain of tachyzoites that
reduces abortion rates in sheep and tissue cyst formation (250).
However, the disadvantage of Toxovax R© is its short shelf life, and
incomplete protection. Due to its limited application in breeding
ewes, the primary focus of Toxovax R© is to improve livestock
yields and not for prevention of congenital toxoplasmosis
in people.

How Close Are We
The strategy to vaccinate livestock and household pets is a
novel approach to preventing congenital infections, and depends
upon high levels of implementation, as pockets of unvaccinated
pets and livestock can endanger pregnant women and newborn
health. Importantly, this strategy may not be effective in
low-income countries where disease burden is greatest due
to economic constraints of purchasing vaccines for livestock
with limited household income (251). Given the low rates of
congenital transmission and options for screening and treatment,
development a human vaccine for T. gondii continues to be
low priority for research. In place of a vaccine, increasing
access to screening and drugs may be a more urgent and
effective alternative.

SYPHILIS

Syphilis, a sexually transmitted infection caused by the spirochete
bacterium Treponema pallidum, infects 36 million people
globally and annually impacts 988,000 pregnancies that result
in 661,000 cases of congenital syphilis (CS) per year worldwide
(252). Mother to child transmission is the second leading cause
of still birth andmiscarriage worldwide. Of pregnant womenwith
untreated syphilis globally, 53% have an adverse birth outcome,
with 16% of infants with clinical disease (2). Transmission can
occur any time during pregnancy. While penicillin can treat this
disease, there is rise in newborn infections, mostly due to low
coverage of antenatal screening and rising numbers of maternal
infections in the general U.S. population (1, 2).

Despite growing recognition of the need to bolster public
health interventions and develop a complementary vaccine
strategy, there is a lot that remains unknown about the biology
of T. pallidum and immunity required to protect against it.
An important reason to complement these implementation
challenges with more urgent vaccine development efforts is due
to the rise of antibiotic resistant syphilis strains, suggesting that
alternative approaches to penicillin will soon be required (253).
In the absence of longstanding syphilis vaccine research,maternal
immunity may provide clues as to the immunity required for
protection. It is known that mothers who are later in their
infection, are substantially less likely (10%) to transmit syphilis
to their fetus as compared to those in early infection (40–70%)
(254). This indicates that development of adaptive immunity
over the course of infection offers substantial protection from
congenital disease, and a vaccine could elicit similar types of
immunity. Intensive research on the genetic variability across
syphilis strains and protective immunity must take place before
developing a vaccine to prevent CS.

Current Guidance
Congenital Syphilis is highly treatable using antibiotics,
benzathine penicillin G (255). The CDC mandates syphilis
screening at the first prenatal visit, and recommends follow-up
screening in early third trimester and delivery in higher risk
populations. Syphilis is diagnosed by treponemal or non-
treponemal serologic tests which detect syphilis antibodies
against these different life stages for the bacterium. Since these
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tests may have lower sensitivity in early infection, the diagnosis
also consists of evaluation of sexual history and exclusion of other
diseases. Once diagnosed in pregnancy, 1–3 doses of penicillin
(2.4 million units total) are administered intramuscularly to treat
the disease. While this is considered curative for the fetus as well,
upon birth, the infant also undergoes syphilis serology testing
and may receive the treatment.

Despite treatment availability, the majority of congenital
infections in high resource settings like the US occur because
the mother is unaware of her infection status, due to lack of
testing and difficulty in diagnosing low grade early infections
(256, 257). Lesions from primary infections can be painless
and difficult to detect, whereas secondary and tertiary stages of
syphilis can persist without symptoms or be misdiagnosed due
to the non-descript nature of symptoms. This leads to missed
opportunities for detection and treatment. Moreover, policies for
implementation of screening is a critical issue. For example, a
2016 study identified that 6 US states did not require prenatal
screening for syphilis at the first visit (257).

Meanwhile, in low- and middle-income countries syphilis
remains at endemic levels due to lack of access to antenatal care
visits, missed screening at these visits, and increase in prevalence
among key populations such as men who have sex with men and
female sex workers (1, 258, 259). Additionally, there are global
drug shortages of benzathine benzylpenicillin, the treatment for
syphilis which has been placed on the essential medicines list
by the WHO. Projections of unmet drug need for 30 high
burden countries indicate a doubling of penicillin required for
mothers and infants if screening guidelines were met for 95% of
the population (260). Fulfilling this need would prevent 95,938
adverse birth outcomes and 37,822 stillbirths (260). Therefore,
despite effective diagnostic and treatment options, CS has not
been controlled in low or high resource settings due to persistent
structural and implementation barriers.

Protective Immunity
T. pallidum infection occurs in the mucosa or skin following
sexual contact. Spirochetes directly attach and replicate below
the skin, and subsequently spread through the blood and
lymphatics (261). Cellular immune infiltrates are seen at the
sites of replication (262), after sensitization T cells respond
to outbreak infections with a delayed type hypersensitivity
response, which is associated with clearance of the bacterium
(263). Antibodies are also thought to control infection. Following
primary infection, high levels of IgG is detected against T.
pallidum proteins, which are important for opsonization and
phagocytosis of the bacterium by macrophages (264). Until 2018,
studies of T. pallidum have been hindered by an inability to
culture this organism long-term in vitro; this technology now
enables improved evaluation of immunity to this pathogen (265).

Proof of concept for vaccination was shown in 1973 where
rabbits were vaccinated with irradiated bacteria 60 times in 37
days and were fully protected from challenge for at least a year
from the homologous bacterium strain (266). This work showed
that antibodies directed toward native epitopes on the outer
membrane of virion surface would be sufficient for protection.
However, IgG elicited from infection with one strain is less

protective against heterologous strains, suggesting that vaccine
design must account for diversity across strains.

Currently, the primary focus for vaccine development is
identifying appropriate immunogens. This research has led
to characterization of outer membrane (OM) proteins of the
bacterium. Identification of OM structures is complicated in T.
pallidum due to few proteins in the OM and fragility of the
bacterium, which makes isolation of OM proteins difficult (261).
Advances in bioinformatics have increased the identification of
the outer membrane proteins, such as TrpK and reinvigorated
funding for identifying a vaccine for Syphilis (267).

Vaccine Design Consideration
A vaccine to prevent CS should go hand in hand with
key public health interventions to improve screening and
treatment in pregnancy. Given the population level morbidity,
implementation challenges, and high sexual transmission rates,
the target vaccine to prevent CS would not only elicit protective
immunity prior to pregnancy but also minimize transmission.
Therefore, the target population would be men and women prior
to sexual debut. Since primary infection in pregnancy leads to
higher rates of congenital transmission than later in the course
of infection, the target syphilis vaccine will need to protect
seronegative populations.

Given the challenges with culturing T. pallidum and making
large quantities for inactivation or attenuation, a strategy of
using bacterial antigens as vaccines is particularly promising.
Similar to the pneumococcus, meningitis, and Haemophilus
influenzae type B vaccines, these bacterical antigens can be
presented as a conjugate vaccine with optimized carrier and
adjuvants. Additionally, conjugate vaccines have a strong safety
profile for administration to pregnant women at all stages of
pregnancy (255).

How Close Are We
Priority for vaccine development and syphilis research has been
low due to the availability of penicillin as a treatment for syphilis.
However, implementation challenges associated with timely
screening and treatment have led to a failure to eliminate CS
thus far. Importantly, resistant strains threaten the effectiveness
of this approach in the future. Development of a vaccine would be
extremely beneficial for prevention of syphilis related still births
and congenital infection. A syphilis vaccine may also contribute
to control of HIV infection as syphilis infection is associated with
enhanced HIV transmission (237).

ZIKA VIRUS (ZIKV)

Zika virus (ZIKV) is the most recently discovered congenital
pathogen and transmits from mother to child during pregnancy
in ∼1 out of 10 ZIKV-infected pregnancies (268–270). The
congenital route of transmission for ZIKV was first identified
during the 2015–2016 outbreak in the Americas (271, 272).
However, ZIKV may spread sexually, and primarily via the
ubiquitous Aedes genus mosquito vector (273). In healthy
individuals, ZIKV infection may be asymptomatic or cause
a mild short-lived febrile disease with rashes, conjunctivitis,
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and arthralgia (274). Whereas, Congenital Zika Syndrome
(CZS) is much more severe outcome and characterized by an
array of conditions including neurodevelopmental disabilities,
microcephaly, visual impairments, motor delays, and reduced
mobility due to muscle contractures (268, 275, 276). These
conditions cause lifelong disability. In one cohort, one third
of infants born to mothers with ZIKV-infection in pregnancy
presented with below average scores for neurodevelopment, and
abnormal vision, hearing, and language function by the age of
two (276). There have also been reports of cardiac defects, and
development of microcephaly and autism in early life (276).
It is estimated that a single CZS case would result in $100
million in healthcare costs in the United States (277). The
burden of Zika disease on congenitally infected newborns has
motivated intensive research and unprecedented collaborations
to publishing findings rapidly for vaccine development.

Though the ZIKV outbreak of 2015–16 has subsided, the virus
may re-emerge after years as the population grows susceptible to
sustain transmission, like other flaviviruses. The virus is capable
of infecting urban primate populations in South America that
could serve as a reservoir for future outbreaks, or alternatively
buffer outbreaks through immunity (278–280). The previous
ZIKV outbreak led to microcephaly in 11,000 newborns in Brazil
and decline in fertility rate on a national level (281, 282). If the
virus were to return after years, these devastating consequences
for people and countries must be prevented by a vaccine or
intervention that is effective in pregnancy.

Current Guidance
Presently, there are no licensed vaccines or antivirals for
the prevention or treatment of Zika virus in pregnancy, the
time period of greatest risk to the fetus. Given the lack of
therapeutic options and the lifelong burden of disability, the
primary guidance is to prevent ZIKV-infection in pregnancy.
Pregnant women are advised to avoid travel to ZIKV-endemic
areas, minimize mosquito exposures, and protect against
sexual transmission during pregnancy (283). Condom use or
abstinence from sexual contact after travel to endemic regions is
recommended for up to 3 months with a male partner, due to
prolonged persistence of ZIKV RNA in semen (283). Moreover,
community mosquito control for arbovirus outbreaks in densely
populated areas may help to reduce transmission but does not
offer complete protection, as mosquito populations may be
missed and rebound (284).

Pregnant women living in outbreak areas with symptoms
or travel exposure history may be tested via a PCR test for
the presence of viral RNA or presence of ZIKV-specific IgM
for up to 12 weeks from exposure. While the PCR diagnostic
is most effective in acute infection, the CDC supports longer
testing in pregnancy as ZIKV may persist up to 3-times longer
in pregnant as compared to non-pregnant women (285, 286).
After birth, infants suspected of in utero ZIKV exposure may
be tested for ZIKV RNA or IgM, even though the molecular
test is most effective within 10–14 days of acute infection and
there is no reliable infant diagnostic (287). While ZIKV RNA
and infectious virus has been reported in breast milk, postnatal
transmission via this route has not been reported and thus breast

feeding of newborns by ZIKV-exposed mothers continues to be
recommended by the WHO (288).

Protective Immunity
Knowledge on immunity required to protect against ZIKV-
infection comes primarily from interferon knockout mouse
models, non-human primate models, and observational
cohorts of mothers and infants sampled during the recent
outbreak (289–291). In the aftermath of 2015–16 outbreak,
several vaccine candidates were developed and tested in mice
and NHPs, including an envelope (E) and pre-membrane
(prM) viral protein encoded as a DNA vaccine and mRNA
vaccine, purified inactivated virus, live attenuated vaccine,
and adenovirus vectored E and prM. All candidate vaccines
protected non-pregnant NHP and interferon knockout mice
from challenge (292–296). Moreover, neutralizing mAbs and
purified immunoglobulin from immunized monkeys protected
non-pregnant NHPs from ZIKV challenge, suggesting that high
titers of neutralizing antibodies alone may serve as a correlate
of protection (292, 295). Based on these promising findings, the
DNA vaccine encoding E and prM viral proteins was tested in
Phase I clinical trials and shown to be safe and immunogenic in
humans (297). Yet, in pregnant NHPs, the leading DNA vaccine
candidate and neutralizing monoclonal IgG therapeutics have
failed to provide sterilizing maternal and fetal immunity with
cases of fetal viremia and brain pathology despite vaccination
(298, 299).

As an alternative to the vaccine candidates based on structural
viral proteins, such as E, vaccine designs with non-structural
protein 1 (NS1) have also been tested in the mouse model.
The NS1 based candidates demonstrate reduced viral load and
improved survival in mice but cannot offer sterilizing immunity
as NS1 is not externally displayed on the virion for neutralization
(300, 301). In improving vaccine design to protect in pregnancy,
an E and NS1 combined vaccine design may be considered in
the future.

Studies of human responses after ZIKV infection indicate
rapid elicitation of plasmablasts and establishment of a ZIKV-
specific memory B cell population, supporting the protective role
for B cell immunity and ZIKV-specific antibodies (302, 303).
Furthermore, analyses of human T cell peptide epitopes shows
that ZIKV specific CD8+ T cells react more to structural proteins
whereas CD4+ T cells have a greater response to non-structural
viral proteins (304–306). Additionally, genetic variability across
ZIKV strains is not likely to be critical to vaccine design as ZIKV
is one serotype, and neutralizing antibodies against one strain
protects against the other (307, 308).

Innate immune host variability may also modulate disease
severity in pregnancy and capacity to induce protective maternal
immunity with vaccines. Through the mouse models and
in vitro studies of placental explants and primary human
trophoblasts it has been found that interferon responses mediate
pathogenesis at the maternal-fetal interface. While type I
IFNα/β inflammatory responses mediate an antiviral response
they also cause placental damage in the setting of ZIKV
infection, whereas type III IFNγ1 restricts ZIKV (309, 310).
In addition, complement may inhibit ZIKV replication in
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an antibody-dependent and independent manner, which may
also be altered during pregnancy (311–313). Progress thus far
indicates a need to evaluate active and passive vaccination
strategies against Zika in a pregnancymodel of infection to design
optimal candidates.

Vaccine Design Considerations
All vaccine strategies have an emphasis on prevention
of congenital infection, since this defines the primary
disease burden. The target population for a vaccine is
both male and female populations prior to reproductive
age, with a primary goal of a vaccine should be to
minimize risk of infection in pregnancy by eliciting
protective immunity that is effective in pregnancy.
Moreover, vaccinating both men and women will disrupt
transmission across populations and reduce likelihood of
viral exposure in pregnancy, either through mosquitoes or
sexual contact.

A key concern about ZIKV vaccine development is cross-
reactivity of antibody responses with co-endemic Dengue
(DENV) viruses, which are antigenically similar (314).
Cross-reactive antibodies that target conserved epitopes
across these viruses have the potential to mediate antibody-
dependent enhancement of subsequent viral infection (315–317).
Thus far, cohort studies suggest that prior DENV leads
to reduced risk of ZIKV infection (318, 319). Moreover,
in NHP’s prior ZIKV did not adversely impact DENV
pathogenesis, though further epidemiologic data is needed
(307, 320, 321). It is known that vaccine-elicited IgG and
flavivirus specific IgG are efficiently transferred across
the placenta, therefore the impact of these antibodies on
fetal and neonatal health must be considered in vaccine
development (322).

How Close Are We
Currently, vaccines candidates cannot be assessed for efficacy
without on-going transmission. Therefore, the emphasis for
vaccine development efforts is on research using animal
models and observational cohorts. When Phase II and
III efficacy testing is feasible, a successful candidate will
have to demonstrate vaccine efficacy in a combination
of pregnant and non-pregnant populations. Moreover, as
with Ebola vaccine trials, ethical and innovative vaccine
trial designs will be necessary in order to assess a vaccine
candidate in the context of an outbreak (323, 324). Due to
the requirement to assess Zika vaccine candidates within
outbreak settings, it is possible that evidence for licensure
may be derived not only from vaccine trials but also optimal
animal models.

CONCLUSION

Evaluating progress in vaccine development for congenital
and perinatal pathogens reveals a varied landscape of
priorities based on global disease burden and availability
for alternative prophylactic or treatment options. Intensive
research investments and progress is characterized by an

understanding of the features of protective immunity within
animal models and with precedence of clinical vaccine trials
that inform on-going research gaps. For Zika, CMV, HSV, and
syphilis, the optimal active vaccination would be delivered
prior to pregnancy like the rubella and varicella vaccine due
to risk of transmission across every stage of pregnancy. These
vaccines will need to elicit long lasting sterilizing immunity to
prevent infections during pregnancy. Whereas, immunologic
approaches for elimination of HIV mother to child transmission
have revealed a series of complexities with viral diversity and
escape from immunity, leading to increasingly complex passive
and active vaccine components that remain to be tested. It is
possible that passive maternal immunization could curb vertical
transmission rates for ZIKV and HIV, as with Hepatitis B,
yet evidence suggests that this will not likely be an effective
strategy for CMV and HSV vaccines which may require
protective cellular responses in addition to antibody responses.
In contrast to these strategies that will be optimal before
pregnancy, the GBS vaccine candidates are specifically designed
for administration in pregnancy to promote transplacental
transfer of antibodies and prevent early and late onset of
neonatal disease.

Moreover, vaccine testing approaches also vary. Syphilis and
toxoplasma present a unique situation for vaccine development
since effective treatment options are available but are rendered
ineffective due to implementation challenges. These barriers
emphasize the role of public health interventions in promoting
pediatric health. Indeed, the availability of a treatment supports
vaccine development and testing in seronegative populations
as there are well-established standards of care for even the
placebo group upon detection of disease. In comparison, a
maternal HIV vaccine would only be administered to actively
infected individuals and therefore a novel vaccine candidate
must demonstrate efficacy in the presence of the ART as
standard of care. Whereas for CMV vaccines, these can be
tested in seronegative or seropositive populations. Finally, ZIKV
vaccines cannot be tested without transmission in the population,
which suggests roles for optimal animal models to guide
vaccination strategies.

To make further progress on these vaccines for congenital
and perinatal infections and protect newborns, it is important to
evaluate the vaccine candidate in the relevant setting of mother
to child transmission, taking into account the role of pregnancy
on immunity and the timing of screening and disease detection.
This will allow for more effective translation of vaccine strategies
for maternal and newborn health.
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