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Background: When exposed to repetitive umbilical cord occlusions (UCO) with

worsening acidemia, fetuses eventually develop cardiovascular decompensation

manifesting as pathological hypotensive arterial blood pressure (ABP) responses to fetal

heart rate (FHR) decelerations. Failure to maintain cardiac output during labor is a key

event leading up to brain injury. We reported that the timing of the event when a fetus

begins to exhibit this cardiovascular phenotype is highly individual and was impossible

to predict.

Objective: We hypothesized that this phenotype would be reflected in the individual

behavior of heart rate variability (HRV) as measured by root mean square of successive

differences of R-R intervals (RMSSD), a measure of vagal modulation of HRV, which is

known to increase with worsening acidemia. This is clinically relevant because HRV can

be computed in real-time intrapartum. Consequently, we aimed to predict the individual

timing of the event when a hypotensive ABP pattern would emerge in a fetus from a

series of continuous RMSSD data.

Study Design: Fourteen near-term fetal sheep were chronically instrumented with

vascular catheters to record fetal arterial blood pressure, umbilical cord occluder

to mimic uterine contractions occurring during human labor and ECG electrodes

to compute the ECG-derived HRV measure RMSSD. All animals were studied

over a ∼6 h period. After a 1–2 h baseline control period, the animals underwent

mild, moderate, and severe series of repetitive UCO. We applied the recently

developed machine learning algorithm to detect physiologically meaningful changes

in RMSSD dynamics with worsening acidemia and hypotensive responses to FHR

decelerations. To mimic clinical scenarios using an ultrasound-based 4Hz FHR

sampling rate, we recomputed RMSSD from FHR sampled at 4Hz and compared

the performance of our algorithm under both conditions (1,000Hz vs. 4 Hz).
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Results: The RMSSD values were highly non-stationary, with four different regimes and

three regime changes, corresponding to a baseline period followed by mild, moderate,

and severe UCO series. Each time series was characterized by seemingly randomly

occurring (in terms of timing of the individual onset) increase in RMSSD values at different

time points during the moderate UCO series and at the start of the severe UCO series.

This event manifested as an increasing trend in RMSSD values, which counter-intuitively

emerged as a period of relative stationarity for the time series. Our algorithm identified

these change points as the individual time points of cardiovascular decompensation with

92% sensitivity, 86% accuracy and 92% precision which corresponded to 14 ± 21min

before the visual identification. In the 4Hz RMSSD time series, the algorithm detected

the event with 3 times earlier detection times than at 1,000Hz, i.e., producing false

positive alarms with 50% sensitivity, 21% accuracy, and 27% precision. We identified

the overestimation of baseline FHR variability by RMSSD at a 4Hz sampling rate to be

the cause of this phenomenon.

Conclusions: The key finding is demonstration of FHR monitoring to detect fetal

cardiovascular decompensation during labor. This validates the hypothesis that our

HRV-based algorithm identifies individual time points of ABP responses to UCO with

worsening acidemia by extracting change point information from the physiologically

related fluctuations in the RMSSD signal. This performance depends on the acquisition

accuracy of beat to beat fluctuations achieved in trans-abdominal ECG devices and fails

at the sampling rate used clinically in ultrasound-based systems. This has implications

for implementing such an approach in clinical practice.

Keywords: HRV, hypotension, brain Injury, Bezold Jarisch reflex, machine learning, time series, anomaly detection,

changepoint detection

A. Why was the study conducted?

During labor, fetuses may develop pathologically
hypotensive arterial blood pressure responses to fetal heart

rate (FHR) decelerations triggered by uterine contractions.
The timing of this event is difficult to predict clinically. We

developed a machine learning method to detect this event
from an individual FHR tracing.

B. What are the key findings?

This real-time algorithm performs well on noisy FHR data

requiring ∼2 hours to train on the individual FHR tracings in

the first stage of labor; once trained, the algorithm predicts the
event with 92% sensitivity, 86% accuracy, and 92% precision.

The algorithm’s performance deteriorates to 50%

sensitivity, 21% accuracy, and 27% precision when the
FHR is acquired at a sampling rate of 4Hz used in the
ultrasound (CTG) monitors compared to the ECG-derived
signal as it can be acquired from maternal abdominal ECG.

C. What does this study add to what is already known?

This is the first demonstration of the ability to detect fetal
cardiovascular decompensation, a prequel to brain injury,
intrapartum. The approach is ready for clinical testing.
Computerized CTG monitoring cannot predict fetal acidemia
intrapartum as well as ECG-based FHR monitoring. This
study adds to this knowledge that a computerized approach
for objective detection of cardiovascular compromise from

FHR in real-time from an individual FHR tracing also
performs better when using ECG-derived FHR tracing than
CTG tracing.

INTRODUCTION

Electronic fetal monitoring (EFM) cannot identify fetuses at risk
of incipient brain injury. The efforts to identify intrapartum
acidemia using EFM have failed, in particular using fetal
heart rate (FHR) monitoring, because fetal brain injury is
poorly correlated with acidemia (1). Brain compromise due
to hypoxia-ischemia (HI) can ensue when the fetal cerebral
blood flow is persistently reduced e.g., due to precipitous drop
in cerebral perfusion pressure resulting from cardiovascular
decompensation (2, 3). Bezold-Jarisch reflex (BJR) is a vagal
depressor reflex observed in fetal sheep under the conditions of
umbilical cord occlusions (UCO) with worsening acidemia which
leads to cardiovascular decompensation (4). We asked whether
FHR monitoring can capture the BJR-mediated vagal sensing
of acidemia. We studied the relationship between fetal systemic
arterial blood pressure (ABP) and FHR in an animal model of
human labor.

We had reported that sheep fetuses have an individual
cardiovascular phenotype in their responses to increasing
acidemia due to repetitive intermittent hypoxia (3). We
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hypothesized that such phenotype would be reflected in
individual responses of heart rate variability (HRV) as measured
by root mean square of successive differences of R-R intervals
(RMSSD), a measure of vagal modulation of HRV known to
increase with worsening acidemia (5–7). Consequently, a series
of continuously computed RMSSD data will consistently predict
the event when a hypotensive ABP pattern emerges in an
individual fetus (3).

The current standard of EFM relies predominantly on
ultrasound-based FHR monitoring. Because the vagally
mediated HRV is found on a time scale that is not captured
at 4Hz sampling rate, we also tested the impact of its
inherently lower FHR sampling rate precision of 4Hz vs.
the golden standard electrocardiogram (ECG)—derived
1,000Hz on the ability to individually predict cardiovascular
decompensation. We hypothesized that the lower temporal
precision will result in a poorer prediction of the timing of
cardiovascular decompensation.

MATERIALS AND METHODS

Experimental methods and data acquisition have been presented
elsewhere (8). Briefly, fourteen near-term fetal sheep were
chronically instrumented with vascular catheters to record fetal
arterial blood pressure, umbilical cord occluder to mimic uterine
contractions occurring during human labor and ECG electrodes
to compute ECG-derived HRV measure RMSSD. Animal care
followed the guidelines of the Canadian Council on Animal Care
and was approved by the University of Western Ontario Council
on Animal Care.

Surgical Preparation
Fourteen near-term ovine fetuses [123 ± 2 days gestational age
(GA), term = 145 days] of the mixed breed were surgically
instrumented. The anesthetic and surgical procedures and
postoperative care of the animals have been previously described
(3, 9). Briefly, polyvinyl catheters were placed in the right and
left brachiocephalic arteries, the cephalic vein, and the amniotic
cavity. Stainless steel electrodes were sewn onto the fetal chest
to monitor the electrocardiogram (ECG). A polyvinyl catheter
was also placed in the maternal femoral vein. Stainless steel
electrodes were additionally implanted biparietally on the dura
for the recording of electrocorticogram, ECOG, as a measure
of summated brain electrical activity [results reported elsewhere
(3, 8, 10)]. An inflatable silicon rubber cuff (In vivo Metric,
Healdsburg, CA) for UCO induction was placed around the
proximal portion of the umbilical cord and secured to the
abdominal skin. Once the fetus was returned to the uterus, a
catheter was placed in the amniotic fluid cavity. Antibiotics were
administered intravenously to the mother (0.2 g of trimethoprim
and 1.2 g sulfadoxine, Schering Canada Inc., Pointe-Claire,
Canada) and fetus and into the amniotic cavity (1 million
IU penicillin G sodium, Pharmaceutical Partners of Canada,
Richmond Hill, Canada). Amniotic fluid lost during surgery
was replaced with warm saline. The uterus and abdominal wall
incisions were sutured in layers and the catheters exteriorized

through the maternal flank and secured to the back of the ewe
in a plastic pouch.

Postoperatively, animals were allowed 4 days to recover
prior to experimentation and daily antibiotic administration was
continued intravenously to the mother (0.2 g trimethoprim and
1.2 g sulfadoxine), into the fetal vein and the amniotic cavity
(1 million IU penicillin G sodium, respectively). Arterial blood
was sampled for evaluation of the maternal and fetal condition
and catheters were flushed with heparinized saline to maintain
patency. Animals were 130 ± 1 day GA on the first day of the
experimental study.

Experimental Procedure
All animals were studied over a ∼6 h period (Figure 1). Fetal
chronic hypoxia was defined as arterial O2Sat <55% as measured
on postoperative days 1–3 and at baseline prior to beginning
the UCOs. The first group comprised five fetuses that were
also spontaneously hypoxic (n = 5, H/UCO). The second
group of fetuses was normoxic (O2Sat>55% before UCOs) (n
= 9, N/UCO). The experimental protocol has been reported
(7, 9, 11). After a 1–2 h baseline control period, the animals
underwent mild, moderate, and severe series of repetitive UCOs
by graduated inflation of the occluder cuff with a saline solution.
During the first hour following the baseline period, mild variable
FHR decelerations were performed with a partial UCO for 1min
duration every 2.5min, with the goal of decreasing FHR by ∼30
bpm, corresponding to a ∼50% reduction in umbilical blood
flow (12, 13). During the second hour, moderate variable FHR
decelerations were performed with increased partial UCO for
1min duration every 2.5min with the goal of decreasing FHR by
∼60 bpm, corresponding to a∼75% reduction in umbilical blood
flow (13). Animals underwent severe variable FHR decelerations
with complete UCO for 1min duration every 2.5min until the
targeted fetal arterial pH of <7.0 was detected or 2 h of severe
UCO had been carried out, at which point the repetitive UCOs
were terminated. These animals were then allowed to recover
for 48 h following the last UCO. Fetal arterial blood samples
were drawn at baseline, at the end of the first UCO of each
series (mild, moderate, severe), and at 20min intervals (between
UCOs) throughout each of the series, as well as at 1, 24, and 48 h
of recovery. For each UCO series blood gas sample and the 24 h
recovery sample of 0.7ml of fetal blood was withdrawn, while
4ml of fetal blood was withdrawn at baseline, at pHnadir < 7.00,
and at 1 and 48 h of recovery. The amounts of blood withdrawn
were documented for each fetus and replaced with an equivalent
volume of maternal blood at the end of day 1 of the study.

All blood samples were analyzed for blood gas values,
pH, glucose, and lactate with an ABL-725 blood gas analyzer
(Radiometer Medical, Copenhagen, Denmark) with temperature
corrected to 39.0◦C. Plasma from the 4ml blood samples was
frozen and stored for cytokine analysis, reported elsewhere.

After the 48 h recovery blood sample, the ewe and the
fetus were killed by an overdose of barbiturate (30mg sodium
pentobarbital IV, MTC Pharmaceuticals, Cambridge, Canada).
A post mortem was carried out during which fetal sex and
weight were determined and the location and function of
the umbilical occluder were confirmed. The fetal brain was
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FIGURE 1 | Experimental protocol and a representative example of the analytical approach (animal ID 473378). The RMSSD time series derived from 1,000Hz (blue)

and 4Hz (orange) sampled ECG are displayed superimposed in the top panel, with declared change points from the BOCPD algorithm and the Sentinel (expert

detection) marked with arrows. Sequential fetal arterial pH measurements are indicated. Experimental stages are demarcated by background colors; short black bars

over X-axis indicate the zoomed-in segments shown in the bottom panel. Bottom panels show fetal heart rate (FHR, bpm), fetal arterial blood pressure (ABP, mmHg)

and umbilical cord pressure (UCP, mmHg) indicating when UCO were triggered (increasing UCP). Note the failure of the change point algorithm to detect the sentinel

time point correctly (i.e., around the Sentinel time point) when using 4 Hz—derived RMSSD signal: the detection occurs 1 h earlier than with the 1,000Hz signal. This

is due to unphysiological fluctuations in FHR variability at baseline as demonstrated in Durosier et al. (7) and Li et al. (19).

perfusion-fixed and subsequently dissected and processed for
later immunohistochemical study as reported (14).

Data Acquisition and Analysis
A computerized data acquisition system was used to record
fetal systemic arterial and amniotic pressures and the ECG
signal, as described (7). All signals were monitored continuously
throughout the experiment. Arterial and amniotic pressures were
measured using Statham pressure transducers (P23 ID; Gould
Inc., Oxnard, CA). Arterial blood pressure (ABP) was determined
as the difference between instantaneous values of arterial and
amniotic pressures. A PowerLab system was used for data
acquisition and analysis (Chart 5 For Windows, ADInstruments
Pty Ltd, Castile Hill, Australia). Pressures, ECOG and ECG were
recorded and digitized at 1,000Hz for further study. For ECG, a
60Hz notch filter was applied.

R peaks of ECG were used to derive the heart rate variability
(HRV) times series. Beat detection was performed using a mix of

two algorithms, a custom wavelet-based detection and Elgendi’s
method with an added refractory period step (15). Both methods
include bandpass filtering as an initial step that removes baseline
wandering and high frequency noise. Beat detection was also
verified for accuracy using a custom developed ECG annotation
and reviewing tool. This was necessary to validate beat detection
in UCO periods where the noise level was high and where
there were artifacts generated by the contractions. R-R intervals
were further filtered based on the morphology of the ECG
waveforms, the level of noise/artifacts within short windows
and the proportion of disconnected/saturated periods, if any
(16, 17). Windows of low quality were not retained in the HRV
analysis. Low quality was defined over analysis windows (5min)
as a weighted sum of the percentage of time without non-
physiologic beats (artifacts), the percentage of time uninterrupted
by disconnections/saturations, the percentage of time with high
quality beats according to Clifford et al.’s (16, 17). Ectopies
were not filtered out as there were a large number of them
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during UCO periods and it would effectively remove most of the
UCO periods if filtered out. The average percentage of original
ECG signal ultimately discarded for the HRV analysis was
5.5% (range: 1–20%).

The time series of R-R peak intervals were uniformly
resampled at 4Hz. Technically, the resampling was performed as
an interpolation since we need to go from a pseudo-frequency
of 2.5–3Hz to a sampling frequency of 4Hz. The interpolation
method used was a piecewise cubic Hermite interpolation. Next,
the RMSSD was calculated continuously on both the original R-R
interval time series (with 1-millisecond resolution) and the R-
R interval time series resampled at 4Hz, from each 5min HRV
segment in 2.5min overlapping sliding windows. For the ∼6-h
time series, this corresponded to roughly 150 data points.

During UCO series, the point at which hypotensive ABP
responses to UCO had been detected by “expert” visual detection
was termed ABP “sentinel,” defined as the time between the onset
of such ABP responses to UCO and the time when pH nadir (pH
< 7.00) is reached in each fetus.

To detect changes in RMSSD values corresponding to the
above sentinel time point in the ABP responses, we used the
previously reported machine learning algorithm, referred to as
Delta point method, based on change point detection (18).
Briefly, Delta point method is a real-time change point detection
method, robust to false-alarms, designed to filter a vector of
suspected change points. It proceeds by fitting a probabilistic
Gaussian process model to the RMSSD time series baseline data
and computing online predictions of the RMSSD values within
the range of the model. Suspected change-points are declared
as significant (p < 0.05) deviations from pointwise model
predictions and observations. These are viewed as observations
of a doubly stochastic Poisson process, with observation rate
governed by the Gaussian process model. Based upon this theory,
the points are grouped into time intervals, within which the Delta
point is selected as the most significant change.

To perform hyper-parameter training, we segmented the data
into a 60 point training set, or 2.5-h training time on the baseline
and mild UCO periods of each time series (i.e., corresponding
to the first stage of labor). Our method uses an n = 10 point
or 25-min interval to segment the time series for delta point
evaluation. The choice of 10 points or 25-min interval is to
provide a reasonable number of points per interval for the Delta
point method, so that a reasonable average may be calculated for
the average run in each interval.

We defined a successful detection as the agreement between
the Delta point and the sentinel value, with Delta point
detection no later than 2min behind expert detection. False
negative detections were defined as Delta point being declared
2min behind expert detection. False positive detections were
defined as detection occuring 25min prior to expert detection,
corresponding to one Delta point sampling interval. This
demonstrates the effectiveness of the method, suggesting clinical
benefits for earlier decision making.

Statistical Analysis
The differences in the change point detection at 4Hz compared to
1,000Hz were evaluated with the Wilcoxon signed-rank test with

TABLE 1 | Confusion matrix.

1,000 Hz Positive Negative 4 Hz Positive Negative

Positive 12 1 Positive 3 8

Negative 1 0 Negative 3 0

a P< 0.05 was considered significant. Detection performance was
analyzed by computing the accuracy, sensitivity, and precision of
the method defined as,

Accuracy =
Successful detections
Number of examples

(1)

Sensitivity= True Positive
True Positive + False Negative (2)

Precision=
True Positive

True Positive + False Positive (3)

Results
The physiological characteristics of the experimental groups have
been reported (8, 10, 11).

Delta point method was able to match the expert prediction
with Delta point declaration occurring at a median 8.5 (IQR =

10.5) minutes before ABP sentinel time. This corresponded to
92% sensitivity, 86% accuracy, and 92% precision.

In the 4Hz RMSSD time series, the algorithm triggered change
point at a median 36 (IQR = 44.3) minutes failing to match the
expert prediction by yielding 8 times earlier detection times than
at 1,000Hz, i.e., producing false positive alarms in 8 out of 14
cases (p = 0.003). This corresponded to 50% sensitivity, 21%
accuracy, and 27% precision. We report the confusion matrix
for both the 1,000Hz RMSSD and 4HZ RMSSD time series
in Table 1.

A representative example of the experimental data is shown in
Figure 1 and the individual findings for all subjects are reported
in Table 2.

The visual inspection of the RMSSD tracings suggested that
the overestimation of the baseline FHR variability by RMSSD
at the 4Hz sampling rate is the cause of this false detection
phenomenon. To verify this assumption we determined the
RMSSD values computed from the 1,000Hz and 4Hz sampled
FHR data sets at baseline and during the UCO series. Confirming
our hypothesis, we found a smaller difference in the average
normalized RMSSD values during the UCO series compared to
the baseline in the 4Hz data set (0.52 ± 0.16) compared to the
1,000Hz data set (0.85± 0.4, p= 0.027).

DISCUSSION

Principal Findings
Our findings validate the hypothesis that Delta point method,
applied to the FHR-derived HRV measure RMSSD, identifies
individual time points of ABP responses to UCO with worsening
acidemia by extracting change point information from the
physiologically related fluctuations in RMSSD time series. The
present findings also show the dependence of this method on
high temporal precision of FHR acquisition to capture correctly
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TABLE 2 | Performance of the anomaly detection algorithm in predicting the individual time points of cardiovascular decompensation from FHR.

Group Animal Sentinel 1,000Hz detection 4Hz detection 1,000Hz delta 4Hz delta

H_UCO 8003 15:56:00 15:49:00 15:52:00 0:07 0:04

H_UCO 473351 13:38:00 13:28:00 13:04:00 0:10 0:34

H_UCO 473362 11:05:00 11:03:00 11:35:00 0:02 0:30

H_UCO 473376 12:36:00 12:38:00 11:59:00 0:02 0:37

H_UCO 473726 12:04:00 11:50:00 11:54:00 0:14 0:10

N_UCO 461060 12:42:00 12:31:00 12:21:00 0:11 0:21

N_UCO 473361 12:51:00 12:36:00 12:16:00 0:15 0:35

N_UCO 473352 13:17:00 12:53:00 12:06:00 0:24 1:11

N_UCO 473377 12:12:00 12:14:00 12:50:00 0:02 0:38

N_UCO 473378 13:22:00 13:09:00 12:09:00 0:13 1:13

N_UCO 473727 11:03:00 11:10:00 11:08:00 0:07 0:05

N_UCO 5054 12:53:00 11:27:00 11:19:00 1:26 1:34

N_UCO 5060 11:26:00 11:24:00 10:29:00 0:02 0:57

N_UCO 473360 13:59:00 13:52:00 11:55:00 0:07 2:04

Sentinel, time of detecting the onset of pathological ABP decreases during UCOs by an expert (visual analysis); 1,000 and 4Hz detection, times of detecting the same using the change

point algorithm on RMSSD data derived from 1,000 or 4Hz sampled ECG; 1,000 delta and 4Hz delta, the time difference (sentinel-1,000 or sentinel-4Hz) between expert and change

point algorithm detection performance: detection by the algorithm preceded in most cases the expert detection, median 8.5 (IQR = 10.5) minutes and median 36 (IQR = 44.3) minutes,

respectively; Red font, cases when the algorithm detection happened after the expert detection; note that in the case of 4Hz delta, 2 out of 3 instances the detection was more than

30min too late compared to ∼3min too late in the three cases at 1,000 Hz.

the physiological fluctuations of FHR at baseline. This is in line
with the previous observations in the pregnant sheep model and
human fetuses intrapartum (7, 19).

RESULTS

We had reported consistent changes in fetal brain electrical
activity, the electrocorticogram (ECOG), with amplitude
suppression and frequency increase during FHR decelerations
accompanied by highly correlated pathological decreases
in fetal ABP, referred to as adaptive brain shutdown (3).
These changes in ECOG occurred on average 50min prior
to attaining a severe degree of acidemia (i.e., fetal arterial
pH<7.00). However, we noted a high degree of inter-
individual variability in the timing of the onset of these
brain electrical and cardiovascular responses. Importantly
for the neonatal outcome, we found a relationship between
the ensuing neuroinflammation measured by the number of
microglia, the brain’s immune cells, and the timing of the
adaptive brain shutdown onset (14). An individualized and
timely detection of the onset of hypotensive responses to
worsening acidemia and hence the timing of the adaptive
brain shutdown would provide clinically relevant information
on the degree of neuroinflammation after birth. Perinatal
neuroinflammation has been identified as relevant prognostically
not only short-term during early life, but also long-term for adult
neurodevelopmental sequelae (20–29).

We suggest that the robust performance of the algorithm
is owed to selecting causally linked phenomena which are
reflected in the two different time series: RMSSD is known
to rise with worsening acidemia due to chemoreceptors
activation for example (6, 7). Meanwhile, fetal ABP responses

to worsening acidemia deteriorate over time with an initial
phase of hypertensive responses during each UCO to compensate
for the drop in FHR, followed by the gradual decline of this
hypertensive component and eventually ensuing pathological
hypotensive ABP responses (3). This is at least partially due to
a cardiac decompensation with growing levels of acidemia (30,
31). Acidemia impacts myocardial contractility which decreases
cardiac output and ABP. It is plausible to expect that such
transition in cardiac behavior will be reflected in HRV, RMSSD
in particular, because HRV reflects not only the influences of
the autonomic nervous system’s vagal modulation of the cardiac
sinus node activity, it also depends on the intrinsic cardiac
rhythm fluctuations and health as evidenced by a decrease in
HRV in patients after heart transplants and by presence of
intrinsic HRV as early as in term fetuses of gestational age similar
to the present study (31–35).

The RMSSD time series were highly non-stationary, with four
different regimes and three regime changes, corresponding to
a baseline period followed by mild, moderate and severe UCO
series. Each time series was characterized by seemingly randomly
occurring (in terms of timing of the individual onset) increase
in RMSSD values at different time points during the moderate
UCO series and at the start of the severe UCO series. This
event manifested as an increasing trend in RMSSD values, which
counter-intuitively emerged as a period of relative stationarity
for the time series. The Delta point algorithm effectively declared
these points as the change point of clinical importance. Overall,
we found the Delta point algorithm’s predictions to be reliable
even in the instances when the signals were noisy (18). This
is based on the tests of the algorithm in various data sets as
published (18) and on our observation that here, to mimic
the online recording situation, no correction for ectopies or

Frontiers in Pediatrics | www.frontiersin.org 6 May 2021 | Volume 9 | Article 593889

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Gold et al. HRV Predicts Fetal Hypotension

non-sinus rhythms was undertaken on RMSSD as is usually
done for HRV offline processing (34). To our knowledge, no
comparable statistical or machine learning methods for FHR
analysis exist.

The reliance on a high-quality RMSSD signal (i.e., derived
from 1,000Hz sampled true beat-to-beat variability signal) is
also what explains the failure of the algorithm to detect relevant
changepoints at 4Hz sampling rate when the RMSSD signal
becomes distorted due to undersampling and the resulting
overestimation of baseline variability (7, 19).

Clinical Implications
We demonstrate that computerized FHR monitoring
intrapartum deploying machine learning can detect fetal
cardiovascular decompensation during labor. Considering the
average duration of labor of 12 h for nullipara, the requirement
of a 2-h training window on the individual patient’s data for the
proposed algorithm is trivial (36, 37). Possible decision support
such an algorithm can provide is alerting the healthcare provider
to ease on contractions or to expedite the delivery to prevent
fetal brain injury. Development of the actual clinical workflow
will require retrospective and prospective clinical studies.

Our findings have direct clinical implications since high
precision HRV can be recorded non-invasively in human fetuses
from maternal abdominal ECG (38–42). Moreover, the present
results validate and extend the insight we and others reported
earlier in sheep and human fetuses whereby the reduced
sampling rate of FHR acquisition decreases the precision of
HRV—derived measures such as RMSSD for the detection of
acidemia (7, 19, 43). Here, we show that the Delta point
method performs 3-times more precisely in alerting to fetal
cardiovascular decompensation when the underlying FHR signal
was sampled at the gold standard 1,000Hz rate available with
today’s fetal ECG monitors rather than at the 4Hz rate as
acquired with the ultrasound monitors.

Research Implications
Future prospective clinical studies will investigate the utility
of this discovery in the early detection of fetal cardiovascular
compromise intrapartum using EFM. Our findings indicate
the superiority of abdominal ECG-derived FHR signal for
the prediction of cardiovascular decompensation. The present
machine learning approach relies on the individual tracing to
learn its properties and detect the timing of fetal cardiovascular
compromise. That is, unlike most of the artificial intelligence (AI)
technologies based on other machine learning methodologies or
deep learning (artificial neural networks), our algorithm does
not require a large amount of data from multiple subjects
(thousands of subjects) to be fed into it in order to perform.
Nevertheless, the advent of deep learning may also open new
applications for more precise, individualized decision support
using the conventional ultrasound-derived FHR tracings. In this
context, future studies could focus on building big datasets of
FHR recordings intrapartum to enable large scale testing of the
AI-based algorithms such as the one presented here or the ones
based on deep learning approaches, e.g., as recently pioneered in
EFM by Georgieva et al. (44).

Strengths and Limitations
The present findings from an established preclinical translational
experiment present a conceptual advance in the clinical
EFM demonstrating a novel machine learning approach for
individualized detection of fetal cardiovascular compromise
using FHR. The individual machine learning time of∼2 h during
the first stage of labor is clinically realistic. The main limitation
of the present study is that its insights are derived from an animal
model paradigm, albeit well validated. As such, prospective
human clinical studies of FHR intrapartum are needed. Such
clinical studies will also shed light on our a priori choice of 25min
prior to the sentinel event as a cut-off for true positive detection.
It is possible that an earlier detection and decision support
for intervention in labor will be found beneficial for mother’s
and child’s health. In such case, the 4 Hz-based conventional
ultrasound FHR monitoring may turn out to also be amenable to
such an algorithm. The risk of increasing the already alarmingly
high rate of unnecessary cesarean sections speaks against this
notion at this time. Furthermore, our approach so far took no
advantage of the information contained in the changes in the
uterine pressure during contractions in the first and second
stages of pushing and the FHR response to it as is routinely
done clinically during the FHR assessment. A combination of
the present machine learning approach with information from
uterine contractions will likely boost the performance of the
presented algorithm in a clinical setting.

Conclusions
The novelty of the current work is that its EFM algorithm
permits statistical-level predictions about concomitant
changes in individual FHR tracings which alert about fetal
cardiovascular decompensation, an important mechanistic
prequel to brain injury. The presented approach now awaits
direct clinical validation in retrospective or prospective
clinical studies.

CONDENSATION

Fetal heart rate (FHR) algorithm based onmachine learning from
individual FHR tracings detects early cardiovascular compromise
in a sheep model of human labor.

DATA AVAILABILITY STATEMENT

The original contributions generated for the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The animal study was reviewed and approved by University of
Western Ontario Council on Animal Care.

AUTHOR CONTRIBUTIONS

NG, XW, andMF conceived of the manuscript. NG, CH, andMF
wrote the initial draft. NG and CH analyzed the data. NG, CH,

Frontiers in Pediatrics | www.frontiersin.org 7 May 2021 | Volume 9 | Article 593889

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Gold et al. HRV Predicts Fetal Hypotension

XW, andMF contributed to the draft, read and approved the final
version of the manuscript. MF holds patents on fetal EEG and
ECGmonitoring: US9,215,999 andWO2018160890. The authors
have declared that no further conflict of interest exists.

FUNDING

MF was funded by the Canadian Institutes for Health
Research (CIHR Grant Number: 123489).

ACKNOWLEDGMENTS

The authors gratefully acknowledge Dr. Bryan Richardson and
his Perinatal Research Lab at the University of Western Ontario
for the original design of the animal experiments that enabled the
acquisition of the dataset underlying the present study.

SUPPLEMENTARY METHODS -
EXPLANATION OF DELTA POINT METHOD

The Delta point method is a change point detection algorithm
for the online interrogation of suspected change points in
non-stationary time series. The algorithm proceeds by identifying
suspected change points in a non-stationary time series by

fitting a non-parametric function representation to the real-time
observed time series data. The fitted functional representation
then forecasts future values of the time series and a statistical
algorithm is applied to the realized and forecasted values
to determine if a significant divergence occurs between the
respective values. When a statistically significant difference is
observed, a suspected change point is declared.

Due to the noisy nature of biologically collected non-
stationary time series, this noise often causes many false-positive
detected change points for which real-time processing must be
applied to determine the temporal location of a true change.
The Delta point method uses the expanding returned vector
of suspected change points and applies a windowing procedure
to the temporal locations of the suspected changes. The rate
of suspected change points is then fit to a doubly-stochastic
point process to determine the rate at which suspected change
points occur in the time series overall, as well as within each
window. Due to the functional representation of the time series,
this additional information is used to tune the estimated hazard
rate of the point process. Based upon this representation, the
window of interest is determined as the location with the greatest
temporal difference between suspected change points. The Delta
point - the change point of true interest - is then selected as the
last occurring change point in the identified window.
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