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Background: Alström syndrome (AS) is a very rare childhood disorder characterized

by cardiomyopathy, progressive hearing loss and blindness. Inherited genetic variants

of ALMS1 gene are the known molecular cause of this disease. The objective of this

study was to characterize the genetic basis and understand the genotype–phenotype

relationship in Saudi AS patients.

Methods: Clinical phenotyping and whole-exome sequencing (WES) analysis were

performed on six AS patients belonging to two unrelated consanguineous Saudi families.

Sanger sequencing was performed to determine the mode of inheritance of ALMS1

variant in first-degree family relatives and also to ensure its rare prevalence in 100 healthy

population controls.

Results: We identified that Alström patients from both the families were sharing a very

rare ALMS1, 3′-splice site acceptor (c.11873−2 A>T) variant, which skips entire exon-19

and shortens the protein by 80 amino acids. This disease variant was inherited by AS

patients in autosomal recessive mode and is not yet reported in any population-specific

genetic databases. AS patients carrying this mutation showed heterogeneity in clinical

presentations. Computational analysis of the mutant centroid structure of ALMS1 mRNA

revealed that exon-19 skipping enlarges the hairpin loop and decreases the free

energy, eventually affecting its folding pattern, stability, and function. Hence, we propose

c.11873–2A as an AS causative potential founder mutation in Saudi Arabia because it is

found in two families lacking a common lineage.

Conclusions: We conclude that WES analysis potentially helps in clinical phenotyping,

early diagnosis, and better clinical management of Alström patients showing variable

clinical expressivity.
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INTRODUCTION

Alström syndrome (AS; OMIM 203800), first described in
1959, is an inherited ciliary disorder seen in early childhood.
The affected children typically present a complex array of
clinical characteristics including childhood obesity, early onset
of blindness, neurosensory hearing loss, type 2 diabetes mellitus,
progressive liver and kidney disease, hypertriglyceridemia,
and cardiomyopathy (1). AS patients also present short
stature, hypogonadotropic hypogonadism in affected males, and
polycystic ovarian syndrome (PCOS) in affected females. In
AS patients, clinical features may appear at different times
throughout childhood followed by progressive multiorgan failure
which reduces life expectancy where patients rarely live beyond
their 5th decade of life (2). Although clinical assessment is
considered as the first line of diagnosis, gradual multiorgan
dysfunction and variable expressivity of the disease within the
same family members make it more challenging (3). Clinical
management of AS is also complicated as patients present a
combination of endocrine, cardiac, renal, neural, and hepatic
defects (4). At present, there is no specific therapy for AS;
however, early diagnosis and symptom-targeted treatment can
prevent or slow down the progression of the disease as well as
improve the life span (5).

The genome-wide linkage and homozygosity mapping study
in a large French kindred has demonstrated that molecular
defects in the ALMS1 gene localized on Chr 2p13.1 are
causal mutations (6). ALMS1 gene encompasses 23 exons
and codes for a 461-kDa protein with 4,169 amino acids.
ALMS1 protein shows ubiquitous expression and is located at
centrosomes and basal bodies of ciliated cells, suggesting its
probable role in the maintenance of cytoskeleton, regulation
of cell division, intraciliary transport, cellular migration, and
endosomal recycling (7). At present, ∼330 disease-causing
mutations (166 missense, 8 splice site, 156 indel) in the ALMS1
gene have been reported in mutation databases. Among the
missense mutations,∼90% were observed in exons 8, 10, and 16,
making them “mutational hotspot” regions of the ALMS1 gene.

AS is reported in all major ethnic populations like Caucasians,
Asians, Africans, Americans, and Arabs (8–10). However,
majority of the published studies on AS are conducted in patients
belonging to non-Arab ethnicities. Owing to the distinct cultural
traditions followed in Arab countries, we believe that studying
AS patients from Saudi Arabia might present interesting clinical
and genetic findings. Saudi Arabia is regarded as the epicenter
of consanguinity with more than 50% marriages (close relatives
among extended families). Consanguinity is known to enrich
the prevalence of defective alleles in the population and is
the predominant reason for high incidence of genetic diseases
in certain countries such as Saudi Arabia and Pakistan (11,
12). So far, the number of studies reporting on sporadic AS
cases is greater than on familial forms. Hence, familial cases
have great potential to characterize the genetic basis of the
disease by identifying novelmutations inALMS1, deducingmode
of inheritance, genotype–phenotype correlation, and distinct
clinical phenotype presentations. In this study, we aim to use
whole-exome sequencing (WES) technology on two unrelated

Saudi families to simultaneously characterize the molecular basis
of AS and identify casual genetic variants. We also employed
various system biology approaches to explore the consequences
of ALMS1 pathogenic mutation on the gene function.

MATERIALS AND METHODS

Patients Recruitment and Clinical
Assessment
This study is conducted upon the approval of ethics committees
from Al-Hada Armed forces hospital, and King Abdulaziz
University Hospital, Jeddah. Initially, AS patients were recruited
from the pediatric hepatology and pediatric cardiology
clinics, in Al-Hada Armed Forces Hospital, Saudi Arabia.
Clinical examination of multiple organs among AS patients
were conducted using combined investigations such as
electrocardiogram, radiological tests (x-ray), ultrasonography
of abdomen, audiometry, and visual evoked potential (13).
The extensive family data of the patients were collected by
careful interviews by genetic counselors. These families were
subsequently referred to genetic medicine clinic for genetic
testing, diagnosis, and counseling. Written informed consent
was also obtained from all participants of both families.

DNA Isolation
Using a sterile EDTA tube, 2–3ml of venous blood was collected
from each participant and stored at −20◦C. Total genomic DNA
was isolated using a commercial kit as per the manufacturer’s
instructions (Wizard R© Genomic DNA Purification Kit,
Promega). DNA concentration and quality (260:280 ratios) were
measured at 260 nm using a NanoDrop spectrophotometer.
The integrity of genomic DNA was confirmed using agarose gel
electrophoresis as part of qualitative assessment.

Whole-Exome Sequencing and Variants
Filtering
One hundred microliters (55 ng/µl) of high-quality genomic
DNA (260/280 ratio is 1.9) was used forWES. Library preparation
was performed using “Sure Select QXT All human exon
V6 (Agilent)” to prepare 60Mb exome library followed by
sequencing on the HiSeq 2000 Next Generation Sequencer
platform. Sequencing reads were aligned against human genome
reference assembly build 38 (GRCH38.p12) with the help of
BLAST (version 0.6.4d). Base quality was recalibrated using
the GATK tool (GATK; www.broadinstitute.org/gatk). The
alignment of sequencing data revealed 100× coverage for up to
75% of the target region. SAM tools were used for base calling
to identify single-nucleotide polymorphisms (SNPs) and indels
(14). Variant prioritization and filtering steps were conducted
as per the following criteria: a minimum Phred score of 40
(base quality), rare allele frequency (MAF < 0.01), functional
variants (coding or regulatory regions), pathogenicity based on
variant prediction tools (SIFT, Polyphen, and CADD), and allelic
zygosity (homozygous or compound heterozygous in patients).
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Sanger Sequencing Validation of ALMS1

Mutation
Potential ALMS1 candidate mutation in affected family members
and population healthy controls was validated using the
Sanger sequencing method. Primer sequences targeting an
average amplicon size of 400–500 bp (forward primer: 5′-
GTCTTTCTAACTTGGGATCAGAG-3′ and reverse primer:
5′-CCTCCAGGGTCTGGTCTTG-3′), were designed using
the NCBI-primer BLAST online program, followed by PCR
and bidirectional dideoxynucleotide sequencing reactions.
The BioEdit program was used for sequence alignment and
annotation of nucleotide sequence mismatches (http://www.
mbio.ncsu.edu/). All ALMS1 mutations were annotated against
the ENST00000613296.4 reference m-RNA sequence. The
position of mutation was determined according to human
genome variation society guidelines, which recommended to
consider “A” of ATG codon as the 1st nucleotide in the mRNA.

Computational Biology Analysis of ALMS1

Mutation
Computational analysis of potential ALMS1 mutation was
performed based on the results obtained from WES and Sanger
sequencing. Our system biology approach was subjective to
the nature of ALMS1 mutation and its effect on RNA or
protein sequence. We have initially used Human Splicing Finder
(HSF), a publicly available web server (http://www.umd.be/
HSF/) to predict the impact of mutations on the strength
of 5’ss, 3’ss, and branch splicing points. For predicting the
impact of the mutation on ALMS1 RNA secondary structure,
we used RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/
RNAWebSuite/RNAfold.cgi) (29), which uses the loop-based
energy model and the dynamic programming algorithm for
prediction of the linear or circular single-stranded RNA structure
(16). The minimum free energy (MFE) value differences were
compared to measure mutation-induced stability differences
between wild-type and mutant secondary structures of ALMS1
and RNA molecules.

RESULTS

Identification of the ALMS1 Variant in AS
Patients
In this study, we present the whole-exome sequencing results
of six AS patients (three from each family) belonging to two
unrelated families from Saudi Arabia. In both families, parents
were first cousin-consanguineous marriages. Exome sequencing
of each AS patient has yielded an average number of 6.9
billion bp read bases and 46 million bases, with 51.2% of GC
content and 93.2% of Q30. The average read length was 148.96
base pairs, and the cumulative depth distribution value in the
target region for >60% of bases was 50× or greater. Post
quality control filtering, we found approximately 96.5% of known
nucleotide variants, previously reported in public databases.
From each exome, approximately 96,000 SNPs, including 12,153
synonymous variants, 12,000missense variants, and 11,500 indels
were identified.

Since ALMS1 pathogenic mutations are known to be clustered
around hotspot regions, we have initially screened biallelic
mutations located in exons 5, 8, 10, 11, 16, 17, and 18.
Interestingly, the mutation search of all AS patients has not
revealed the presence of either coding or regulatory region
mutations in the hotspot regions of ALMS1 gene. However,
interestingly, we found a novel ALSM1 mutation (c.11873–
2A>T) at the intron 18–Exon-19 boundary, which is not
reported in any of the public resource genetic databases like
gnomAD,1000 genomes, ExAC, dbSNP-NCBI, and Saudi Human
Genome Project (SGHP). Table 1 summarizes the genotype–
phenotype correlations for all splice site mutations. The CADD
score of this mutation is 24.5, which classifies it as likely
pathogenic. Since all the six AS patients carried this mutation,
we assumed that all the patients have inherited one copy of
the defective allele from each parent. Then, the validation of
exome sequencing derived c.11873–2A>T mutation in all the
probands and other family members were carried out by Sanger
sequencing, which confirmed the absence of this mutation in
homozygous form among the remaining family members. None
of the 100 healthy controls had this pathogenic mutation,
whether hetero- or homozygous states.

Inheritance Mode of ALMS1 Mutation
Family A
In this consanguineous family, both father (I.1) and mother
(I.2) were heterozygous carriers of c.11873–2 A>T mutation
(Figure 1). The index case (II.6, 17 years) and the two siblings
(II.7, 15 years & II.8, 8 years) were homozygous to the T allele.
Among other siblings, three sisters (II.3, II.4, II.5) and one
brother (II.9) were homozygous to the wild-type allele “A.” The
mode of inheritance of ALMS1 mutation confirms that both
defective alleles were transmitted from parents to AS patients
in an autosomal recessive pattern. All the three affected patients
including the proband (IV.6, IV.7, IV.8) showed common clinical
symptoms including severe photophobia, progressive visual loss,
obesity, bilateral horizontal nystagmus, and flat feet. Diabetes
mellitus, cardiomyopathy, and mental disability were observed
in probands IV.6 and IV.7 only.

Proband II.6 is severely photophobic and experienced a
progressive loss of visual acuity since the age of 9. His eyes
showed bilateral horizontal nystagmus, and hearing loss since
the age of 11. II.6 has also manifested hepatic dysfunction,
sensorineural hearing loss (SNHL), speech impairment, and
acanthosis nigricans. He reported mild continuous palpitations
and was NYHA class III. He did not have recurring infections
but had a history of balancing problems in gait. II.7 presented
with progressive visual acuity loss since the age of 3. He was
severely photophobic, like his elder brother (II.6). He had an
acquired bilateral horizontal nystagmus. He only complained of
tinnitus, not hearing loss. He has also complained of episodes
of profuse epistaxis, sometimes during sleep. He manifested
with acanthosis nigricans and was on oral hypoglycemic. His
frequency of urination increased, and he had nocturia. He
reported the sensation of pounding continuous palpitations. He
was NYHA class II and reported general fatigue. Both II.6 and II.7
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TABLE 1 | Genotype–phenotype correlations for ALMS1 splice site mutations in Alström syndrome patients.

References (17) (18) (19) (20) Current study

Family A Family B

Patient 1 Patient 2 II.6 II.7 II.8 B: II.4 B: II.5 B: II.6

Clinical symptoms c.11550+3A>T c.11672–2A>G c.11876–3T>G c.11876–2A>T c.11873–2A>T c.11873–2A>T

Photophobia + + + + + + +

Retinal dystrophy + + + + + + + +

Vision loss + + + + + + + +

Nystagmus + + + + + + + + +

Obesity + + + + +

Dilated cardiomyopathy + + + +

Hearing loss + + + + -

Insulin resistance + + + +

Short stature + + + +

Diabetes insipidus + + + -

Epilepsy +

Hypogonadotropic

hypogonadism

+ + + +

Acanthosis nigricans + + + + + + + + +

Hypothyroidism + + +

Patients 1 and 2 are mentioned as patients 4 and 5, in the original article as Saudi Arabs (20). “+” reflects presence of the symptom, whereas no marks mean absence or no data for

the concerned symptom available.

FIGURE 1 | Pedigree and the DNA sequence analysis of AS Family A. Proband. (II.6) is indicated by the arrow. Each DNA chromatogram (reverse strand) shows the

result from the respective Sanger sequencing confirming the status of the mutation. The proband is having the homozygous TT mutation at the splice site (c.11873–2).

Both parents are heterozygous for the given mutation. All three affected siblings show homozygous mutations while the unaffected siblings were either heterozygous

for the mutation or homozygous for the normal allele.

had a history of long standing cough with yellow sputum that is
precipitated by moderate activity.

Patient II-8 presented with photophobia and visual loss
since a very young age (<5). She did not complain of hearing
loss or tinnitus. She manifested with acanthosis nigricans and
had a history of persistent weight gain and increased appetite.
She did not have urinary habit changes or nocturia. She had

dental abnormalities and was diagnosed with hypertension.
She had mood swings and numbness on her left hand
and foot. Their clinical follow-up revealed that none of
them have developed renal failure or recurrent infections or
malignancies. This family reported thyroid pathology symptoms
consistent with hypothyroidism (aversion to cold, dryness,
and myxedema).
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Family B
The Sanger sequencing findings, after the exome sequencing
identified the mutation, of this consanguineous AS family are
as follows; the proband (II.4) and her two brothers (II.5 and
II.6) were homozygous to T minor allele, whereas their healthy
siblings were homozygous to A major allele (II.1, II.2, and
II.3) and both parents (I.1 and I.2) were heterozygous (AT) for
ALMS1, c.11873–2A>Tmutation. These results confirm that the
AS patients in this family have inherited one copy of defective
T allele from each parent, confirming the autosomal recessive
mode of inheritance (Figure 2). The probands II.4 (12 years), II.5
(9 years), and II.7 (4 years) showed initial symptoms of vision
dysfunction (severe progressive retinal dystrophy and cataract)
and dilated cardiomyopathy. The common eye manifestations
are photophobia, nystagmus, and squint easily identified by
parents early between 3 and 36 months. All the three patients
had visual manifestations before the first 36 months of their life.
The proband (11.4; 12 years) had reported photophobia since
her first year. She had bilateral horizontal nystagmus, progressive
loss of visual acuity, and bilateral sensorineural hearing loss.
She used to sleep during the day and mostly avoided daytime
because of her photophobia. She was obese (>95 percentile) with
polyphagia and acanthosis nigricans. At the age of 5, she was
diagnosed with autism spectrum disorder. She was short for her
age and had microcephaly but did not have any extra or fused
digits. She was also diagnosed with hypothyroidism. She did not
have any allergies. Probands II.5 and II.6 presented SNHL and
endocrine-related disorders like impaired glucose homeostasis,
hypothyroidism, hypogonadism evidenced by small testes, and
precocious puberty. Acanthosis nigricans and sparse hair were
also observed in both of them. The remaining three sisters (II.1,
II.2, and II.3) were healthy and did not present any symptoms of

the disease. Both parents were apparently healthy and mention
no significant health complications related to Alström Syndrome
(I.1 and I.2).

Computational Analysis of ALMS1

Mutation
Splice Site Prediction
TheHSF analysis ofALMS1 variant (c.11873–2A>T) in the splice
site (tgtttcctgtAGga >> tgtttcctgtTGga) predicted the consensus
values (CV) of 87.32 and 59.45 for the wild-type active sites
and mutant active sites, respectively. The CV variation score of
−31.92% between wild-type and mutant alleles suggests that the
loss of wild-type splice site acceptor (AG>TG) would result in
the skipping of exon 19 and instead accept the splice site acceptor
sequence (AG) of exon 20 of ALMS1.

RNA Secondary Structure Analysis
The ALMS1, RNA secondary structure is characterized by
helix, loops, stem, and dangling ends. Although both wild-type
and mutant RNAs showed structural similarity, their centroid
structures revealed differences in their minimum free energy
(MFE) values. In the native state, A nucleotide at c.11873–
2, located in the hairpin loop, confers stability (144K.Cal/Mol
of free energy) to the secondary structure of ALMS1, RNA
compared to the variant state (c.11873–2 A>T), where both sizes
of the hairpin loop is seen enlarged and free energy is decreased
(−175.8 K.Cal/Mol of free energy). Hence, it is assumed that
the lower stability of mRNA with c.11873–2 A>T is likely to
affect the mRNA folding pattern and tertiary structure formation
(Figure 3).

FIGURE 2 | Pedigree and the DNA sequence analysis of AS Family B. Each DNA chromatogram (reverse strand) shows the result from the Sanger sequencing

confirming the status of the mutation. Both parents (I.1 and I.2) are heterozygotes, three AS patients are homozygous for TT, while the three unaffected siblings are

homozygotes for AA genotype for the given genetic location.
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FIGURE 3 | Computational analysis and the RNA secondary structure predictions. The secondary structure predictions of (A) native and (B) variant RNA structures of

ALMS1 using RNAfold software. Inset shows the enlarged picture of the region containing the native or the variant part of the RNA. Base-pair probability is indicated in

the key. Mountain plot shows the secondary structures in a height vs. position, where the helices are represented in slopes, loops in plateaus, and hairpin loops in the

peaks.

DISCUSSION

Homozygous or compound heterozygous mutations in the
ALMS1 gene results in AS disorder. Hence, early identification
of defective variants of ALMS1 in potential asymptomatic
child and carriers will provide better clinical management
and options for prenatal diagnosis, respectively. Whole-exome
sequencing offers an efficient and cost-effective approach in
identifying ALMS1 mutations with greater depth. Although
whole-exome sequencing generates the unbiased exonic variant
data from all coding genes, variant screening strategy first targets
exons 8, 10, and 16 regions of the ALMS1 gene, which can
solve the genetic basis in almost 90% of cases (1). However,
the lack of ALMS1 exonic mutations in some AS patients
suggests the possibility for the regulatory region mutations.
The genetic and clinical data of Alström Syndrome of non-
Arab patients is relatively well published compared to Arab
patients, who inherently possess large blocks of homozygosity
due to their traditional consanguineous marriage practices (8,
9, 18, 21–24). Many rare or novel mutations in different

autosomal recessive diseases are widely reported in Saudi Arabian
populations (25, 26).

There are few publications which reported the genetic basis of
AS patients from Saudi Arabia. Table 2 summarizes the ALMS1
mutations and clinical phenotypes of Saudi AS patients. The
first study conducted on four Saudi AS patients used genetic
linkage mapping and Sanger sequencing and reported allelic
heterogeneity of ALMS1 mutations, i.e., c.5534 C>G (S908X)
and c.5981delCAGA(1992X) mutations in exon 8, c.8275C >T
(R2720X) mutation in exon10, IVS18-2 A>T in exon 18 (20).
Whole-exome sequencing of a 10-year-old Saudi girl presenting
with diabetic ketoacidosis, hearing loss, and blindness found a
homozygous frameshift deletion in exon 20 (c.12154_12166del)
which creates premature termination codon (p.Arg4052Glyfs∗2)
in ALMS1 gene (27). Another whole-exome sequencing study on
a 5-year-old Saudi girl, with photophobia, marked nystagmus,
and retinal changes with short fingers tapering born to the
consanguineous marriage, has reported a pathogenic mutation
in ALMS1 gene (c. 8441C>A, p.S2814∗) (31). By using whole-
exome sequencing, earlier our group found causative rare
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TABLE 2 | Summary of genetic mutation vs. clinical features observed in Saudi Alström patients.

Variant Exon Impact on protein Age and sex Clinical expression References

O SS CN PP DCM LoV CRD MR IR SNHL HD

c.5534 C>G 8/23 S908X 8, M + + + + + (27)

c.5981 delCAGA 8/23 KL1992X 2, M + + + + + +

c.8275 C>T 10/23 R2720X 7, M + + + +

IVS18-2A > T 19/23 10, F + + +

′′ ′′ ′′ 6, M + + + +

c.12154_12166del 20/23 p.Arg4052Glyfs*2 10, F + + + + + + (27)

c.8441C>A 10/23 p.S2814* 5, F + + + + + (28)

c.2938dupA 8/23 p.M980Nfs*9 21, M + + + + (29)

” ” 16, M + + –

c.1159 A>T 5/23 T376S III.2 + + + + + + + + (30)

c.2759 C>G 8/23 S909*

” ” III.4 + + + + +

c.8194 C>T 10/23 R2721* 14, F + + + + + +

” 12, M + + + +

” 9, M + + + + + +

c.7942C>T 10/23 p. Q2648* 2, M + + + (19)

c.2737_2740delGAGA 8/23 p.E913Sfs*20 2, M + +

c.6305C>A 8/23 p.Ser2102* 2, M +

c.11876–2A>T 18/23 – 2, M + + + +

c.8782C>T 10/23 p.Arg2928* 3, F + + + +

c.6305C>A 8/23 p.Ser2102* 3, F + + +

c.8164C>T 10/23 p.Arg2722* 3, M – + +

c.11732delC 18/23 p.P3911QfsX16 3, M + +

c.5534C>G 8/23 p.Ser908* 6, M + +

c.11876–2A>T 18/23 – 8, F + + +

O, obesity; SS, short stature; CN, congenital nystagmus; PP, photophobia; DCM, dilated cardiomyopathy; LoV, loss of vision; CRD, cone rod dysfunction; MR, mental retardation;

IR, insulin resistant; SNHL, sensorineural hearing loss HD, hepatic disease. “+” marks presence of the symptom; whereas no marks mean absence or no data of the concerned

symptom available.

biallelic mutations in the ALMS1 gene in exon 8 (T376S in exon
5, and S909∗) and exon 10 (R2721∗) among AS patients from two
other unrelated Saudi families (28). These truncating mutations
at residues S909 and R2721 possibly create an unstable protein
due to loss of CC domain and ALMS motif on the C-terminal
end which led to intracellular truncated protein degradation (31).
Another retrospective study from Saudi Arabia has reported
the identification of 10 ALMS1 different mutations (E3649∗,
Q2648∗, p.E913Sfs∗20, p.Ser2102∗, p.Arg2928∗, p.Ser2102∗,
p.Arg2722∗, p.P3911QfsX16, p.Ser908∗, IVS18-3A>T) in 19
Alström cases presenting different ophthalmic phenotypes from
13 Saudi families. Their finding underscored the point that
visual phenotypes in children should raise suspicion for Alström
syndrome (30).

There are six ALMS1 splice site mutations (c.454–5T>G,
c.7677+1G>T, c.10388–2A>G, c.11550+3A>T, c.11672–
2A>G, c.11876–3T>G, c.11876–2A>T) reported in previous
publications (7, 17–20, 30). In the current investigation,
through whole-exome sequencing of AS patients from the
consanguineous background, we observed a rare homozygous
mutation (c.11873–2A>T) at the acceptor splice site of exon

19 of the ALMS1 gene. This mutation is similar to the previous
publications which reported it in sporadic cases (19, 20, 30). From
its autosomal recessive mode of inheritance pattern of ALMS1
mutation and subsequent computational functional analysis, we
propose that this mutation is most likely disease causative in
these families. Despite the lack of overlap between the lineages of
the two studied families, we assume that c.11873–2A is possibly a
founder mutation in Saudi Arabia. In eukaryotes, dinucleotides
at the 5′ (GT) and 3′ (AG) ends of intronic sequences are
recognized as exon boundaries, which are subsequently acted
by the spliceosome complex to remove introns (32). The A>T
transversion converts c.11873–2 the 3′ AG splice acceptor
sequence to TG, due to which the RNA spliceosome complex
skips the entire exon 19 (Chr2: 73,601,195–73,601,436) and
accepts the next 3′ AG splice acceptor of exon 20, resulting in a
shorter version of ALMS1 mRNA by 241 nucleotides.

In the absence of functional data, we tried to understand
the putative functional role of the c.11873–2A variant on the
secondary structural features of ALMS1 mRNA using RNA
fold software, which predicted a free energy difference of
−31K.Cal/Mol between native and variant forms. Hence, it is
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assumed that the lower stability of mRNA with c.11873–2 A>T
is likely to affect the mRNA folding pattern and tertiary structure
formation. The change in the secondary structure of the splice
site variant RNA may further alter its function which could
primarily occur via the two possible mechanisms. Firstly, in the
absence of the correct folding of the RNA, the physiological
functioning of the RNA which is mediated through the potential
interaction of RNA with the protein complexes like spliceosome
complex (33) would be lost or change and thus affect proper
RNA transport or mRNA splicing or both. Secondly, due to the
improper folding of RNA, potential binding sites of micro-RNA
(miRNA) could be lost or modified, leading to an altered cellular
condition that may lead to the disease state (32, 34).

Themechanistic link between ALMS1 genotype vs. AS protein
phenotype is not yet well-understood, partly because of limited
functional data exploring the role of catalytic domains in protein
function. Of the 4,166 aa long native ALMS1 protein, exon 19
encodes 80 amino acids (3,958–4,038 aa) lying in between serine-
rich (3,857–3,873 aa) and ALMS1 motif regions (4,037–4,166 aa)
at the c-terminal region of ALMS1 protein. It is assumed that
exon 19 skipping by the c.11873–2A>T variant results in a short
polypeptide (4086 aa), which could affect the loss of secondary (α-
helices, and β-pleated sheets) and tertiary (3D) and quaternary
(biomolecular complexes) structural features, in addition to
biological functions (microtubule organization, intracellular
transport, endosome recycling, and cell-cycle regulation) of
ALMS1 protein. It remains plausible that the primary cilium
or basal body dysfunction due to defective ALMS1 among
homozygous carriers contributes to many aspects of the AS
phenotype including obesity, retinal dystrophy, hearing loss,
kidney dysfunction, neurological disturbances, and fibrosis (1).

In conclusion, this study confirmed the autosomal recessive
inheritance of a very rare ALMS1 mutation among six AS
patients from two unrelated consanguineous Saudi families.
This mutation abolishes the 3′-AT splice site acceptor sequence
of exon 19 due to which the entire exon 19 is skipped,
shortening the mRNA by 241 nucleotides. Bioinformatics
prediction tools demonstrated that this mutation destabilizes
the secondary structural features of mature mRNA, hence
disrupting the biological functions of ALMS1 protein. Future
functional studies at the level of cDNA and protein could
provide more insights about variant pathogenicity and also
help to understand how this ALMS1 genotype contributes to
AS clinical phenotypes. This study confirms the important
utility of WES in detecting pathogenic variants occurring
in either coding or regulatory regions among AS patients.

Multidimensional molecular characterization of complex rare
disorders is challenging owing to the variable clinical expressivity
among AS patients. However, WES proved to be a valuable
tool in helping clinicians in diagnosis, providing better clinical
management and intervention for AS patents and their families.
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