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Infants who are born prematurely are at significant risk of apnoea. In addition to the
short-term consequences such as hypoxia, apnoea of prematurity has been associated
with long-term morbidity, including poor neurodevelopmental outcomes. Clinical trials
have illustrated the importance of methylxanthine drugs, in particular caffeine, in reducing
the risk of long term adverse neurodevelopmental outcomes. However, the extent
to which apnoea is causative of this secondary neurodevelopmental delay or is just
associated in a background of other sequelae of prematurity remains unclear. In this
review, we first discuss the pathophysiology of apnoea of prematurity, previous studies
investigating the relationship between apnoea and neurodevelopmental delay, and
treatment of apnoea with caffeine therapy. We propose a need for better methods of
measuring apnoea, along with improved understanding of the neonatal brain’s response
to consequent hypoxia. Only then can we start to disentangle the effects of apnoea
on neurodevelopment in preterm infants. Moreover, by better identifying those infants
who are at risk of apnoea, and neurodevelopmental delay, we can work toward a risk
stratification system for these infants that is clinically actionable, for example, with doses
of caffeine tailored to the individual. Optimising treatment of apnoea for individual infants
will improve neonatal care and long-term outcomes for this population.
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INTRODUCTION

Apnoea of Prematurity (AOP) is frequently defined as a pause in breathing lasting more than
20s, or more than 10s with accompanying bradycardia and/ or oxygen desaturations in an
infant born before 37 weeks’ gestation (1-3). AOP is one of the most common diagnoses in
the Neonatal Intensive Care Unit (NICU) (3), affecting almost half of infants before 32 weeks’
gestation and nearly all whose birthweight is below 1000g (4). Along with acute morbidities
such as cyanosis and chronic intermittent hypoxia, a key consideration for these infants is
whether AOP also influences their health later in life. This is particularly the case with
regards to the central nervous system, which is highly sensitive to hypoxia. Children born
prematurely are much more likely to suffer from poor neurodevelopmental outcomes than those
born at term (5-9), and some studies have suggested that this could in part be related to
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the frequency of apnoeic events and desaturations they
experience in early life (10, 11). Here we will review the existing
literature with regards to the mechanisms of AOP and its possible
role in long-term neurodevelopmental disorders in premature
infants. We then discuss key research questions in this area
moving forward and approaches to investigate these problems.

CENTRAL AND PERIPHERAL
MECHANISMS OF APNOEA OF
PREMATURITY

Apnoeas are classified as central or obstructive, in that they
either derive from insufficient drive from the respiratory centres
of the brain, or that the airway itself is obstructed. “Mixed”
apnoeas are a combination of the two. AOP is thought to be
a physiological consequence of immaturity, with insufficient
central respiratory drive to maintain ventilation across the lung
(11, 12). Subsequent reductions in airway tone frequently make
these apnoeas mixed (13).

Central control of breathing pertains to the role of the central
nervous system in regulating rhythmicity and expansion of the
chest in respiration. Normal inspiratory rhythm at rest is directed
by the medullary dorsal respiratory group of neurons, with
the pneumotaxic centre of the pons acting to slow inspiration.
Expiration is the result of reduced dorsal respiratory group
output and elastic recoil of the chest wall. The ventral respiratory
group of the medulla is primarily involved in active expiration
and tachypnoea, usually in exercise, in response to stimulation
by peripheral chemoreceptors, and the pre-Botzinger complex
within the ventral respiratory group is an intrinsic site of
rhythmogenesis (i.e., the process of breath generation) (14-16).

In utero, foetal breathing movements are only intermittent,
and work to facilitate lung bud growth through mechanical
stretching, rather than for gas exchange (17, 18). As such, these
respiratory control regions of the brain predominantly mature
postnatally and are unable to maintain stable breathing patterns
or respond effectively to stimulation from chemoreceptors, lung
stretch receptors, or other regions of the brain beforehand (19).
This physiological immaturity is presumed to be the primary
cause of apnoea in infants born prematurely (20). For example,
central response to carbon dioxide (CO;) in the medulla is the
primary controller of respiratory drive (21), but hypercapnic
responses can destabilise tidal breathing rhythm in premature
infants. In those born at term, hypercapnia induces respiratory
compensation through increases in tidal volume and respiratory
rate; in prematurely born infants, hypercapnia induces an
increase in tidal volume but not respiratory rate, resulting in
bradypnoea and desaturations (22). This also results in an
increased apnoeic threshold of CO, that is close to tidal partial
pressures of CO;, giving premature infants a high propensity for
apnoeic events (23, 24).

Along with the central respiratory centres of the brain,
several other mechanisms play a role in AOP, summarised in
Figure 1. Dramatic shifts in the physiology of the peripheral
chemoreceptors follow with premature birth. Peripheral
chemoreceptors of the carotid and aortic bodies respond to low

arterial partial pressures of oxygen and high partial pressures of
carbon dioxide via the hypoglossal (IX) and vagus (X) nerves,
respectively. This normally triggers homeostatic breathing
responses such as an increase in ventilation in response
to hypercapnia through greater stimulation of the ventral
respiratory group (21). Peripheral receptors are silenced at birth
in response to changes in oxygen saturations with the baby’s
first breath, with their functions then progressively restored in
infants born at term so that they can respond appropriately to
changes in blood gases (25-28). Chronic intermittent hypoxia
gives rise to hyperactive peripheral chemoreceptor responses,
especially in those who suffer from AOP (25). This contributes
to the hypoventilation in response to hypercapnia in infants with
AOP, and can give rise to periodic breathing that is characteristic
of unstable respiratory control (29, 30).

Spontaneous neck flexion is known to precipitate apnoeic
events, and it is recommended that all babies who suffer from
AOP are positioned prone to mitigate this (31). The airway
requires tonic stimulation of the neck muscles to remain open.
Moreover, stretch and irritant receptors in the lungs and trachea
can initiate the cough reflex, which can bring about bradypnoea
and apnoea by destabilising central rhythmogenesis. Fleming et
al. (32) showed that in intubated premature infants whose irritant
receptors were stimulated clinically, only one of the 18 babies
born before 35 weeks' gestation showed a “mature” bronchial
response, with all others showing sustained bradypnoea or
apnoea (32). This was mirrored by later work which suggested
a correlation between acid reflux, consequent hyperactivity of the
laryngeal chemoreflex, and apnoeic events (33-35), although the
association remains controversial (36, 37).

Sleep also has a profound effect on respiratory control.
Premature infants predominantly show rapid-eye-movement
(REM, otherwise known as active) sleep (38, 39), which decreases
central respiratory control and reduces tonic contraction of
pharyngeal muscles, resulting in obstruction and apnoea in
premature infants with hypercompliant, low-calibre airways (11,
39-41).

THE LONG-TERM CONSEQUENCES OF
AOP

Apnoea in preterm infants is frequently associated with
bradycardia and oxygen desaturations. These events are
precipitated by the arterial chemoreflex in response to
hypoxaemia (42-44), and the lack of sinus arrythmia (ordinarily
initiated by the pulmonary inspiratory reflex) sustains the
bradycardia and desaturations over time (11, 45, 46). Moreover,
arterial partial pressures of oxygen are typically maintained
at 50-80 mmHg in premature infants (42, 43); the oxygen-
haemoglobin dissociation curve is much steeper at these values
than in the higher pressures of the adult making premature
infants more sensitive to desaturations with apnoea (23).

AOP ordinarily resolves with time and increasing maturity
of the infant’s respiratory systems. However, apnoea and the
consequential chronic intermittent hypoxia, may have long-
term effects including increased risk of infant mortality (47),
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FIGURE 1 | Respiratory control mechanisms and the differences in infancy. Blue arrow: positive stimulation (encourages ventilation). Red lines: negative stimulation
(depresses ventilation). In the brain: the yellow shape indicates pontine respiratory centre, the green circle indicates the dorsal respiratory group, the blue circle
indicates the ventral respiratory group, and the red dot illustrates the pre-Botzinger Complex. SLN is the Superior Laryngeal Nerve. This figure was created using

Clinical Features of Neonatal
Respiratory Control

* Diminished hypercapnic ventilatory
response (exacerbated in infants affected
by AOP)

* Small gap between CO, apnoeic
threshold and baseline pCO,, decreased
further in hypoxia
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|
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neurodevelopmental impairment (10, 48) and retinopathy of
prematurity (ROP) (49, 50). Janvier et al. (10) suggested a
link between days of hospitalisation with apnoea and worse
neurodevelopmental outcomes at 3 years follow-up (including
visual and hearing impairment) that was independent of other
variables including sex and overall time spent in hospital.
Similarly, Pillekamp et al. observed an association between both
delayed resolution of apnoea and higher daily apnoea with
poorer neurodevelopmental outcome at 13 months of age (48).
Moreover, Poets et al. found that prolonged hypoxemic episodes
(oxygen saturation of < 80% for at least 10s, which may or
may not be related to apnoea) were associated with increased
risk of death or disability at 18 months of age in a large study
of 972 infants (47). However, these studies identify statistical
correlations which are not necessarily causative. Further, we must
remember that the AOP exists in the background of prematurity
itself, and there are numerous other factors related to prematurity
that have been associated with long-term negative consequences
(5, 6, 51-54). So, whilst we now have a better understanding
of AOP itself, the clinical reality of prematurity makes research
in this field complex, and full knowledge of the implications of
our interventions on neurodevelopment will not be known for
years after these infants are treated. Further research is needed
to understand the interplay between neurological immaturity at
birth, the impact of prematurity, AOP and neurodevelopmental
outcomes (Figure 2).

CAFFEINE FOR THE MANAGEMENT OF
AOP AND ITS RELATIONSHIP WITH
LONG-TERM EFFECTS

Whilst mechanical respiratory support and non-invasive
ventilation such as continuous positive airway pressure (CPAP)
play an important role in supporting infants with AOP,
pharmacological interventions are now a mainstay of treatment
(3). Methylxanthines, in particular caffeine, are the most
commonly used pharmacological intervention for the treatment
of AOP. Other interventions, such as doxapram, are also used as
an adjunct therapy in some NICUs in individuals where caffeine
treatment is not effective (55, 56).

Methylxanthines began to be used for the treatment of
AOP in the 1970%, following the first observational study by
Kuzemko and Paala in 1973 showing a complete prevention of
cyanotic attacks in nine of 10 apnoeic neonates administered
with aminophylline (57). The first randomised clinical trial of
this drug showed a reduction of apnoeic events after 8h in
all of the 14 participants (57, 58). Of all the methylxanthines,
caffeine citrate is often now the drug of choice due to its longer
half-life, higher therapeutic index, and decreased need for drug-
level monitoring (3). It is currently the third most commonly
prescribed drug in European NICUs (59). Methylxanthines
structurally mimic nucleosides, blocking neuronal adenosine
receptors A; and Ajp, with A; being the primary inhibitory
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FIGURE 2 | Which comes first, the immaturity or the apnoea? A model of the interplay between the causes (top) and consequences (bottom) of apnoea of prematurity
and respiratory immaturity in neonates, and how this might lead to neurodevelopmental impairment. DCD, developmental coordination disorder. Dashed lines indicate
mixed causes between the sequelae of AOP and prematurity itself on neurological damage in these infants. This figure was created using BioRender (https://

Bradycardia

receptor of postsynaptic neuron activation in response to hypoxic
stress (60, 61). By inhibiting these receptors, methylxanthines
increase central chemosensitivity to CO, and generate a more
active respiratory response (62).

Most of the early data on the use of methylxanthines
derived from small studies with limited follow-up, and showed
conflicting results (55, 63-66). In 2006 an international placebo-
controlled trial investigated caffeine use for AOP-The Caffeine
for Apnoea of Prematurity (CAP) trial (67)-began to publish
results advocating the short and long-term efficacy of caffeine.
The CAP trial randomised 2006 premature infants with AOP
into a caffeine intervention group vs. a saline control group and
has followed them up for 11 years to track neurodevelopmental
outcomes. Whilst there was no difference in perinatal mortality
between the groups, there was a significant reduction in
bronchopulmonary dysplasia at discharge in the caffeine-treated
group, and the length of time on all forms of ventilatory
support was reduced by ~1 week (67). Eighteen months after
birth, children treated with caffeine were less likely to suffer
from cerebral palsy or neurodevelopmental delay than the
control group. Post-hoc analysis revealed that post-menstrual
age of earlier ventilatory support removal explained nearly half
(49%) of the variability of these data (68), arguing for the

hypothesis that prolonged ventilatory support comes with long
term toxicity for neonates, one that has been supported by more
recent evidence of neurotoxicity with mechanical ventilation
both in preterm infants and animal models (69-71). Equally,
these infants were also less likely to be exposed to further
pharmacological interventions, such as corticosteroids or non-
steroidal anti-inflammatories, and less likely to require surgical
or pharmacological closure of patent ductus arteriosus (67), each
of which carry their own risks in terms of neurodevelopment
(72, 73). Follow-up at 5 (74) and 11 (75) years did not
demonstrate significant behavioural or cognitive differences in
the caffeine-treated group compared to controls, but found a
reduction in children with developmental coordination disorder
(DCD) at 5 years (76). Given that DCD, a generalised motor
dyspraxia without neuromuscular involvement that significantly
affects daily activities (77), has been shown to reduce self-
reported physical well-being, financial resources and positive
school environment (78), it is clear that mitigating this morbidity
can significantly impact on the quality of life of these infants
(76, 79-82).

Thus, these results make a strong case for caffeine improving
the long-term as well as the short-term outcomes for premature-
born children with AOP. As a result, caffeine for AOP has
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now been lauded as one of neonatology’s greatest success
stories (83, 84). Nevertheless, many questions remain about
its use. For example, what is the optimal dosing regimen, the
optimal time and duration for treatment, and should therapeutic
drug monitoring be used (85)? Some studies have suggested
detrimental effects with increased caffeine dose, including a pilot
study in 2012 which found increased incidence of cerebellar
haemorrhage with a high dose caffeine regime vs. standard
dose that persisted after correcting for confounding factors
such as gestational age and vasopressor exposure (86). Another
observational prospective study demonstrated an association
between high serum caffeine levels and pro-inflammatory
cytokine profiles (87). So, caffeine is no panacea for AOP. As with
all medical interventions, it comes with risks that we are still yet
to fully delineate. Moreover, nearly 20% of the caffeine-treated
cohort in the CAP trial still scored poorly in motor function tests,
with no amelioration of academic or behavioural performance
(75): the story must not end here.

WHERE NEXT FOR APNOEA OF
PREMATURITY?

There has long been a recognition in the literature that AOP
is variable in its penetrance, with the disorder carrying on
into term age for some of the more prematurely born infants,
whilst not affecting others (23, 46). There is also wide variation
in individual infants’ responses to caffeine therapy (88); some
infants respond well to treatment whilst others continue to
have high numbers of apnoeic episodes and require higher
doses of caffeine. Moreover, in most infants, caffeine therapy
can be stopped at around 34 weeks postmenstrual age without
problems, but ~10% of infants will develop episodes of apnoea
after stopping treatment requiring the reintroduction of caffeine
therapy (89). Key questions for the future will be in risk
stratification of babies with AOP and providing individualised
treatment options. Can we predict which infants are most at
risk of experiencing apnoea and when? Which of these will be
improved with dose-stratified caffeine treatment? Which infants
with AOP are most at risk of long-term neurodevelopmental
deficits? To address these questions, we propose that we first
need (1) improvements in AOP measurement in the NICU and
(2) a better understanding of the impact of apnoea on brain
development in preterm infants.

IMPROVEMENTS IN AOP MEASUREMENT

Respiration, and consequently apnoea, is frequently measured in
the NICU using the impedance pneumograph. This measures
the electrical impedance of the chest via electrocardiogram
electrodes, giving us a measurement of chest wall movement.
Alternatively, respiratory dynamics can be measured routinely
using the Graseby Capsule, a small pneumotaxic device designed
to measure the movement of the xiphisternum with each
breath (90), or using respiratory inductance plethysmography
for example. However, these methods can be sensitive to non-
respiratory related movements and cardiac activity (91, 92),

and purely obstructive apnoeas cannot be identified using
these techniques.

To further define the role of AOP in neurodevelopmental
outcome, and to better treat apnoea, a more accurate and reliable
measurement of AOP is required. Lee et al. (91) developed a
new method for the detection of apnoea from the impedance
pneumograph by first removing cardiac interference. Our group
recently built on this work and developed a new method to
identify inter-breath intervals and apnoeas in infants which
included an automated classifier to distinguish between periods
of true apnoea and signal which is low amplitude due to artefacts
or poor electrode placement (93). Using these methods could
improve apnoea detection and consequently our understanding
of apnoea in preterm infants; 74% of apnoeic events across 276
infants identified using the algorithm of Lee et al. were not
documented in clinical notes (94). Similarly, in our study we
found that 88% of apnoeas were missed in clinical notes (93).

An improved understanding of infant respiratory dynamics
would greatly supplement recent advances in ventilation
technology, in particular the use of Neurally Adjusted Ventilation
Assistance (NAVA) (95). NAVA allows for a more precise
control of ventilatory support directly in response to changes
in the infant’s own respiratory drive and can provide backup
ventilation during periods of apnoea (96, 97). In a single-centre
retrospective pilot study of 17 infants with AOP, switching
from traditional CPAP to non-invasive NAVA demonstrated a
significant reduction in apnoeic events (98). A similar study of
108 very-low-birth-weight infants with AOP comparing NAVA
to nasal intermittent positive pressure ventilation identified less
bradycardic events in the former compared to the latter (99).
Questions remain regarding the scalability of this technology to
the wider population and the need for large sample long-term
follow-up studies (97), but equally, NAVA could represent an
effective way of both measuring and responding to apnoeic events
as they occur. Moreover, automated oxygen titration systems
are beginning to be used in some NICUs following recent work
highlighting their safety (100). The impact of these systems on
AOQOP dynamics warrants investigation.

With better measurement of AOP and respiratory dynamics
we will be able to develop techniques to improve our treatment
for apnoea. Computational techniques, such as machine
learning algorithms, have the potential to predict apnoeic
and hypoxemic events in individual infants, leading to earlier
interventions (101). Optimising caffeine dosing regimen and
tailoring pharmacological interventions, including doxapram
(102), for individual infants could be achieved through accurate
measurement of respiratory dynamics and will shift the balance
toward efficacy and away from harm. Pharmacokinetics and
pharmacodynamics will likely change with postnatal age, for
example due to changes in hepatic enzymes and renal function
(103), and so continuous monitoring of respiratory dynamics
and adaptive treatment will be important. Moreover, we
should consider using information on respiratory dynamics
in conjunction with pharmacogenetic approaches, particularly
given the wide metabolic variation across individuals of caffeine
metabolism in the liver (104). Our goal for the future should be to
establish a dosing regimen of both pharmacological interventions
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and ventilatory assistance for infants that is stratified and targeted
based on the risk of developing apnoea (92).

UNDERSTANDING THE IMPACT OF
APNOEA ON BRAIN DEVELOPMENT IN
PRETERM INFANTS

Studies to date which have investigated a possible role of
apnoea on later life neurodevelopmental outcomes have shown
a correlative rather than causative relationship (10, 11, 48, 105,
106). To take the extreme, it could be that infants with poorer
brain function at birth are more likely to have apnoeas and
concurrently have poorer neurodevelopmental outcomes later in
life, with the episodes of apnoea themselves not affecting brain
development. On the other hand, given the resultant hypoxia,
it is plausible that episodes of apnoea do have an impact on
neurodevelopment. Understanding the long-term impact that
AOP has on neurodevelopment requires direct investigation of
the effects of apnoea on infant brain structure and function.

Numerous MRI studies have investigated differences in the
brain structure in preterm infants as they develop (107-110).
However, to our knowledge, the only investigation to consider
the relationship with AOP so far is the volumetric MRI studies
of 70 CAP trial cohort patients, which found no substantial
differences in gross brain volume or white matter distribution,
except for a small decrease in growth of the corpus callosum in
the caffeine treated group compared with the placebo controls
(111). This finding is interesting given a previous diffusion-
weighted MRI study which found changes in the axial diffusivity
of the parietal aspects of the corpus callosum in children
with developmental coordination disorder (110). Longitudinal
follow up with neuroimaging of infants with AOP will be an
important path to deciphering how the brain is impacted by
AOQOP and how infants respond to treatment. However, studies
of brain structure will also necessarily be limited to snap-shot
images of particular timepoints. To develop a clearer theory
of the relationship between AOP and neurodevelopment,
we must also examine the impact of apnoea on
brain function.

For this purpose, techniques such as electroencephalography
(EEG) can be used at the cot-side and have excellent temporal
resolution, enabling the investigation of brain function before,
during and after apnoeic episodes. Whilst a number of EEG
studies have described seizure-related apnoeic episodes in
infants, changes in the EEG related to non-seizure apnoeic
episodes have not been described in detail (112-114). Low et
al. found that apnoeic events precipitated EEG suppression
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