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Haematopoietic stem cell transplant (HSCT) can be a curative treatment for children

and adolescents with very-high-risk acute lymphoblastic leukaemia (ALL). Improvements

in supportive care and transplant techniques have led to increasing numbers of long-

term survivors worldwide. However, conditioning regimens as well as transplant-related

complications are associated with severe sequelae, impacting patients’ quality of life. It

is widely recognised that paediatric HSCT survivors must have timely access to life-long

care and surveillance in order to prevent, ameliorate and manage all possible adverse

late effects of HSCT. This is fundamentally important because it can both prevent ill

health and optimise the quality and experience of survival following HSCT. Furthermore,

it reduces the impact of preventable chronic illness on already under-resourced health

services. In addition to late effects, survivors of paediatric ALL also have to deal with

unique challenges associated with transition to adult services. In this review, we: (1)

provide an overview of the potential late effects following HSCT for ALL in childhood

and adolescence; (2) focus on the unique challenges of transition from paediatric care to

adult services; and (3) provide a framework for long-term surveillance and medical care

for survivors of paediatric ALL who have undergone HSCT.

Keywords: haematopoietic stem cell transplantation, long-term survivors, quality of life, paediatric, adolescence,

late effects, ALL

INTRODUCTION

Haematopoietic stem cell transplant (HSCT) is a curative option for children and adolescents with
haematological malignancies, especially patients with high-risk, relapsed or refractory disease (1–
3). Given improvements in treatment modalities and supportive care, the number of long-term
survivors of paediatric HSCT is growing continuously (4–6). However, pre-transplant treatment
exposure, transplant conditioning regimens and transplant-related complications are associated
with a wide range of adverse late effects, resulting in a shorter life expectancy compared with
sex- and age-matched healthy subjects and patients treated with conventional chemotherapy alone
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(4, 7–12). Every system and organ can be affected by the
long-term sequalae of HSCT, resulting in higher morbidity and
reduced overall quality of life (QoL) compared with patients with
ALL treated with chemotherapy only (13–15). One year after
HSCT, ≥30% of all transplanted patients have developed at least
one severe late effect (12). A major risk factor for development
of severe late effects is young age at the time of treatment, with
children <3 years being especially at risk due to their vulnerable
developing organs (16). Table 1 shows the reported frequency of
different long-term sequalae.

Most conditioning regimens used in children are
myeloablative and contain busulfan, cyclophosphamide,
etoposide or total body irradiation (TBI). Patients >4 years old
receiving TBI-based conditioning have a significantly lower risk
of ALL relapse and higher overall survival than patients receiving
chemotherapy alone as conditioning regimen, as demonstrated
in the randomised For Reducing Radiation at Majority Age
(FORUM) Trial (17). However, patients receiving TBI may
have to deal with a higher risk of pubertal impairment, growth
retardation, cataracts, secondary malignancies and thyroid
dysfunction compared with patients undergoing TBI-free
conditioning (18).

A history of graft-vs.-host disease (GvHD) increases the
risk severe life-threatening conditions 4.7-fold, and is therefore
associated with higher morbidity and mortality. Overall, the
cumulative incidence of developing a chronic health condition 10
years after HSCT for patients with a haematological malignancy
or severe aplastic anaemia transplanted between 1974 and 1998
was about 59% [95% confidence interval (CI) 56–62%] (19).

Due to the high burden of long-term sequelae, survivors
of HSCT performed during childhood and adolescence need
regular, life-long follow-up. Goals of follow-up include the early
detection of potential long-term effects and the education of
survivors and their families to promote a healthy lifestyle. It is
also important that providers of paediatric and adult healthcare
are trained to facilitate and optimise the transition of patients into
adult care (20).

ORGAN-SPECIFIC LATE EFFECTS OF
HSCT FOR CHILDHOOD AND
ADOLESCENT ALL

Bone
Bone morbidity is frequently occurs after HSCT in ALL, with
reported incidences ranging between 20 and 60% for reduced
bone mass, spanning from low mineral density to osteoporosis,
and 4–44% for osteonecrosis (ON) (13, 21).

Besides the skeleton, muscles as well are deeply affected by
treatment toxicity, especially by steroid, chemotherapy-induced
peripheral neuropathyas well as by bed rest and reduced physical
activities during treatment.

Associated with these sensory and motor symptoms is a
compromised ability to move that leads to functional impairment
in transplanted patients (22). Chronic GvHD may target the
muscular mass by direct inflammation of the tissue (23).

Low Bone Mineral Density
A bone mineral density (BMD) Z score below −2 has been
recorded in about 6–21% of patients 5 years after childhood
HSCT for either malignant or non-malignant disorders (24–30).
Nevertheless, this incidence is remarkably higher in patients with
additional risk factors, such as chronic GvHD. In a study held
among patients with a longstanding history of chronic GvHD
transplanted for either malignant or non-malignant disorders,
Buxbaum and colleagues reported BMD Z score < −2 in 73%
of patients after a median follow up of 3.5 years (25).

The aetiology of low BMD is multifactorial, with prolonged
exposure to corticosteroids, immobility, TBI, hormonal
deficiencies (hypogonadism, hypothyroidism, GHD), inadequate
vitamin D and calcium intake and GvHD having synergic
detrimental effects and resulting in overactive osteoclastic bone
resorption and underactive bone osteoblastic formation (31).

Dual energy X-ray absorptiometry (DEXA) is pivotal to assess
BMD, although the best timing for performing this test has not
been systematically clarified. Recommendations based on expert
opinion suggest performing the first DEXA scan 1 year after
HSCT, with subsequent follow-up tailored based on the baseline
findings and patient-related risk factors (32).

The dietary calcium and vitamin D intake of every ALL
survivor post HSCT should be assessed in order to identify
those patients who would benefit from supplements. In addition,
given the detrimental effects of low sexual hormones on BMD,
hormonal replacement therapy should be commenced as soon as
a diagnosis of hypogonadism is made.

There is lack of high-quality data about the predictive role
of low BMD in childhood on the incidence of fractures in
adulthood and uncertainty about the risk–benefit balance of
pharmacological treatments (bisphosphonates) in childhood.
Therefore, the decision of when to intervene with such
treatments to prevent or treat bone disease in children after
HSCT who have not experienced pathological fracture should
be made in consultation with a paediatric endocrinologist; no
treatment guidelines were available at the time of writing (26, 33,
34).

Osteonecrosis
Osteonecrosis (ON) is a well-known sequela in paediatric
ALL. Incidence is age-dependent and ranges from 4 to
44% in transplanted patients, with cumulative steroid dose
being significantly associated with the risk of ON (35).
The pathogenesis of osteonecrosis in patients with ALL is
not completely understood, multiple factors are responsible
Main cause in childhood ALL are glucocorticoid inducing a
hypercoagulable state. Microthrombi and lipid emboli associated
with hyperlipidemia cause intravascular obliteration, whereas
lipocyte proliferation and lipid accumulation in osteoblasts and
osteocytes cause extraluminal obliteration, both triggering and
worsened by intravascular coagulation. ON pathogenesis in
ALL includes the temporary or permanent disruption of the
blood supply to the bone, glucocorticoid-induced arteriopathy
and direct adverse effects of the antileukemic drugs on bone
remodelling (21). Furthermore, there is mounting evidence that
post-HCT cGvHD, besides increasing the steroid cumulative
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TABLE 1 | Reported frequency of long-term sequalae in ALL survivors treated with HSCT during childhood.

Organ/organ

system

Reported

frequency (%)

Long-term sequelae Risk factors Long-term follow-up

TBI-based

Ocular

system

4–76%

35–77%

0–10%

- Cataract

- Sicca syndrome

- Microvascular retinopathy

TBI, long-term corticoid

treatment, GvHD, busulfan

treatment

- Ophthalmological

examination*•

Cardiovascular

system

6%

39%

10–50%

22%

- Cardiovascular dysfunction

- Metabolic syndrome

- Arterial hypertension

- Coronary artery,

cerebrovascular and

peripheral arterial disease

TBI, anthracycline,

hemosiderosis

- Endurance training

- Dietary measures

- Weight reduction

- Antihypertensive

treatment

2–10% - Cardiac arrhythmias/heart

failure

Lungs 11–67% - Bronchiolitis obliterans TBI, busulfan treatment,

cGvHD

- Lung function*•

Renal

system

20%

2–21%

- Chronic renal insufficiency

- Thrombotic microangiopathy

TBI, nephrotoxic treatment - Urinary status

Liver 30–75% - Iron overload Cumulative number of

transfusions, viral infections,

cGvHD, drug toxicity

- Liver function test

- Phlebotomy in

hemosiderosis

Bone 4–40%

5–21%

- Osteonecrosis

- Low bone mineral density

TBI, hypogonadism, physical

inactivity, long-term

corticosteroids, cGvHD

- Physiotherapy

- Calcium and vitamin D

supplementation

Endocrine

system

20–40%

5–17%

44–100%

15–55%

75–100%

5% Diabetes

mellitus

50% insulin

resistance

30%

- Growth retardation

- Thyroid disorders

- Ovarian insufficiency

- Testosterone deficiency

- Oligo-azoospermia

- Hyperinsulinism, impaired

glucose tolerance, diabetes

- Hypercholesterolemia/

hyperlipidemia

TBI, long-term corticoid

treatment, cGVHD,

calcineurin and mTOR

inhibitors

Parenteral nutrition

- Ultrasound of thyroid*

- Hormone replacement

therapy

- Dietary measures

- Statin in case of high

cholesterol

Eyes 4–76%

35–77%

0–10%

- Cataract

- Sicca syndrome

- Microvascular retinopathy

TBI, long-term corticoid

treatment, GvHD, busulfan

treatment

- Ophthalmological

examination*•

Kidney 20%

2–21%

- Chronic renal insufficiency

- Thrombotic microangiopathy

TBI, nephrotoxic treatment - Urinary status

*TBI-based regimen.
•Busulfan.

dose, could play an independent pathogenetic role in the
development of ON, possibly mediated by microangiopathy (36).

Most frequent symptoms at diagnosis are bone pain, decreased
mobility in a joint, and limping. Incidence and risk factors differ
substantially among studies, even after chemotherapy alone, from
2%, as reported in the AIEOP-ALL 95, to 25% in the CoALL-07-
03 (37–40). Such a variability may depend on different frontline
and second line treatment strategies, including age eligibility and
cumulative dose of steroids and other drugs, mainly asparaginase,
besides ON diagnostic approaches, based on the level of alertness
among physicians, experience of radiologists and orthopaedics
(21). ON is often misdiagnosed in children and adolescents, in
whom symptoms may vary from stiffness to pain often attributed
to the ongoing chemotherapy courses. The true prevalence of
ON, however, is unknown, as it can only be determined by
prospective MRI screening the most sensitive method of ON
detection (38).

There is a consensus on the effect of age, with adolescents and
young adults being at highest risk of ON, compared with younger
children, whereas the impact of gender and immunophenotype
on the risk of ON is still controversial. Risk stratum and
associated treatment strategy are likely to play a major role.

The impact of HSCT in increasing the incidence and
worsening the severity of ON can be hard to assess, as lesions are
often present prior to HCT, as shown by MRI performed as pre-
HCT screening often detecting pre-existing ON in patients with
relatively mild symptoms (21, 35, 41, 42).

Kuhlen assessed the risk of ON in a cohort of 557 evaluable
patients transplanted within the ALL SCT 2003 BFM trial.
The 5-year cumulative incidence of symptomatic ON was 9%,
diagnosed at a median of 1 year after HCT (range 1–126). Age
at HSCT was a risk factor, with adolescents having a 3.73-fold
(10–15 years; P = 0.009) to 5.46-fold (>15 years; P = 0.001)
higher of being diagnosed with a symptomatic ON, compared
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with children. Patients with a history of ON prior to HSCT
were at increased risk (HR 5.45, P = 0.001), with a cumulative
incidence of ON of 45% (SD 14%) compared with 9% (SD 2%)
in those without ON prior to HSCT (P < 0.001). Furthermore,
the presence of chronic GVHD was associated with a 2.7-
fold higher risk (P 0.015) for the development of ON. Neither
gender, remission phase, donor type, stem cell source, type of
conditioning regimen or aGvHD grade 2–4 were significant risk
factors (21, 43).

Most patients have multiple lesions at diagnosis (42% in the
ALL SCT Trial), mainly in the lower limbs, namely knees (66%),
hips (55%), and feet (50%), but also in the shoulders (22%) (21).
Lesions affecting joint surfaces in the lower limbs experienced the
worst evolution (42).

ON management is still controversial, as, beyond pain
management and physical therapy, most interventions
lack clinical evidences. Treatment of prolonged
hypertriglyceridemia/hypercholesterolemia, e.g., dietary
measure, omega3-fatty acids throughout chemotherapy and
during the post-HSCT course may help in reducing ON risk.
Crutches are often recommended in order to avoid weight-
bearing in lower limb ON, but their use is controversial, as the
absence of weight may weaken the bone structure and crutches
per semay worsen misdiagnosed ON lesions in the upper limbs.

There is no consensus for type and timing of surgery,
which include conservative procedures, as core decompression,
with the aim to reduce intraosseous pressure and promoting
healing processes, sometimes in combination with autologous or
mesenchymal stem cells, to invasive procedures, as arthroplasty
and joint replacement.

Cardiovascular System
HSCT recipients surviving long term have a higher risk of
cardiovascular (CV) dysfunction than the general population.
The incidence of late CV complications in HSCT recipients is
up to 6%, with the risk of premature CV-related death increased
2.3-fold compared with the healthy individuals (44–46). The
aetiology of CV-related deaths in cancer survivors, including
those after HSCT, is multifactorial, including anthracycline-
associated congestive heart failure, radiation-induced cardiac
toxicity or other causes that may be disease or treatment related
in nature (45, 47, 48). Recognising the heterogeneity of risk
factors and CV complications, here we focus on the following
overarching topics: CV risk factors (mainlymetabolic syndrome),
arterial disease, and cardiac dysfunction.

Cardiovascular Risk Factors
Metabolic syndrome is a constellation of central obesity, insulin
resistance, glucose intolerance, dyslipidaemia, and hypertension,
and can be found in 39% of ALL survivors following HSCT
vs. 8% of patients with leukaemia treated with conventional
chemotherapy only (45). Risk for development of atherosclerotic
CV disease is substantially elevated following HSCT when
compared to the general population (49). While dyslipidaemia
and other metabolic abnormalities are common after HSCT,
often as a side effect of immunosuppressive treatments such as
calcineurin inhibitors for GvHD, some of these abnormalities

may resolve after cessation of immunosuppressive treatment.
Nevertheless, laboratory data from paediatric allogeneic HSCT
recipients 1 year post transplant suggests that those with higher
total cholesterol and triglyceride serum concentrations may be
more likely to experience a subsequent serious CV event (46).

Hypertension is another complication observed in both adult
and paediatric HSCT recipients; rates ranging from 10 to
50% have been reported, with the variation due to differences
in population composition, follow-up length and assessment
method. Risk factors for hypertension among HSCT recipients
include increasing age, the presence of obesity and other CV
risk factors. While immunosuppressive medications used to treat
GvHD often are associated with acute hypertension, evidence
for acute or chronic GvHD as a risk factor for persistent
hypertension once survivors are off immunosuppression is mixed
(50). Similarly, while TBI, kidney injury and male sex have been
postulated to be potential risk factors for hypertension, they
have not been consistently found to be independent risk factors
in clinical studies. Nevertheless, since it is difficult to predict
whether hypertension, dyslipidaemia, or diabetes developing
soon after HSCT will later spontaneously resolve, tighter control
of these CV risk factors soon after they manifest may be more
appropriate than watchful waiting. Certainly, ALL survivors who
received HSCT and who have pre-existing CV risk conditions
should continue to be monitored closely and treated for these
conditions (46, 50).

Arterial Diseases
Arterial diseases including coronary artery disease,
cerebrovascular disease and peripheral artery disease are
diagnosed in up to 22% of HSCT recipients at 20 years after
transplant and have emerged as the most important cause of
CV-related mortality in long-term survivors from paediatric
cancer (51). Atherosclerosis is a complex process involving
inflammation and cellular proliferation in arterial walls. The
development and progression of atherosclerosis is mediated
by a variety of growth factors, cytokines, thrombotic factors
and vasoactive substances. Additional modifying factors that
have been implicated include: endothelial injury induced by
radio-chemotherapy (radiation, alkylating agents, platinum
agents, and high-dose cyclophosphamide conditioning), GvHD,
immunosuppressive agents and other endocrine disorders
(e.g., gonadal dysfunction). Host genetic polymorphisms
may be involved in modulation of arterial disease risk after
HSCT; however, to date no specific genetic variant has been
described (44, 52). As screening for subclinical arterial disease
is limited due to the lack of standardised and reproducible
methods, prevention recommendations applicable to the general
population (including lifestyle modifications and/or prophylactic
pharmacotherapy) are the only known ways to reduce the risk of
arterial disease in HSCT recipients.

Cardiac Dysfunction
The most important cardiac dysfunctions observed in ALL
survivors after HSCT are heart failure and cardiac arrhythmias,
being observed in 2–10% of all survivors (44). Predisposing
factors for early heart failure in ALL patients who have
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undergone HSCT include reduced pre-HSCT ejection fraction,
conditioning with high-dose cyclophosphamide and TBI. The
risk of late-occurring heart failure is primarily attributable to pre-
HSCT anthracycline exposure, in a dose response manner (7).
Moreover, the risk increases significantly among those who also
have conventional CV risk factors such as hypertension and/or
diabetes. Early screening by echocardiography for asymptomatic
disease may provide opportunities for implementation of
interventions to reduce the risk of clinically overt disease; e.g.,
ACE inhibitors for asymptomatic left ventricular dysfunction.
Thus, according to COG recommendation routine assessment of
cardiac function (systolic and diastolic) using two-dimensional
echocardiography should be performed at intervals ranging from
yearly to every 5 years, depending on their exposure doses and
age at exposure. Cardiac arrhythmias can have serious health
implications in HSCT recipients but often cause no symptoms.
The focus of long-term care is to identify and treat arrhythmias
that may eventually result in symptomatic disease and to treat
other CV complications such as stroke, haemodynamic collapse.
Existing post-HSCT care guidelines do not recommend routine
screening by electrocardiogram or Holter monitoring in patients
without symptoms or a concerning family history (7, 44, 53),
although consideration for screening in all ALL survivors who
have had HSCT is suggested.

Endocrine System
Endocrinopathies, reported in nearly 60% of patients
transplanted before the age of 10 years, represent the most
frequent sequelae after paediatric HSCT (54). The endocrine
late effects experienced by transplanted ALL survivors include
poor growth, thyroid disorders, gonadal insufficiency, impaired
glucose homeostasis, and reduced bone mineral density (55).

In ALL patients, the overall odds of developing an
endocrinopathy mostly depends on the treatment intensity
delivered at frontline and as a part of the conditioning regimen,
with cranial radiotherapy (56, 57) and a higher cumulative
dose of alkylators and TBI (58) being the most detrimental
determinants. Single-fraction TBI has been demonstrated to
expose survivors to a lifelong and remarkably higher risk of
endocrinopathy when compared with fractionated protocols
(59). Although TBI is currently delivered in multiple fractions by
the vast majority of radiotherapy centres, data about historical
conditioning is pivotal to assess the risk in the large number
of long-term survivors followed-up in late effects clinics. Of
note, patients who received HSCT after TBI-free conditioning
are also at risk of developing multiple endocrinopathies (60).
Furthermore, host-related variables (i.e., age at HSCT), steroid
cumulative dose and chronic GvHD may have additional
detrimental effects on the endocrine system (61).

Linear Growth
Impaired growth and short stature at final height attainment
are the result of a combination of hormonal and non-hormonal
detrimental factors among transplanted ALL patients. These
factors include decreased nutritional intake, psychosocial issues,
high-dose corticosteroids, hypogonadism and hypothyroidism
(55). Radiation-induced growth hormone deficiency (GHD)

commonly represents the only hypothalamic-pituitary deficiency
experienced after low doses of radiotherapy (12–24Gy) delivered
with prophylactic cranial radiotherapy or TBI (62). GHD has
been reported in 20–40% of HSCT recipients conditioned with
TBI for haematological malignancies (63–65), with most of this
variability being a result of discrepancies in the diagnostic criteria
and on the radiation dose delivered. Younger age at radiation
involving the hypothalamic-pituitary area (66, 67) and TBI
provided as a single fraction are negative prognostic factors (59).
As recommended by the Endocrine Society, recombinant human
growth hormone (rhGH) can be administered to patients with
demonstrated GHD and a stable oncological remission for ≥12
months after the discontinuation of antineoplastic treatments
and after a thorough discussion of risks and benefits with the
caregiver (68). Nevertheless, TBI, especially after cumulative total
doses of more than the equivalent of 15Gy in 2-Gy fractions,
has been demonstrated to affect growth in a GH-independent
manner through radiation-induced damage involving the growth
plates (66, 69–71). Younger children are more affected and
single-dose TBI causes a greater decrease in final height than
fractionated TBI. As a result, short stature occurs after TBI also
in patients without GHD. In addition, rhGH fails to restore
growth potential in individuals with GHD who had undergone
TBI, with over 60% of treated patients failing to reach their
mid-parental stature at final height (72–75). Nevertheless, a
measurable beneficial effect of rhGH on growth and adult height
in GHD patients has been demonstrated also after TBI (76).

Finally, tyrosine kinase inhibitors (which are administered
to Philadelphia chromosome-positive ALL patients), have been
widely described as disruptors of the GH–insulin-like growth
factor I (IGF-I) axis, potentially leading to growth impairment.
Nevertheless, the effect tends to be remarkably less evident
than in patients treated chronically, as in chronic myeloid
leukaemia (77).

Thyroid Disorders
Hypothyroidism, often subclinical, has been widely reported
after TBI as well as following busulfan- and cyclophosphamide-
based conditioning therapy (78–83). In a study published
in 1997 regarding 270 young adult patients transplanted for
haematological malignancies, Al-Fiar et al. identified raised
thyroid-stimulating hormone levels within 2 years of allogeneic
HSCT in 11% of patients after chemo-conditioning vs. 16.7%
after 12Gy fractionated TBI (84). In the same year, Toubert et al.
reported hypothyroidism during a 14-month follow-up in 14%
of a cohort of 77 patients transplanted in childhood or young
adulthood for either malignant or non-malignant haematological
disorders after conditioning regimens that did not include TBI
(83). Nevertheless, it has been suggested that these finding may
for a large part be transient, especially after chemotherapy-
only conditioning.

Radiation involving the neck provides a direct detrimental
effect to the thyroid gland (85). However, it is also associated
with an increased incidence of autoimmune thyroid disorders,
probably because autoantigens may be released from damaged
thyroid glands and recognised by the immune system (86,
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87). Prolonged immunosuppression and GvHD seem to play a
contributory role (88).

HSCT is an independent risk factor for the development
of thyroid nodules and malignancies. In a large French study
published in 2016 following 502 transplanted childhood ALL
survivors, the incidence of thyroid malignancy was 5.2%, with
a cumulative incidence of 9.6% at 20 years (89). Although
the detrimental role of TBI, especially when delivered as an
unfractionated dose in patients younger than 10 years, has been
known for decades (81, 88), an increasing body of knowledge has
shed light on the harmful role that is also played by alkylating
agents in this setting (79, 89). As the median average time elapsed
between diagnosis of ALL and thyroid cancer is as long as 16
years, lifelong monitoring for patients is mandatory (79, 89).

Ovarian Insufficiency
Impaired gonadal function is the most frequent endocrine
sequelae among transplanted ALL female survivors, as both
alkylating agents and radiotherapy halt follicle maturation
and cause a rapidly progressing depletion of ovarian follicles
(3, 90). In pre- or peri-pubertal girls, the occurrence of pubertal
delay or arrest prompting the need for pharmacological
hormonal induction to achieve menarche depends on the
conditioning regimen received, with an incidence of 16%
after cyclophosphamide alone, 72% after busulfan plus
cyclophosphamide, 71% after 10Gy of single fraction TBI
and 57% after 12–15.75Gy of fractionated TBI (80, 91). In
this setting, the administration of progressively increasing
doses of oestrogen initially (80) provides the patient with
secondary sexual features, while the subsequent cyclical addition
of progestins prompts the occurrence of withdrawal bleeding,
mimicking menses (92).

If the exposure to gonadotoxic treatments occurs in
post-pubertal female patients, the potential clinical pictures
encompasses either overt premature ovarian failure (POI,
defined as the combination of oligo-amenorrhoea and raised
FSH in the post-menopausal range in women <40 years),
or a milder condition known as diminished ovarian reserve
(DOR), a subclinical state defined as retained menses, normal
FSH but reduced markers of ovarian reserve (i.e., low anti-
Müllerian hormone and reduced antral follicular count on pelvis
ultrasound). Women with DOR are at potential risk for impaired
fertility and early detection of this condition could allow prompt
undertaking of medically assisted fertility techniques by taking
advantage of a potentially narrow window of opportunity that
precedes the progression into POI and sterility.

According to various published analyses, the incidence of POI
ranges from 44 to 100% among patients who received HSCT in
childhood for either malignant or non-malignant haematological
disorders (93–96). This wide range of variability is due to
the clinical and demographicheterogeneity of different study
cohorts. In female leukaemic patients, POI occurs in almost
100% of adolescents and young adults after TBI- or busulfan-
based conditioning, while its incidence is remarkably lower
after cyclophosphamide or melphalan (97–100). Preliminary
data seem to show lower ovarian toxicity in female patients
conditioned with treosulfan compared with busulfan (101).

Women with POI commonly experience clinical or sub-
clinical signs and symptoms consistent with hypoestrogenism
and need hormone replacement therapy, which is continued until
the age when menopause is regarded as physiological.

Finally, female patients exposed to TBI experience a
higher incidence of miscarriages, preterm deliveries, and
obstetric complications, particularly during the third trimester of
pregnancy, as a consequence of suboptimal uterine development.
Conversely, no increased risk for malformations and genetic
diseases in newborns is reported (102, 103).

Testicular Insufficiency
Alkylating agents and irradiation severely affect testicular
function. Germ cells are remarkably more sensitive to
chemotherapy and radiotherapy than testosterone-secreting
Leydig cells; as a result, radiation doses as low as 2–6Gy,
busulfan >600 mg/kg and cyclophosphamide >7.5–9 g/m2 are
the threshold above which spermatogonial cell depletion and
subsequent oligo-azoospermia occurs (104, 105). Azoospermia
has been reported in 85% of young male patients transplanted for
either ALL, lymphoma or severe aplastic anaemia and exposed to
TBI or abdominal irradiation before HSCT (106). Thus, semen
collection and cryopreservation should always be recommended,
when feasible, at diagnosis of malignancy.

Conversely, remarkably higher exposure is needed to affect
testosterone secretion. In pre-pubertal boys, pubertal delay
may occur at rates as high as 14% after cyclophosphamide
alone, 48% after busulfan plus cyclophosphamide and 58%
after fractionated 12–15.75Gy TBI (91). Progressively increasing
doses of testosterone are required to induce puberty and
achieve secondary sexual features among those male peri-
pubertal patients who present with overt pubertal arrest (91). The
percentage of male patients requiring pharmacological induction
of puberty is remarkably higher after 24Gy testicular radiation
for testicular relapse or disease (107). In a recent study conducted
in 255 ALL survivors, overt testosterone deficiency was diagnosed
in 71.4% of non-transplanted patients after 24-Gy testicular
irradiation vs. 55.6% among TBI-conditioned and transplanted
patients (108).

Among patients who have gone through puberty
spontaneously, chemo conditioning may result in raised
luteinizing hormone (a sign of subclinical damage) but
testosterone secretion is generally retained (109). On the
contrary, after TBI, with or without testicular radiation
boost, adult men often experience a progressive decrease in
testosterone levels, possibly associated to symptoms consistent
with hypogonadism, thus indicating a need for life-long
testosterone replacement therapy (110). As this may occur
several years after exposure, life-long monitoring is required.

Impaired Glucose Metabolism and Dyslipidaemia
Hyperinsulinism, impaired glucose tolerance and diabetes
present with a higher-than-expected incidence among
transplanted ALL survivors, especially after TBI (111, 112).
Early-onset hyperglycaemia during the early phase after
allogeneic HSCT is commonly experienced as a result of
treatment with immunosuppressive drugs, corticosteroids,
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parenteral nutrition and inflammatory cytokines associated with
GvHD (113, 114).

In the long term, relative excess of adipose tissue is a
well-known factor that predisposes to insulin resistance and
diabetes (115). Although transplanted leukaemia and lymphoma
survivors may present with normal body mass index, they can
develop significant changes in their body composition, resulting
in increased visceral fat and reduction of lean mass (116, 117).
This condition, known as “sarcopenic obesity” leads to a relative
decrease of myocyte insulin receptors vs. adipocyte receptors,
which are remarkably less efficient at binding insulin. In addition,
it has been demonstrated that when the pancreas falls within the
irradiation field, as in TBI, β-cell reserve and overall pancreatic
volume are remarkably lower than in controls, resulting in a
higher incidence of pathological response to an oral glucose
tolerance test (118).

Finally, low high-density lipoprotein and elevated triglyceride
levels are reported in up to 30% of paediatric HSCT recipients,
remarkably more frequently than in healthy controls (119).

Given the overall higher metabolic risk experienced after
TBI-conditioned HSCT, the Children’s Oncology Group
recommend that healthcare professionals promote healthy
lifestyle modifications to HSCT recipients and monitor patients’
weight and body mass index annually and fasting blood glucose
and glycated haemoglobin every 2 years (7).

Eyes
Ocular complications after HSCT can affect all parts of the
eye, from the cornea to the retina. Risk factors associated
with ocular late effects are: specific conditioning regimens,
immunosuppression, GvHD, and underlying disease (120, 121).
Visual impairment can affect daily activities and, consequently,
the QoL of patients.

Cataracts
Cataracts, characterised by an opacification of the lens, typically
occur after TBI in >50% of cases, are related to radiotherapy
dose, and increase over time. However, cataracts can also develop
in children who have not received TBI in >25% of cases (122).
Studies comparing cataract incidence between patients treated
with single fraction TBI to those receiving fractionated TBI
found a higher occurrence in the single-fraction groups (123).
Horwitz et al. found that, with longer duration of follow-up in
201 children, cataract incidence after fractionated TBI (12Gy in
six fractions over 3 days) increased from 30% at 5 years post-
transplant to 70.8% at 15 years (124). Long-term use of steroids
is a cofactor for cataract formation, together with irradiation
(23). Horwitz et al. could not detect a specific steroid dose effect
(124). Anothermedication known to induce cataracts is busulfan,
the chemotherapy-conditioning alternative to TBI, usually used
in children younger than 4 years (24). The incidence is lower
than after TBI, and severity of cataract is usually mild without
needing surgery. Other causes of cataracts include high arterial
blood pressure and metabolic syndrome, both of which often
occur in HSCT recipients. The incidence of cataracts in children
varies from 4 to 87%, depending on conditioning regimen
and irradiation dose (125). The variations in range reported

by different studies are due to the differences in conditioning
regimens, radiation dose to the lens (eye shielding during TBI
can be performed), differences in supportive care (such as use
of steroids), and follow-up period as well as heterogeneity of
study populations (126, 127). Van Kempen-Harteveld et al.
demonstrated that 55% eye shielding reduced the incidence of
cataracts from 90 to 31% in 188 paediatric patients who received
single-fraction 8Gy or two 6-Gy fractions of TBI (128). The risk
of CNS relapse after eye shielding is negligible; in the leukaemia
patients who received eye shielding, the incidence was 1.7% after
5 years (129).

Keratoconjunctivitis Sicca
Dry eye syndrome, also known as keratoconjunctivitis sicca, is the
most frequent ocular complication after HSCT. It is characterised
by insufficient tear production or excessive evaporation, with
damage to the interpalpebral conjunctiva (3, 3, 130). Typical
symptoms are itching, burning, a gritty feeling, or excessive
tearing which sticks to lashes, photophobia, red eyes, impaired
vision and pain (131). In children who have undergoneHSCT, the
reported incidence of keratoconjunctivitis sicca varies from 35 to
77% (126, 132–134). Themost frequent cause of dry eyes is ocular
GvHD, which typically develops 6–9 months after HSCT (135).

Incidence of ocular GvHD after HSCT amounts to 35% (132).
The National Institute for Health (NIH) criteria of 2015

define ocular GvHD as new onset, after HSCT, of dry, gritty or
painful eyes, cicatricial conjunctivitis, keratoconjunctivitis, and
confluent areas of punctate keratopathy. Schirmer’s test is not
recommended anymore for follow-up due to poor correlation
with symptoms (131). Factors increasing the risk of ocular
GvHD are the same risk factors for chronic GVHD overall,
including, female donor transplanted to a male recipient, donor–
recipient sex mismatch, increasing recipient age, higher numbers
of CD34+ cells in the graft and peripheral blood stem cells
as the graft source (132, 136–138). Recent studies showed
that high number of CD3 cells in the graft were associated
with a delay of lymphocytes recovery resulting in a higher
incidence of acute GvHD Grad II or above (139). Routine
eye examination before HSCT allows assessment of baseline
conditions and annual ophthalmological screening after HSCT is
recommended for early recognition of ocular complications after
transplantation (131).

Microvascular Retinopathy
In 1983, ischemic microvascular retinopathy was described for
the first time as a post-HSCT complication characterised by
retinal cotton-wool patches, vitreous haemorrhage, and oedema
of the optic disc (140). On ophthalmological examination,
patients can be asymptomatic or complain of blurred vision
or abnormalities in colour perception. Typically, ischaemic
microvascular retinopathy occurs within 6 months of HSCT.
The incidence ranges from 0 to 10% (141). Risk factors are use
of TBI, cyclosporine A, busulfan, hypertension, diabetes, and
hyperlipidiemia (121, 142, 143). The consequence is capillary
damage in the ocular fundus. Symptoms can spontaneously
regress, and a reduction of immunosuppression can lead to
resolution of retinal lesions (144–146). Based on the potential
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risk factors it is important that calcineurin levels should be
monitored, and that hypertension, diabetes or hyperlipidemia
are treated.

Cytomegalovirus Uveitis/Retinitis
Cytomegalovirus retinitis (CMVR) is a rare sight-threatening
manifestation after HSCT. Occurrence is typically late, with a
mean time of 200 days post-transplant (147). Risk factors are
young age at transplantation, pretransplant viremia, underlying
primary immunodeficiency, non-myeloablative conditioning
regimen, and acute GvHD (CD4 ≥ 200/ul) (147). Compared
to patients with systemic infections, patients with CMVR
had higher CD4 T-cell count (≥200/ul), expanding CD8 T-
cell counts and lower CMV load. One hypothesis is that
immunosuppression masks signs of inflammation (148). Most
patients are asymptomatic for a long time, leading to a delayed
diagnosis. The true incidence in children after HSCT is unknown
due to the low number of published cases.

Iron Overload
HSCT recipients often receive large red blood cell (RBC)
transfusions both during the pre- and peri-transplant period.
Accordingly, transfusion-related iron overload is listed among
the commonest complications after HSCT, with a reported
incidence ranging between 30 and 75% after allogeneic HSCT,
with rates differing based on the diagnostic technique and criteria
established (149–152).

A growing body of knowledge exists on the pathophysiology
of iron-overload–induced tissutal toxicity: once transferrin
is saturated, non-transferrin-bound iron becomes detectable,
and—because of iron’s ability to transfer electrons—this results
in oxidative stress (153).

A potential worsening effect of infectious complications and
GvHD on iron overload in the early post-HSCT period has been
demonstrated. In addition, chemotherapy-induced mucositis
may result in increased intestinal iron absorption. Finally,
chemotherapy- and radiotherapy-associated hepatic damagemay
also contribute to the release of iron stores and diminish
transferrin synthesis (154, 155).

It has been demonstrated that iron overload itself may
play a contributory role on the pathogenesis of several early-
onset complications of HSCT, such as invasive fungal infections
(156), sepsis and sinusoidal obstruction syndrome (151, 157).
However, assessing the interaction between pre- and post-
transplantation ferritin levels and GvHD can be cumbersome,
and no clear conclusions have been drawn to date about the
potential detrimental effect of iron overload on GvHD.

Although advances in the supportive care and monitoring
of long-term survivors have dramatically improved in the last
decades, iron overload is still a challenging issue and may be
associated with late sequelae such as liver fibrosis, hepatic focal
nodular hyperplasia, heart failure, hypogonadism and diabetes
(158, 159).

Diagnosis of Iron Overload
Theoretically, liver biopsy is the gold standard for evaluating iron
tissue stores (152). Nevertheless, the need for a relatively large

volume of tissue (4mg wet weight), as well as the risks associated
with this invasive procedure (with haemorrhage reported in
about 0.5% of cases) make this diagnostic tool unappealing to
most clinicians and patients (160).

Among the surrogate parameters developed to assess iron
overload, serum ferritin is the most easily available and
inexpensive. The European Society for Blood and Marrow
Transplantation, Centre for International Blood and Marrow
Transplant Research, and American Society for Transplantation
and Cellular Therapy. 2006 guidelines for screening and
prevention practises post HSCT promoted screening of serum
ferritin levels to predict the risk of iron overload (32).

The ferritin level conventionally regarded as a threshold to
prompt a complete assessment of iron overload is 1,000 ng/mL,
although in patients with abnormal liver function tests, high
transfusional needs or hepatitis C infection, this threshold should
be lowered to 500 ng/mL (32, 159). Ferritin levels continue
to be the mainstay for baseline clinical assessment of iron
overload, although inflammation, ineffective erythropoiesis and
liver disorders often result in raised ferritin levels (161–163).
Accordingly, ferritin appears to show an overall unsatisfactory
correlation with liver iron concentration (LIC) in paediatric
patients, and LIC should always be assessed before undertaking
any treatment for iron overload (150, 164).

T2∗-weighted magnetic resonance imaging (MRI) has found
a systematic clinical application in the last decade. LIC
measurement by MRI has gained importance because it is non-
invasive, rapid and widely available. Nowadays, T2 and R2
MRI techniques show a sensitivity and a specificity of 89 and
80% in the assessment of LIC, respectively. Ferritin levels of
>1,000 ng/mL were found to correlate with a LIC of >7 mg/g in
a population of patients transplanted for different haematological
malignancies (165).

A superconducting quantum interference device (SQUID) can
assess total body iron by biomagnetic susceptometric detection
of the paramagnetic materials ferritin and hemosiderin. The iron
content estimated shows a good correlation with LIC proven
by biopsy. However, the SQUID technique has limitations: it
is complex, expensive, and available in few centres worldwide
(166). Busca et al. showed that LICmeasurements obtained using
a SQUID in the presence of moderate (LIC 1,000–2,000 µg
Fe/g wet weight) or severe (LIC >2,000 µg Fe/g wet weight)
iron overload were associated with high ferritin levels in 69% of
patients (165).

Management of Iron Overload
Consensus about the indication and the best timing for treatment
for iron overload after HSCT in ALL patients is lacking.
Management of iron overload should be tailored based on several
factors (i.e., the need for ongoing RBC transfusion therapy,
ability to tolerate iron-depleting therapy, cost- effectiveness,
and comorbidities). Phlebotomies and iron chelation agents
are the two available treatment solutions. Experience-based
recommendations suggest a combined aggressive approach in the
case of severe iron overload with an estimated LIC >15 mg/g.
When LIC is 7–15mg/g dry weight, phlebotomymay be regarded
as the best treatment solution. Among patients with milder iron
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overload (<7 mg/g), phlebotomies should be performed only in
patients with concomitant liver disease (32, 159).

The safety and effectiveness of phlebotomies have been
reported in adult survivors after HSCT, but only case series
are available in paediatric patients (167–169). In patients
who have achieved adequate engraftment and restored normal
erythropoiesis following HSCT in paediatric age, phlebotomy
represents a safe, and inexpensive approach. The need for an
intravenous line and potentially poor compliance related to
the high number of blood withdrawals required to achieve
an effective depletion of iron storage represent the foremost
limitations in childhood and adolescence, respectively (167).

Among chelators, deferoxamine is an iron-chelating agent
available for intramuscular, subcutaneous or intravenous
administration. Due to its short plasma half-life, deferoxamine
should be administered at least 5 nights per week and be
delivered by a subcutaneous pump for 8–12 h (170). This is the
major restriction for wide administration in paediatric patients.
A study assessing the efficacy of deferoxamine before and after
HSCT in patients with thalassaemia showed that median serum
ferritin 6 months after HSCT was statistically lower among
treated patients (p = 0.007) than in the control group, without
deferoxamine (170). Deferasirox is a tridentate iron chelator
and has been licenced worldwide for the treatment of chronic
iron overload in polytransfused patients aged ≥2 years. It is
administered orally and the effective dose ranges between 20
and 40 mg/kg, with titration being guided by serum ferritin
trends. Chelation with deferasirox after allogeneic HSCT was
demonstrated to be effective and safe in reducing serum ferritin
levels in two prospective, open-label, multicentre studies in
adult patients who had received allogeneic HSCT and had iron
overload (171, 172).

Kidneys
Renal dysfunction is observed in up to 62% of transplanted
cancer survivors and may be associated with a wide range
of risk factors including nephrotoxic conditioning therapy
for HSCT (high-dose chemotherapy and fractionated TBI),
sinusoidal obstruction syndrome, hepatorenal syndrome, sepsis
and corresponding antibiotic (aminoglycosides), and antifungal
(amphotericin B) treatment (173). Some renal injury syndromes
are probably related to cyclosporine A use, radiotherapy and
GvHD (174, 175). It is also well-known that renal Fanconi
syndrome may occur months or even years after the end of
chemotherapy (176).

Renal disease after HSCT encompasses a wide spectrum of
structural and functional abnormalities, ranging from vascular
(hypertension, thrombotic microangiopathy) to glomerular
(albuminuria, nephrotic glomerulopathies) to tubulo-interstitial
lesions. All of these abnormalities may lead to a decreased
glomerular filtration rate (GFR) and consequently chronic kidney
disease (CKD). CKD defined by an elevated serum creatinine or a
decreased GFR (<60 mL/min/1.73 m2) for ≥3 months develops
in∼20% of long-term survivors following paediatric HSCT (177,
178). Three main clinical entities may be designated: thrombotic
microangiopathy, nephrotic syndrome, and idiopathic CKD.

Thrombotic microangiopathy occurs in between 2 and
21% of HSCT recipients and represents a spectrum of
clinical diseases characterised by systemic or intrarenal
platelet aggregation, thrombocytopenia, and microvascular
fragmentation of erythrocytes (179). Platelet aggregation can
result in ischaemia and organ injury. When the presentation
is fulminant, thrombotic microangiopathy is often associated
with severe acute renal injury and death. The clinical course of
thrombotic-microangiopathy-related kidney injury after HSCT
is often an acute deterioration of renal function followed by a
period of stabilisation and eventual development of CKD; full
renal function is rarely restored (177).

The clinical manifestation of nephrotic syndrome
includes proteinuria, oedema, hypoalbuminemia, and
hypercholesterolaemia. The most common types of nephrotic
syndrome that occur after HSCT are membranous nephropathy
and minimal change disease. These are thought to be
manifestations of GvHD in the kidney. Membranous
nephropathy is characterised by the presence of immune
complexes between the glomerular basement membrane and
the podocytes, while minimal change disease is thought to be a
T-cell–mediated process (180, 181).

There is a group of paediatric HSCT recipients who
present with renal dysfunction not associated with thrombotic
microangiopathy or nephrotic syndrome and, therefore, who
are diagnosed with idiopathic CKD. The main risk factors
predisposing HSCT recipients to idiopathic CKD are TBI, acute
and chronic GvHD, and acute kidney injury (182).

As chronic renal impairment may occur in children who
undergo HSCT with pre-transplant renal function within normal
limits and regardless of conditioning regimen, screening of renal
function (including blood pressure, renal function assessment,
and if necessary kidney ultrasonography) is recommended
in all paediatric HSCT recipients (183). In patients with
renal insufficiency, nephrotoxic medication should be avoided;
specific treatment strategies based on the specific diagnosis and
its pathophysiology include immunosuppression for nephrotic
syndrome, plasma exchange for thrombotic microangiopathy,
and angiotensin-converting enzyme inhibitors or angiotensin
receptor blockers for hypertension (177).

Lungs
Pulmonary complications are among the most frequent serious
sequelae after allogeneic HSCT for ALL. The two forms of
chronic pulmonary dysfunction that are frequently observed
are obstructive lung disease (OLD) and restrictive lung disease
(RLD). The incidence of both forms ranges from 10 to 40% in all
HSCT recipients and depends upon the donor source, the time
interval after HSCT and presence of chronic GvHD (184). In
both OLD and RLD, collagen deposition and the development
of fibrosis (in the interstitial space in RLD or peri-bronchiolar
space in OLD) are believed to contribute to the patterns of
lung dysfunction displayed on pulmonary function tests (PFTs)
(185, 186). Abnormalities in PFT parameters are not uncommon
prior to HSCT and are generally thought to reflect exposure to
infectious insults or previous chemotherapy.

Frontiers in Pediatrics | www.frontiersin.org 9 November 2021 | Volume 9 | Article 773895

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Diesch-Furlanetto et al. HSCT Late Effects and Transition

Several studies have demonstrated OLD among recipients
of HSCT during childhood (11, 187–189). Presence of chronic
GvHD was the most consistent risk factor for development of
OLD. The most common form of OLD after allogeneic HSCT is
bronchiolitis obliterans (190). As mortality rates for bronchiolitis
obliterans in paediatric HSCT patients range between 11 and
67%, all HSCT recipients should be carefully evaluated for this
lung condition. Chest radiographs typically show hyperinflation,
while mosaic perfusion is a common feature on high resolution
computed tomography (CT), with decreased number and size
of vessels causing parenchymal lucencies alongside normal
lung tissue. Air trapping and bronchiectasis are also seen in
bronchiolitis obliterans and may result in an air leak syndrome.
Significant airway obstruction with bronchiolitis obliterans may
be accompanied by only minimal radiographic findings. Serial
PFT measurements may be more useful than imaging or
histology for detecting the progression of bronchiolitis obliterans
in children; however, due to technical difficulties in performing
PFT in young children, the diagnosis of bronchiolitis obliterans
is difficult and may be underreported (187).

RLD—as defined by a proportional decrease in forced
vital capacity and forced expiratory volume in 1 second on
spirometry and/or decreased total lung capacity using body
plethysmography—has been described in many studies (11,
187, 188). Importantly, decline in total lung capacity or forced
vital capacity occurring at 100 days and 1 year after HSCT
is associated with an increase in non-relapse mortality (186).
Patients who present with decreased pulmonary function may
be at increased risk for sequelae from additional infectious or
toxic exposures and should be counselled accordingly. Regular
monitoring allows subtle changes in symptomatology or lung
function to be detected (187). Themost recognisable form of RLD
is bronchiolitis obliterans organising pneumonia, characterised
by dry cough, shortness of breath and fever. Radiographic
findings show diffuse, peripheral, fluffy infiltrates consistent with
airspace consolidation. Although reported in <10% of HSCT
recipients, the development of bronchiolitis obliterans organising
pneumonia is strongly associated with prior or ongoing acute or
chronic GvHD (191).

Therapy for OLD defined by an irreversible airflow
obstruction, as characterised by a forced expiratory volume
in one second divided by forced vital capacity (FEV1/FVC)
of <70%, and a FEV1 of <70% of predicted value, combines
enhanced immunosuppression together with supportive
care including antimicrobial prophylaxis, bronchodilator
therapy and supplemental oxygen when indicated. While the
approach to RLD is less well-defined, increasing evidence
suggests that this form of pulmonary dysfunction may also
be immunologically mediated. Unfortunately, the response to
multiple immunosuppressive agents is limited and tends to
occur only early in the course of treatment. The potential role for
tumour necrosis factor α in the pathogenesis of both OLD and
RLD suggests that neutralising agents such as etanercept may
have promise (186, 191). Systematic post-transplant screening
of lung function is essential for the diagnosis of early lung
dysfunction and to facilitate optimal management. In cases of
the development of respiratory symptoms or deterioration of
lung function, rigorous clinical examination with an analysis

of CT scan features and appropriate lung sampling should help
the clinician make a specific diagnosis that considers long term
pulmonary complications.

PSYCHOSOCIAL LATE EFFECTS AND
QUALITY OF LIFE AFTER HSCT

The World Health Organisation defines QoL as “an individual’s
perception of their position in life in the context of the culture
and value systems in which they live and in relation to their
goals, expectations, standards and concerns.” More specifically,
health-related QoL is defined as “the extent to which usual or
expected physical, emotional, and social well-being are affected
by a medical condition or its treatment.” The concept of health-
related QoL encompasses physical, cognitive, emotional, and
social functioning and well-being; it has emerged as a significant
area of research that now is recognised as an important endpoint
for many studies alongside survival endpoints (192).

Factors adversely affecting QoL and social challenges in
transplanted survivors are amenable to intervention. Therefore,
there is a need to incorporate effective interventions in the
routine follow-up care of paediatric allogeneic HSCT recipients
in order to improve their QoL and enhance their psychological
and interpersonal growth. Psychosocial late effects include post-
traumatic stress symptoms, low self-esteem, and lower QoL.
Social problems also have been documented among survivors in
terms of social anxiety, poor peer acceptance and self-perception
issues. Children transplanted due to ALL are at especially high
risk due to their average older age at the time of diagnosis, type
and length of pretransplant treatment, severity of disease, length
of remission or shorter time since diagnosis, and the medical late
effects of disease and treatment (193).

Studies focused on QoL and psychosocial sequelae in
paediatric ALL patients undergoing HSCT establish these
endpoints as relevant fields of enquiry. Increasing attention in
these fields derives from the success of curative ALL therapies,
including HSCT, in recent years. Following HST, survivors can
gradually restart their normal activities, with the consequence
that psychological aspects linked to therapy must now be
considered for these patients alongside medical late effects, in
order to better understand how patients might adapt and be
supported. Themost traumatic period from a psychological point
of view is often the period in which children and parents spend
isolated in the transplant unit in the early post-transplant period.
Longitudinal, prospective studies of variations in QoL along the
various steps of HSCT and long-term follow-up may allow us
to conceptualise how psychosocial aspects of patients’ lives and
development are affected over time (20, 194, 195).

TRANSITION FROM PAEDIATRIC TO
ADULT HSCT CARE

Given the prevalence and impact of complications following
HSCT during childhood it is now widely recognised that
survivors must have timely access to life-long care in order
to prevent, ameliorate and manage the adverse late effects of
transplant. In the same way that it is accepted that children
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are optimally treated by healthcare providers trained and
experienced in the care of children, so too, adults should be cared
for by those trained and experienced in adult medicine (196).
Therefore, as more and more children survive, the transition of
adolescents from paediatric to adult services is crucial.

This healthcare transition comes at a time when adolescents
are already facing the challenges of transitioning from childhood
to adulthood (197). The adolescent brain is different to the brain
in childhood or adulthood contributing to the vulnerability of
adolescents to risk taking and poor self-regulation (198). While
for healthy adolescents, risk taking and poor self-regulation
might involve social behaviours such as alcohol and illicit drug
taking, unprotected sex and reckless driving, for those with
chronic medical conditions the fallout can include a lack of
compliance with healthcare. For these reasons, it has long been
recognised that the transition of healthcare for adolescents
and young adults with chronic healthcare conditions needs to
planned, purposeful and well-supported in order for it to be
successful (196, 199–204).

The American Academy of Paediatrics, American Academy
of Family Physicians and American College of Physicians
published a consensus statement in 2002 on healthcare
transition for young adults with special healthcare needs
(196). This statement recommends some critical initial steps
to ensure uninterrupted, developmentally appropriate care as
patients move from adolescence to adulthood. These steps
include: identification of appropriate healthcare providers in
the adult system, developmentally appropriate education of the
adolescent/young adult, a written healthcare transition plan and
in countries without universal health care, access to adequate
healthcare insurance.

Unlike most adolescent/young adults with chronic medical
conditions, paediatric HSCT recipients, for the most part,
do not have acute healthcare needs. Rather—similar to other
childhood cancer survivors—they are a unique group of patients
that require significant preventative healthcare. Their healthcare
requirements focus on surveillance, prevention and education,
rather than just treatment.

There is little in the literature looking specifically at transition
of paediatric HSCT recipients to adult services. There is more
in the literature for other childhood cancer survivors, who are
a larger but similar population. A recently published review
looked at the transition of childhood cancer survivors to adult
healthcare (205). The authors looked at 26 studies focused on
three main areas: transition practises, transition readiness tools
and barriers to successful transition. There were three main
models of transition: (1) a direct transition from paediatric to
adult oncology units; (2) transfer to care under primary care
physicians, with referral to adult medical specialists as needed;
and (3) shared care, where the primary care physician works
in collaboration with an oncology unit. Transition tools are an
important part of planning and supporting successful transition
(206–211). The tools, which included workbooks, questionnaires
and scales, aimed to assess the readiness of the childhood cancer
survivor to transition. The tools are useful in identifying areas in
which an individual survivor needs more support or education.
The most frequently identified barriers to transition in these

publications related to knowledge, education and empowerment
of the survivors as well as the knowledge and education of
healthcare providers (193, 194, 212–223). This highlights that
education of both survivors and their healthcare providers is an
integral part of successful transition.

Importantly, there is nothing to our knowledge in the
literature evaluating the success or failure of transition processes
and methods to manage those that are lost to follow-up.

In our review of the literature we identified two publications
addressing transition specifically in survivors of HSCT in
childhood. Hashmi et al. (20) looked at the need for long-term
follow-up after HSCT in adults and childhood and the need for
transition of care from overworked and under-resourced HSCT
units. They highlighted that vulnerable transitions included
paediatric patients transitioning to adulthood, noting the lack of
clear transition pathways. This group discussed the importance
of written survivorship care plans that are individualised
for each patient. Written individualised care plans are one
of the integral steps recommended in the 2002 consensus
statement on transition of children with long-term special
healthcare needs to adult services (196). The North American
Children’s Oncology Group guidelines on the long-term follow-
up of survivors of childhood, adolescent and young adult
cancers (www.survivorshipguidelines.org) include instructions
to develop individualised written care recommendations (196).

Cupit et al. reviewed the long-term healthcare needs of
childhood bone and marrow transplantation survivors and also
touched on the issues of transition, preventative healthcare
and access to health insurance (192). They tailored the steps
recommended in the 2002 consensus statement (196) to issues
specific to transition of HSCT recipients. This provides a good
framework for transition for this patient population. The steps
are as follows: 1. Identification of a health care provider who
will assume responsibility for current and future health care,
2. Individualised care plan which outlines the therapy received,
any complications experienced and recommend surveillance for
potential long-term complications, 3. Health care transition plan
which should be written well prior to transition and should be
discussed with the patient and their family. The responsibilities
of the various health care providers should be made clear in this
document. Both the care plan and transition plans should be
updated regularly if there are any significant changes and these
changes communicated with the patient. 4. Ensuring access to
adequate health care insurance. This step is relevant to patient
in countries without universal health care. 5. Communication.
This is perhaps the most important, clear and well-documented
communication with the patient, their family and the adult health
care providers is imperative for smooth and successful transition.

In summary, clear transition pathways from paediatric to
adult healthcare for survivors who have undergone HSCT during
childhood is necessary to ensure healthcare continuity, avoid
preventable poor outcomes and promote early identification and
management of long-term complications. However, transition
is only successful where it is planned, anticipated, purposeful
and follows clear pathways and where the services that patients
transition to and from are adequately resourced. Education,
which has been found to be a critical successful factor of
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transition, is paramount. This includes education of not just the
survivors but also the healthcare providers who will be looking
after them. A written individualised survivorship care plan is an
important resource in that education process.

CONCLUSION

Transplanted ALL survivors are a growing vulnerable population
worldwide. They are at risk of long-term sequelae that can often
appear years or even decades after HSCT and that can impact on
quality of life. As such, survivors require life-long risk-adapted
follow-up. Alertness and early detection of late effects allows
management to mitigate some long-term consequences of ALL
and HSCT.

Regular exchange with patients and their families enables
healthcare providers to follow patients throughout their
life after a relevant event like HSCT, train them on a
healthy lifestyle practises and teach them how to take over
responsibilities towards themself for periodical controls
and potential health issues. All survivors should receive a

summary of the treatment they have received and a risk-
adapted care plan. This individualised follow-up proposal
should be explained to each individual for better understanding
of its possible implications. Moreover, interdisciplinary
transition consultation is recommended for smooth transfer to
adult care.

Long-term outcomes should be documented in multicentre
prospective trials to understand better pathophysiological
pathways and predisposing factors for late effects and to optimise
the future management of HSCT recipients.
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