
TYPE Review
PUBLISHED 07 February 2023| DOI 10.3389/fped.2022.1002408
EDITED BY

Claudio Tiribelli,

Italian Liver Foundation ONLUS, Italy

REVIEWED BY

Libor Vitek,

Charles University, Czechia

Pernille Kure,

Aarhus University, Denmark

*CORRESPONDENCE

Takashi Kusaka

kusaka.takashi@kagawa-u.ac.jp

SPECIALTY SECTION

This article was submitted to Neonatology, a

section of the journal Frontiers in Pediatrics

RECEIVED 25 July 2022

ACCEPTED 30 December 2022

PUBLISHED 07 February 2023

CITATION

Itoh S, Okada H, Koyano K, Nakamura S,

Konishi Y, Iwase T and Kusaka T (2023) Fetal and

neonatal bilirubin metabolism.

Front. Pediatr. 10:1002408.

doi: 10.3389/fped.2022.1002408

COPYRIGHT

© 2023 Itoh, Okada, Koyano, Nakamura,
Konishi, Iwase and Kusaka. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Pediatrics
Fetal and neonatal bilirubin
metabolism
Susumu Itoh1, Hitoshi Okada2, Kosuke Koyano3, Shinji Nakamura1,
Yukihiko Konishi1, Takashi Iwase1 and Takashi Kusaka1*
1Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan, 2Division of Analytical
Technology, Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa,
Japan, 3Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan

Human fetal and neonatal bilirubin metabolism is centered on 4Z,15Z-bilirubin IXα
(BR) due to the extremely low BR conjugating capacity of the liver. BR is a unique,
highly lipophilic substance with physiological and toxic effects in the cell
membranes of organs and body tissues. The fetus excretes BR through the placenta
to the maternal circulation. After birth, BR is thought to act as an antioxidant
against the increase in reactive oxygen species caused by the rapid increase in
oxygen concentration during the adaptation process from in amniotic fluid to in air.
However, bilirubin encephalopathy is a toxic effect of bilirubin. Due to the lipophilic
nature of BR, it must be bound to a carrier to be distributed to various parts of the
body by hydrophilic blood. This carrier of BR is human serum albumin (HSA). In
humans, BR can be excreted efficiently after undergoing photochemical reactions
upon high affinity binding to HSA. HSA also plays an important role in the
prevention of bilirubin encephalopathy. This review focuses on the developmental
and physiological role of bilirubin metabolism during the fetal and neonatal periods.
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1. Introduction

4Z,15Z-Bilirubin IXα (BR) and human serum albumin (HSA) have unique chemical

structures that underlie their physiological importance in humans. Nonetheless, their in vivo

actions are not fully understood. In particular, bilirubin has been the focus of considerable

attention because it causes bilirubin encephalopathy. In 1954, Bernhard et al. reported that

bilirubin stabilizes and improves the absorption of vitamin A and linoleic acid, a

polyunsaturated fatty acid, in the intestinal tract (1). The stabilizing effect of bilirubin on

oxidizable substances was subsequently reported (2–5). The antioxidant properties of bilirubin

have also gained attention in terms of its physiological effects in preterm and term infants

who have weak protection against activated oxygen as well as in terms of why humans in

particular develop neonatal jaundice (6, 7). BR binds with high affinity to HSA, which is

responsible for the very low levels of free BR in the blood and its wide distribution in the

body (8, 9). However, HSA is uniquely evolved compared with the serum albumin in non-

human primates in terms of its photochemical reaction with BR (10–13). This review aims to

elucidate the following basic issues, with a focus on physiological effects: (1) the chemical

structure and metabolism of BR; (2) the oxidation products of BR; (3) the photochemical

reaction of BR in phototherapy for neonatal hyperbilirubinemia; (4) fetal bilirubin

metabolism; and (5) neonatal bilirubin metabolism.
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2. Chemical structure and metabolism
of 4Z,15Z-bilirubin IXα

BR is a tetrapyrrole with four imino groups, two carbonyl groups,

and two propionic acid groups. Despite the presence of the many

polar groups, BR is extremely insoluble in water. This is due to the

intramolecular hydrogen bonding of these polar groups and the

presence of hydrophobic groups such as methyl and vinyl groups

on the surface of the BR molecule (14, 15). The cleavage of

protoheme IX (heme B) at the α position is essential for the

formation of the BR structure, and the substrate specificity of the

cleavage enzyme, heme oxygenase, is vital. This specificity is

reported to be due to the electrostatic interaction of the propionate

groups of heme B with Lys-18, Lys-179, and Arg-183 of the heme

oxygenase protein and hydrogen bonding with Tyr-134, which

fixes the α–γ axis of heme B, resulting in a fixed binding direction

between heme B and heme oxygenase (16, 17).

For BR to be distributed throughout the body, it needs a carrier

in the hydrophilic bloodstream. Its hydrophobic physicochemical

properties make it suitable for distribution in lipids, mainly in cell

membranes. HSA serves this purpose. BR is thought to bind with

high affinity to HSA at domain IIA with a binding constant on the

order of 107 and to be carried and distributed to various organs

and tissues where it exerts antioxidant effects (18–20). The amino

acid pocket of HSA is a salt-type right-hand chirality enantiomer

with some of the BR hydrogen bonds broken and hydroxyl groups

displayed, and it is ionically bound with high affinity to Lys-190

and hydrophobic bonding to hydrophobic amino acids (21, 22).

The binding of BR to HSA allows for unique photochemical

reactions due to the asymmetric structure of the dipyrrole facing

its methylene bridge and the conformation of the bound BR (see

Photochemistry of 4Z,15Z-bilirubin IXα in phototherapy for

neonatal hyperbilirubinemia).

The antioxidant effect of BR involves both scavenging and

quenching activity. In the former pathway, BR combines with

reactive oxygen species (ROS) to form oxidation products, and in

the latter pathway, BR is oxidized by electron transfer to produce

biliverdin, which can be metabolized back to BR by

biliverdin reductase, a widely distributed enzyme in the body.

However, it is difficult to assess the in vivo antioxidant activity of

this cycle (23).
3. Oxidation products of 4Z,15Z-
bilirubin IXα

To validate the evidence indicating that BR acts as an

antioxidant, it is necessary to demonstrate both a decrease in BR

and an increase in BR oxidation products resulting from the

scavenging and quenching of ROS. Therefore, the identification of

BR and its oxidation products is important. The oxidation

products of BR are shown in Figure 1 and comprise mainly

tetrapyrroles, tripyrroles, dipyrroles, and monopyrroles and their

oxidized metabolites (27–30). In the past, it was thought that BR

was itself a photosensitizer and that this oxidative pathway was the

primary route of BR metabolism in phototherapy for neonatal
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hyperbilirubinemia (32). However, it was clarified that the

photochemical reactions of BR are not type II photochemical

reaction in which energy is transferred from the photoexcited state

of BR to triplet oxygen to generate singlet oxygen that oxidizes BR

(33, 34). Elucidation of the photochemical reactions of BR

revealed that the main reactions are geometric isomerization and

subsequent structural isomerization, while the aforementioned

tetrapyrrole oxidation products remain intact (see Photochemistry

of 4Z,15Z-bilirubin IXα in phototherapy for neonatal

hyperbilirubinemia).

Turning to the BR oxidation products, biliverdin produced by

quenching activity (electron transfer only) and the bilirubin

oxidation products produced by scavenging activity (reaction with

ROS) have been detected in vivo. The following products have

been identified: biliverdin (24–26), biotripyrrin-a (27), biotripyrrin-

b (27), exovinyl-B-water propentdyopent (28), endovinyl-B-water

propentdyopent (28), hematinic acid imide (28), Z-BOX A (29),

Z-BOX B (29), Z-BOX C (30), and a hydrolysis product of

methylvinylmaleimide and hematic acid imide (28).
4. Photochemistry of 4Z,15Z-bilirubin
IXα in phototherapy for neonatal
hyperbilirubinemia

The major photochemical reaction of BR occurring during

phototherapy is shown in Figure 2 (35–38). BR bound with high

affinity to domain IIA of HSA undergoes specific photochemical

reactions, which is explained in the section on physiological

aspects in this review. The major product of the geometric

isomerization reaction is 4Z,15E-bilirubin IXα, while the major

product of the structural isomerization reaction is 4E,15Z-

cyclobilirubin IXα (Z-lumirubin) (39). 4Z,15E-Bilirubin IXα moves

to domain IB, where HSA binding is weak (40), and the levels of

its free form increase. This form is excreted from the liver into the

bile and then may reconvert to BR in the digestive tract to be

retained in the body through the enterohepatic circulation. BR

excreted into the intestinal tract is thought to play a role in

antioxidant activity. In blood, the amount of BR bound to domain

IIA of HSA is reduced and toxic free BR can bind again at the

domain II site, resulting in a decrease in free BR (10, 41–43).

4E,15Z-Cyclobilirubin IXα is the most important compound

formed during phototherapy because it polymerizes into a dark

brown substance that causes bronze baby syndrome, an adverse

reaction to phototherapy, and is ultimately excreted from the body

(44, 45). In particular, the rate of formation of 4E,15Z-

cyclobilirubin IXα via 4E,15Z-bilirubin IXα from BR bound to

HSA is much higher than for other albumins in non-human

primates (10–13, 46–50). Phototherapy LED light centered at

turquoise and green wavelengths produces more cyclobilirubin and

less 4Z,15E-bilirubin (50, 51). The asymmetric structure of the

dipyrroles centered on the methylene bridge of BR is important for

effectively achieving both geometric and structural isomerization

reactions. In contrast, it is difficult to achieve these reactions for

the symmetric 4Z,15Z-bilirubin IIIα and XIIIα (52). In solution

with various acid catalysts, BR can undergo rearrangement to a

mixture bilirubin IIIα, BR and XIIIα through structural
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FIGURE 1

4Z,15Z-bilirubin IXα and bilirubin oxidation products. The bilirubin oxidation products formed from 4Z,15Z-bilirubin IXα are divided into tetrapyrroles,
tripyrroles, dipyrroles, monopyrroles, and hydrolysis products with their corresponding structures. Bilirubin oxidation products produced by quenching
activity: biliverdin. Bilirubin oxidation products produced by scavenging activity: oxidizing substances other than biliverdin. The abbreviations and the
articles in which they are listed: biliverdin (23–26); biopyrrin-a and biopyrrin-b (27); exovinyl-B-water propentdyopent, endovinyl-B-water
propentdyopent, and hematinic acid imide (28); Z-BOX, Z-bilirubin oxidant product; Z-BOX A and Z-BOX B (29); Z-BOX C (30); hydrolysis product of
methylvinylmaleimide and hematinic acid imide (28); and exovinyl-B-water propentdyopent & endovinyl-B-water propentdyopent [propentdyopents
determined by pentdyopent reaction (23, 31)].
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isomerization (intermolecular dipyyrole exchange) (53). This

isomerization reaction has caused many erroneous results in vitro

(54), but plays no important role in bilirubin photoisomerization

in vivo (55).

In the bilirubin oxidation pathway, the total excretion of BR

oxidation products during phototherapy is very low (28). Before

phototherapy, hematinic acid imide and hydrolysis products of

methylvinylmaleimide and hematinic acid imide are detected by

high-performance liquid chromatography. They increase during

phototherapy, and exovinyl-B-water propentdyopent and

endovinyl-B-water propentdyopent are present as well (28). We

speculate that BR is oxidized and acts as an antioxidant even

before phototherapy. According to a previous report (28), the

increase in these BR oxidation products during phototherapy is

considered to reflect the BR antioxidant activity. This increase

indirectly indicates an increase in ROS generated endogenously by

photosensitizers such as riboflavin, which is highly photosensitizing

in the blue wavelength region (56, 57). Irradiation of a BR–HSA

complex solution containing riboflavin with blue-white light

induces a greater increase in BR oxidation products compared with

green fluorescent light (58). The wavelength characteristics of the

phototherapy light source are important for clinical efficacy and

green light also has sufficient clinical benefits (51, 59–62).
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However, the photosensitizing effect of endogenous substances as

an adverse reaction is also important, and green light is thought to

lessen the severity of this adverse reaction compared with

conventional blue light (58).
5. Fetal bilirubin metabolism

During the fetal period, bilirubin-producing enzymes and

bilirubin-conjugating enzymes are developmentally specific. The

substrate specificity of the heme oxygenase that produces biliverdin

is important (63, 64). From 14 to 15 weeks of gestation, bilirubin

IXβ, which cannot form intramolecular hydrogen bonds, is the

major component; it is excreted in bile and urine in an intact form

without conjugation (65, 66). Bilirubin IXα is present at 16–17

weeks of gestation, but bilirubin IXβ predominates until 20 weeks

of gestation (65). Bilirubin IXδ, bilirubin IXγ, and biliverdin also

have physicochemical properties similar to those of bilirubin IXβ

(66, 67), but the physiological significance of bilirubin IXβ during

development is unknown.

The development of BR conjugation leads to the presence of

xylose, glucose, and unidentified monoconjugated bilirubin at

around 20 weeks of gestation, with monoglucuronosyl bilirubin
frontiersin.org
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FIGURE 2

Photochemical changes in 4Z,15Z-bilirubin IXα. Photochemical changes in 4Z,15Z-bilirubin IXα in bilirubin–human serum albumin are predominantly to
4Z,15E-bilirubin IXα and cyclobilirubin IXα (lumirubin). Storage route of bilirubin: 4Z,15E-Bilirubin IXα is excreted from the liver into the bile and then may
reconvert to 4Z,15Z-bilirubin IXα in the digestive tract to be retained in the body through the enterohepatic circulation. Elimination route of bilirubin:
4E,15Z-Cyclobilirubin IXα (Z-lumirubin) and 4E,15E-cyclobilirubin IXα (E-lumirubin) are the most important pathways affecting the clinical efficacy of
phototherapy because they polymerize into a dark brown substance that causes bronze baby syndrome, an adverse reaction to phototherapy, and is
ultimately excreted from the body.
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appearing only at 20–23 weeks in bile. Bilirubin monoconjugated to

glucose or xylose predominates up to 30 weeks, while

monoglucuronosyl bilirubin becomes the predominant form at

term (65). Bilirubin UDP-glucuronosyltransferase activity in the

fetal human liver is 1/1,000 of that in adults until 30 weeks of

gestation, after which it increases to 1/100 of that at term (68).

Thus, hepatic bilirubin UDP-glucuronosyltransferase activity is

extremely low during the fetal period. An overview of fetal

bilirubin metabolism is shown in Figure 3 (69). Bilirubin IXβ and

conjugated bilirubin are substances that accumulate in the fetal

intestine and amniotic fluid, whereas bilirubin IXα is excreted by

the mother after crossing the placenta. In this regard, extremely

low hepatic bilirubin UDP-glucuronosyltransferase activity and

placental function are important for the physiology of fetal

developmental. In contrast, the physiological effects of the bilirubin

IXβ that accumulates in the fetal intestine and amniotic fluid have

not been elucidated, although a possibility is that it has a

stabilizing effect on easily oxidized substances (1–4). Abnormalities

in fetal bilirubin metabolism include fetal hemolytic disease due to

Rh-incompatible hemolytic disease on the fetal side. If placental

function is normal, fetal hyperbilirubinemia is not a concern

because the fetus excretes BR through the placenta to the maternal

circulation, although fetal hydrops due to severe anemia is a

problem (70). Maternal Dubin-Johnson syndrome has a high rate

of miscarriage (71). In Gunn rats, maternal hyperbilirubinemia has

been reported to decrease pregnancy rates (72). In humans,

maternal hyperbilirubinemia increases preterm birth rates (73), but

the prognosis for the infants is better in late pregnancy (74).
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6. Bilirubin metabolism in neonates

After birth, maternal excretion of bilirubin from the placenta no

longer occurs, and the neonate’s own ability to metabolize and

excrete bilirubin is required. In that process, physiological neonatal

jaundice can develop, which involves the production, excretion,

and enterohepatic circulation of BR. Bilirubin production in

neonates is reported to be 8.5 mg/kg/day, about twice that in

adults (75). This is due to the shorter erythrocyte lifespan of about

52 days in neonates (76) versus about 120 days in adults (77, 78).

Placental transfusion of red blood cells to infants occurs at birth,

which acts as a source of BR. Approximately 20 ml/kg of blood

flows to the infant from the placenta by the time the umbilical

cord pulsation stops (79). The BR load is calculated by assuming

that the baby weighs 3 kg and that the hemoglobin (Hb)

concentration of the cord blood is 15 g/dL. The following is a

summary of the formula (Figure 4).

Bilirubin load ¼ 15 g=dL (Hb concentration)

� {585 (molecular weight of BR)=64500

(molecular weight of Hb)}�4� 0:2 dL=kg� 3 kg

¼ 0:327 g (327 mg)

This load can be adjusted by the time of cord clamping at

delivery. Early cord clamping has been reported to decrease the

effectiveness of phototherapy in a comparative study of Japanese

term infants (80), but other studies have reported different results
frontiersin.org
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FIGURE 3

Fetal bilirubin metabolism [modified in part from itoh (65)]. Bilirubin IXβ, which is produced in early fetal life, is hydrophilic and is excreted via the
gastrointestinal tract and amniotic fluid. In contrast, 4Z,15Z-bilirubin IXα, which is produced later in life, is hydrophobic and crosses the placenta for
excretion by the mother. At the fetal stage, the extremely low activity of 4Z,15Z-bilirubin IXα-conjugating enzymes is important.

Itoh et al. 10.3389/fped.2022.1002408
(81–83). The American College of Obstetricians and Gynecologists

has suggested that many newborns—not only preterm infants but

also term infants—would benefit greatly from a cord clamping

delay of 30–60 s or more (84). However, this recommendation

requires consideration of the impact of race on neonatal jaundice.

Peak serum bilirubin levels of physiological jaundice are more than

twice as high in Asians as in Caucasians, and many Asian

newborns develop neonatal hyperbilirubinemia (85–87). If the

bilirubin levels requiring treatment are the same, the number of

patients treated for the same bilirubin load will be higher in the

Asian population. This is also why the hour-specific nomogram of
FIGURE 4

Neonatal bilirubin metabolism. The perinatal metabolism of bilirubin is summari
(3) the development of conjugating enzymes, and (4) the significance of the en
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transcutaneous bilirubin concentration, which is used to identify

treatment reference subjects, should also be generated for each race

(88). In other words, applying the hour-specific nomogram of the

transcutaneous bilirubin concentration created for Caucasians to

Asians would increase the number of neonates eligible for blood

sampling.

Erythrocyte lifespan is believed to be shortened in neonates due

to differences between the membranes of neonatal and adult

erythrocytes. The relationship between fetal hemoglobin and

erythrocyte lifespan has been examined with respect to subunit

interface strength. Erythrocytes with a weaker interface strength
zed in terms of (1) bilirubin load, (2) its response to oxidative stress at birth,
terohepatic circulation (see text for details).
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have a shorter lifespan. The dimer interface strength of fetal

hemoglobin is weaker than that of adult hemoglobin, representing

maturation from weaker to stronger monomer-monomer subunit

contacts (89). Neonatal erythrocyte membranes have been reported

to exhibit mechanical fragility (90). We compared ROS production

in response to oxidative stress between cord blood and maternal

erythrocytes in vitro. The production of ROS was significantly

higher in cord blood erythrocytes than in maternal erythrocytes

(91). The low vitamin E content (92, 93) and high lipid

composition with high levels of active hydrogen in neonatal

erythrocyte membranes is believed to be the cause. However, the

reason for the significant positive correlation of ROS production

between the mother and neonate is unknown. Regarding racial

differences in neonatal bilirubin production, one study found

significantly higher levels of serum carboxyhemoglobin in Japanese

neonates than in Caucasian neonates (94). Thus, bilirubin is

thought to exert some physiological effects due to its increased

production in the neonatal period, causing neonatal jaundice.

An important aspect of the metabolic pathway for bilirubin

excretion is the bilirubin conjugating capacity of the liver. The

capacity in the liver of term neonates is about 1% of that of adults,

with a rapid increase in activity at birth that lasts until 90 postnatal

days, after which it plateaus until adulthood (Figure 5A) (95). It

has also been demonstrated that the activity increases after birth in

preterm infants (Figure 5B) (68). Many studies have reported the

effects of genetic polymorphisms in UGT1A1 on neonatal jaundice,

including breast milk jaundice and preterm jaundice, with UGT1A1

TATA-box polymorphism (96), UGT1A1*6 (97–100), and
FIGURE 5

Developmental change in human hepatic bilirubin UDP-glucuronosyltransferas
Measurements from newborn to adult. Both the ordinate and the abscissa ar
laparotomy; ▴, preterm neonates. (B) Relationship between enzyme activity an
increase in transferase activities, equal in rate to the normal postnatal increase
death occurred. Transferase activities are also shown for preterm (□) and term
for fetuses and preterm and term infants who died within 7 days of birth.
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UGT1A1*28 (101) as the reported jaundice enhancers. As an

excretion route other than conjugation, photoequilibrium between

BR and 4Z,15E-bilirubin IXα is established in bright environments,

and 4Z,15E-bilirubin IXα is excreted into the bile without

conjugation. However, 4E,15Z-cyclobilirubin IXα is produced at

low amounts, depending on the amount of ambient light energy

(26, 39, 102). Conjugated bilirubin and photoisomers of bilirubin

excreted in the bile can be reconverted to BR in the gastrointestinal

tract and are reabsorbed in the intestines, where they enter the

enterohepatic circulation. Conjugated bilirubin is metabolized back

to BR by the underdeveloped intestinal microbiome and high β-

glucuronidase activity in the intestinal tract and breast milk (103).

The free 4Z,15E-bilirubin IXα is easily reconverted to the BR in a

process that requires energy, such as body temperature (37). Thus,

the neonatal period is designed to store BR in vivo.

The enterohepatic circulation of this bilirubin is believed to play an

important role in breast milk jaundice, which is considered

physiological. Reported causes of breast milk jaundice include

inhibitors of hepatic UGT1A1 in breast milk (pregnane-3α, 20β-diol,

non-esterified fatty acid), increased enterohepatic circulation (β-

glucuronidase, epidermal growth factor), genetic polymorphisms

(UGT1A1 mutations such as UGT1A1*6 and UGT1A1*28),

dehydration, starvation, IL-1β, and α-fetoprotein (97–101, 104–106).

Of these, the elevation of the enterohepatic circulation is reported to

be due to the presence of β-glucuronidase (103) and epidermal

growth factor (107) in breast milk, and the influence of inhibitors of

intestinal UGT1A1 activity in breast milk has also been identified

recently. In neonatal hUGTI mice, UGT1A1 metabolizes bilirubin in
e activity [adapted from onishi et al. (95) and Kawade and Onishi (68)]. (A)
e plotted on logarithmic scales. ●, autopsied cases; ○, upper abdominal
d survival. Preterm delivery, irrespective of gestational age, evokes an early
. The number shown beside the symbols represent the age (days) at which
(○) infants who lived more than 8 days after birth. ●, Transferase activities
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the gastrointestinal tract to prevent the accumulation of bilirubin.

Intestinal UGT1A1 is under control by IKK/NF-кB signaling. Breast

milk can inhibit the NF-кB mediated transcription of UGT1A1 (108).

When considering the antioxidant role of bilirubin in neonates, it

is necessary to consider the extent to which bilirubin acts relative to

many low-molecular-weight antioxidants. In terms of antioxidant

concentrations, neonates have higher levels of bilirubin, uric acid,

and vitamin C, but lower levels of vitamin E, carotenoids, and

vitamin A compared with adults, and bilirubin is often present at

the highest concentration among these antioxidants. However,

albumin, haptoglobin, and hemopexin, which are proteins with

antioxidant properties, are at low levels, while transferrin is high in

response to Fe2+, which tends to increase in the neonatal period

(109). Serum bilirubin concentrations have been studied in relation

to the reduction in antioxidant capacity and oxidants (Table 1)

and in relation to diseases caused by ROS damage. The

relationship between serum bilirubin and total antioxidant status

appears to be affected by low concentrations of bilirubin, and the

status is remarkably robust at high concentrations of bilirubin.

However, conflicting results have been obtained for total oxidant

status, which is expected to decrease with elevation of bilirubin due

to its antioxidant effect, which increases with bilirubin

concentration (110, 111). Neonatal diseases that develop due to

ROS damage, including retinopathy of prematurity, intraventricular

hemorrhage, necrotizing enterocolitis, chronic lung disease

(bronchopulmonary dysplasia), and sepsis or severe fungal

infection, were evaluated via a comparison of bilirubin levels with

those of controls. The results did not provide sufficient evidence

that bilirubin prevents the development of these diseases through
TABLE 1 Biomarkers of oxidative stress and antioxidation.

1. Antioxidant capacity
(1) Water soluble: Plasma total antioxidant capacity, total SH, GSH, VC
(2) Fat soluble: CoQ10 oxidation rate, lutein, zeaxanthin, β-cryptoxanthin, lycopene,

alpha-carotene, β-carotene, vitamin A, vitamin E fraction, α-tocopherol/
cholesterol

2. Oxidation potential

Serum total oxidant status
(1) DNA: 8-OHdG, apurinic/apyrimidinic site, nitroguanosine, thymidine glycol
(2) RNA: microRNA
(3) Lipid: MDA, LPO, oxidized LPO, HEL, isoprostane, total hydroperoxide,

neuroprostanes, isofurans, neurofurans
(4) Sugar: CML, 3-DG, albumin glycoside, pentosidine
(5) Protein: AOPP, carbonylated protein

3. NO

Nitrotyrosine

4. Antioxidation and inflammation-related enzymes

SOD, CAT, GSH peroxidase, MPO

5. Redox Anti-Aging

PON-1, TRX, PRX

GSH, glutathione; VC, vitamin C; CoQ10, coenzyme Q10; 8-OHdG, 8-hydroxy-2’-

deoxyguanosine; MDA, malondialdehyde; LPO, lipid peroxide; HEL, Nϵ-(Hexanoyl)

lysine; CML, carboxymethyllysine; 3-DG, 3-deoxyglucosone; AOPP, advanced

oxidation protein products; SOD, superoxide dismutase; CAT, catalase; MPO,

myeloperoxidase; PON-1, paraoxonase; TRX, thioredoxin; PRX, peroxiredoxin.
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its antioxidant effect (112, 113). When considering the antioxidant

effects of bilirubin, it is necessary to examine the relationship

between the decrease in bilirubin and the increase in BR oxidation

products. In basic in vitro studies of phototherapy light sources for

neonatal hyperbilirubinemia, the reduction in BR levels with light

irradiation was thought to be mainly due to photochemical

changes (Figure 2) and also due to a small amount of

cyclobilirubin polymerization and BR oxidation products. Under

conditions with minimal cyclobilirubin polymerization, the amount

of BR oxidation products is [amount of BR reduced−amount of

total BR photoisomer]. Under these conditions, a comparison of

the phototherapy light source with blue-white and green

fluorescent light demonstrated that there are fewer BR

oxidation products with green light under the addition of flavin

mononucleotide (58). In addition, methylxanthine derivatives

exhibited enhanced production of BR oxidation products under

blue-white fluorescent light irradiation in the presence of flavin

mononucleotide (114). The Umu test, which measures DNA

mutagenicity, was also significantly higher under blue-white

fluorescent light compared with green fluorescent light (115).

Daylight irradiation is reported to cause DNA damage in vitro,

which was attributed not to bilirubin but to ROS generated by

endogenous substances (116, 117). In vivo effects include those

seen in a famous animal study where Gunn rats were treated with

riboflavin-5-phosphate and exposed to blue light, which caused

adverse reactions such as blistering and bleeding (56). These results

are also thought to be due to ROS produced by the

photosensitizing effect of riboflavin irradiated with light at sensitive

wavelengths.

Regarding breast milk jaundice, vitamin A and unsaturated fatty

acids, which were first noted for their antioxidant effects on bilirubin,

may act as stabilizers in the intestinal tract (1–5). In our previous

study, there was a significant positive correlation between serum

BR and urinary propentdyopent reactive substances (31). Breast

milk jaundice may also have some physiological effect due to the

antioxidant effects of bilirubin. We hope that further progress in

the identification of BR oxidation products will clarify the role of

bilirubin in diseases caused by ROS toxicity in the neonatal period.
7. Conclusion

Bilirubin metabolism in the fetus and neonate is centered on BR.

The physiological significance of neonatal jaundice, including breast

milk jaundice, which occurs only in humans and rhesus monkeys,

needs to be studied in terms of antioxidant effects. Phototherapy

for neonatal hyperbilirubinemia requires the development of safe

and effective light sources that do not increase BR oxidation

products, and it is also necessary to determine a safe threshold for

the bilirubin level that does not exert bilirubin toxicity but still has

antioxidant effects.
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