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Genotype and phenotype
spectrum of 10 children with
STXBP1 gene-related
encephalopathy and epilepsy
Meng Dong†, Tianyu Zhang†, Ruimei Hu, Meng Li, Guan Wang
and Xinjie Liu*

Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China

Objective: STXBP1 mutations are associated with early onset epileptic
encephalopathy (EOEE). Our aim was to explore the phenotype spectrum,
clinical treatment and prognosis of STXBP1-related encephalopathy
(STXBP1-E).
Methods: Clinical and genetic data were collected from 10 patients with
STXBP1 mutations. These patients were examined and diagnosed from 2015
to 2021 at the Pediatric Department of Qilu Hospital. Blood samples were
collected and sequenced by next generation sequencing and Candidate
pathogenic variants were identified using Sanger sequencing in all family
members.
Results: All of the patients showed severe epilepsy, varying degrees of
intellectual disability and delayed motor. The patients developed multiple
seizure types and abnormal electroencephalography (EEG) results at onset,
and focal seizures were the most frequent seizure type. Among the patients,
2 were diagnosed with Ohtahara syndrome, 2 patient was diagnosed with
West syndrome. The other 6 patients could not be diagnosed with any
specifically recognized epilepsy syndrome. Five of the 10 patients had a
history of fever with seizures, 4 of whom had eliminated intracranial
infection according to the results of cerebrospinal fluid (CSF) examinations,
and the other patient was diagnosed with anti-myelin oligodendrocyte
glycoprotein (MOG) -associated encephalitis. We identified one patient with
a complete deletion of STXBP1 and 9 patients with de novo heterozygous
mutations of STXBP1. Among those mutations, 4 were novel (c.56°C > T,
c.1315A > T, c.751G > C, and c.554_559del), and 5 had been previously
reported [c.364C > T, c.569G > A (2 cases), c.748C > T, and c.1651C > T]. For 8
of our patients, different combinations of anti-seizure medications (ASMs)
led to seizure freedom. One patient with MOG antibodies in his serum
obtained a poor therapeutic effect from the traditional ASMs treatment, so
he had to achieve seizure-free status through vagus nerve stimulation (VNS),
which had little effect on his psychomotor ability. Fortunately, in one case,
patient psychomotor ability was improved through VNS.
Conclusion: Our study shows that STXBP1 screening should be considered in
patients with neonatal seizures with intellectual disability, and frequent
seizures with fever should also be considered with the STXBP1 mutation
when intracranial infection is eliminated. VNS has expanded outcome
measures to include behavioral and developmental function as well as
seizure control.
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Introduction

Early-onset epileptic encephalopathy (EOEE) embodies the

notion that continuous and repeated epileptic activity itself may

contribute to severe neurological and cognitive impairment and

prominent interictal epileptiform discharges during the

neonatal or early infant period (1). After the initial

identification of mutations for cryptogenic West syndrome

and Ohtahara syndrome (2), in the genes ARX, CDKL5,

STXBP1, SLC25A22, SPTAN1, PLCb1, MAGI2, PNKP, SCN1A,

numerous other mutated genes for West syndrome, Dravet

syndrome and various other types of childhood-onset epilepsy

have been found, revealing that a significant proportion of

cryptogenic EOEEs are single-gene disorders (3–5). West

syndrome, also known as epileptic spasms or infantile spasms

which belong to infantile epileptic spasms syndrome (IESS)

(6). In 2008, the first mutation in the syntaxin binding

protein 1 (STXBP1) gene was confirmed to be associated with

EOEE (7). Since then, mutations in STXBP1 have been

described in different patient cohorts, the phenotypic

spectrum of patients with STXBP1 mutations has expanded,

and an increasing number of studies have indicated that

epilepsy and intellectual disease (ID) are 2 major features of

STXBP1 encephalopathy (STXBP1-E) (7, 8). However,

Hamdan et al. reported a STXBP1-positive patient with mild

nonsyndromic ID without epilepsy (9). Presently, STXBP1-E

is considered a complex neurodevelopmental disorder rather

than a primary epileptic encephalopathy (10). Previous studies

have reported that vigabatrin, valproic acid (VPA),

levetiracetam (LEV), adrenocorticotropic hormone and a

ketogenic diet (KD) are effective at seizure control (11–15).

However, the prognosis of the child is not good, so it is

necessary to deeply understand this disease and improve the

prognosis. Our study not only expands the phenotypic

spectrum associated with STXBP1-E but also describes the

role of VNS in controlling epilepsy and improving cognition.
Materials and methods

Clinical data and phenotypes groups

All the patients diagnosed EOEE were detected by next-

generation sequencing from Jan 2015 to Jul 2021 at the

Pediatric Department in Qilu Hospital and only ten

previously unreported patients with a STXBP1 mutation were

enrolled in this study. Clinical data [classification in epileptic
02
syndrome, epileptic spasms, ambulatory or video EEG

monitoring, magnetic resonance imaging (MRI), history of

status epilepticus, treatments, and follow-up until July 2021]

were collected from their clinical cases. Approximately 2 ml of

peripheral blood (plus EDTA anticoagulant) was obtained

from the patient and their parents after receiving written

informed consent.

We refer to the study from Wolking et al. (16), they

discerned 4 different phenotypic groups and divided into four

groups [developmental and epileptic encephalopathies, DEE;

genetic epilepsies with febrile seizures (FS) plus, GEFS+;

genetic generalized epilepsy, GGE; focal epilepsy] according to

their clinical characters.

The investigation was performed with the approval of the

ethics committee of Qilu Hospital.
Genetic analysis

Genomic DNA was extracted using a QIAamp Blood Midi

Kit (QIAGEN, Valencia, CA). To identify disease-causing

gene variants, a GenCap panel with 175 genes (including

STXBP1, Table 1) associated with epilepsy was customized,

and a capture strategy was performed using the GenCap

custom enrichment kit (MyGenostics Inc, Beijing, China). An

Illumina NextSeq 500 sequencer (Illumina, San Diego, CA,

United States) was used with 150 bp paired-end reads. An

ABI3730xl sequencer (Applied Biosystems, United States) was

used to apply the Sanger sequencing method, and the results

were compared to the capture sequencing results.

After sequencing, the raw data were saved in FASTQ

format. Quality control (QC) filters were applied to remove

reads with low quality. Then, the clean reads were assembled

and spliced using the second-generation sequencing analysis

platform provided by MyGenostics and the coverage and

sequencing quality of the target region were evaluated. Finally,

flash analysis platform was used to analyze the pathogenicity

of variation, and the possible variation loci were determined.

The pathogenicity of variation loci was also analyzed

according to ACMG (American College of Medical Genetics

and Genomics) genetic variation classification criteria and

guidelines.

We performed a conservative analysis of the eight mutant

amino acid sequences using Clustal Omega. Domains of

STXBP1 were identified based on the National Center for

Biotechnology Information (NCBI) Conserved Domain

Database. Multiple sequence alignment of STXBP1 was
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TABLE 1 Detected gene list.

PAH L2HGDH DHTKD1 CTH ARX MMACHC ATP7B GCSH

PTS D2HGDH GALK1 MTHFR SLC6A8 MMAA G6PD CPS1

GCH1 IDH2 INPP5E MTRR GAMT MMAB ATP7A OTC

QDPR ETFA LAMP2 MTR GATM ABCD4 PTPN11 ASS1

PCBD1 ETFB MAOA GNMT ERCC8 GPHN MVK ASL

SPR ETFDH PNPLA2 AHCY ERCC6 MCEE ACSF3 ARG1

FAH BCAT1 SLC2A1 SLC25A13 SLC46A1 MMADHC OGDH OAT

TAT BCAT2 HSD17B10 SLC25A15 SLC19A1 HCFC1 FH NAGS

HPD SLC22A5 SLC2A2 GLUD1 FOLR1 LMBRD1 AASS SLC7A7

HGD CPT1A SLC3A1 GLUL FOLR2 GCDH ABHD5 MAT1A

HAL CPT2 SLC7A9 BCKDHA DHFR HMGCL ACAT1 CBS

UROC1 SLC25A20 GLYCTK BCKDHB DDC AUH ADK SUOX

FTCD MLYCD TYMP DBT PHGDH TAZ ALDH6A1 MOCS1

GLDC ACADSB TK2 DLD PSAT1 OPA3 ASPA MOCS2

AMT ACADS DGUOK SARDH ABAT SERAC1 DBH NR0B1

ACADM POLG PRODH ALDH5A1 ALDH7A1 FBXL4 MCCC2 SOX9

ACADVL SUCLA2 ALDH4A1 SRY ALPL KMT2D PCCA CYP21A2

HADHA MPV17 SLC6A20 AR PNPO KDM6A PCCB CYP11B1

HADHB C10orf2 SLC6A19 HSD17B3 ETHE1 SGSH HLCS HSD3B2

HADH RRM2B SLC36A2 SRD5A2 FOXG1 NAGLU BTD CYP17A1

ACAD8 SUCLG1 IVD NR5A1 MECP2 HGSNAT PC StAR

TH SLC25A4 MCCC1 WT1 CDKL5 GNS MUT

Dong et al. 10.3389/fped.2022.1010886
performed using the ClustalW program. Three-dimensional

structural models of STXBP1 were predicted with the Swiss-

model web tool. Protein structure images were generated

using the PDB file and PyMOL. Hydrogen bonds in the

proteins were demonstrated using PyMOL to predict changes

in mutant stability.
Results

STXBP1 molecular analysis

In total, we identified 9 de novo STXBP1 mutations in 10

patients by next generation sequencing to sequence all the

STXBP1 exons and splice junction boundaries from the

genomic DNA. Upon searching in the HGMD (The Human

Gene Mutation Database), 6 of them had been reported

previously [c.364C > T, c.569G > A (2 cases), c.748C > T,

c.1651C > T, c.56°C > T, one complete deletion], and the other

3 were novel mutations (c.1315A > T, c.751G > C,

c.554_559del). Two unrelated patients (patient No. 2 and

patient No. 8) had the same STXBP1 nucleotide alteration

(c.569G > A). The details of the STXBP1 mutations are

summarized in Table 2 and Figure 1. According to ACMG

(American College of Medical Genetics and Genomics)

criteria, we have determined that the variants are Pathogenic

variants (Supplementary Figures S1, S2).
Frontiers in Pediatrics 03
Clinical characterization of
STXBP1-positive of the 10 patients

The clinical features of this study with EOEE having

STXBP1 defects are summarized in Table 3. The median age

of ascertainment was 14.5 months (n = 10, range = 1–35

months), with a median age of seizure onset of 8.5 months

(range = 0–22 months), and most patients had intellectual

disability prior to seizure onset (60%). At the last follow-up,

all patients had development delay. Patient 1 and patient 2

were diagnosed with Ohtahara syndrome, and patient 1

developed into West syndrome at the age of 5 months. Two

patients had West syndrome (patient 4, 9), and 6 patients

were diagnosed with unclassified EOEEs (patients 2, 3, 5, 6, 7,

and 8). Various seizure types presented during the course of

the disease, including epileptic spasms, partial seizures, atonic

seizures, absence seizures, myoclonic seizures, and tonic

seizures. The initial seizure types of the patients were partial

seizures in 4 cases (patients 3, 5, 6, and 7), tonic seizures in 1

case (patient 2), tonic-clonic seizures in 2 cases (patients 1

and 10) and spasms in 3 cases (patients 4, 8, and 9). One

case (patient 3) had an average number of seizures a few

times a month, and all were associated with high fever. Three

cases (patients 2, 6, and 8) had an average number of seizures

of ≤5 times per day, and 6 cases (patients 1, 4, 5, 7, 9, and

10) had an average number of 10–20 seizures per day. Five
frontiersin.org
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TABLE 2 Summary of the variants in the STXBP-1 mutations.

Patients Exon Nucleotide Protein Pathogenic analysis Reference

1 exon6 c.364C > T p. R122X pathogenic (17, 18)

2 exon7 c.569G > A p. R190Q pathogenic (19)

3 exon7 c.56°C > T p. P187l uncertain (20)

4 exon9 c.748C > T p. Q250X Pathogenic (17)

5 exon15 c.1315A > T p. I439F uncertain novel

6 exon18 c.1651C > T p. R551C Pathogenic (21)

7 exon9 c.751G > C p. A251P Likely pathogenic novel

8 exon7 c.569G > A p. R190Q Pathogenic (19)

9 wholegene c150928c02101 – Pathogenic (22)

10 exon7 c.554_559delinsTGTG p. E185fs*28 uncertain novel

FIGURE 1

Pathogenic STXBP1 mutations.

Dong et al. 10.3389/fped.2022.1010886
patients (patients 2, 3, 6, 7, and 8) had a history of seizure with

fever, and intracranial infection was eliminated in 4 patients

(patients 2, 3, 7, and 8). In patient 6, cerebrospinal fluid

examination showed positive MOG antibody. MRI showed

abnormal signal near white matter in lateral ventricle triangle.

There was still epileptic seizure after glucocorticoid and

gamma globulin treatment, and the genetic examination

showed STXBP1 gene mutation.

Reviewing the above clinical characteristics of all patients, we

could distinguish 3 different phenotypic groups. (1) Seven

patients (patient 1, 2, 4, 5, 7, 9, 10) had intractable seizures,

occurrence of developmental stagnation or regression after

seizure onset, and additional neuropsychiatric deficits compatible

with developmental and epileptic encephalopathy (DEE). (2)

Patient 3 had an average number of seizures a few times a

month, and all were associated with high fever. All the times,

two seizure types presented during the course of the disease,

focal seizures and tonic seizures, and had a relatively benign

course, generally good drug response, normal development, and

mild neuropsychiatric symptoms, corresponding to genetic

epilepsies with febrile seizures plus (GEFS+). (3) The last 2

patients (patient 6, 8) with some form of focal epilepsy.
Frontiers in Pediatrics 04
EEG abnormalities were observed in all patients, including

burst suppression (patients 1 and 10), hypsarrhythmia

(patient 9), multifocal epileptic activities (patients 2, 3, 7),

focal epileptic activities (patients 4, 5, and 6), and slow

background (patients 3, 5, 6, 8). The initial EEG of 7 patients

with STXBP1 mutations is shown in Figure 2. The other 3

patients had no initial EEG. At the last follow-up, EEG

showed normalization after treatment in 3 cases (patients 3, 4,

and 5). The initial brain MRI did not present any apparent

structural abnormality. Of the nine patients included here,

one patient had subdural effusion (patient 1), one had

hypoxic-ischemic change (patient 4), and two had delayed

myelination (patients 6 and 7). Blood biochemical

examination showed no apparent abnormalities.
Treatment and prognosis

With regard to the treatment and prognosis, including the

use of VNS, huge improvements in seizure activity were

found in all of our cohorts. With ongoing brain maturation,

patient 1, who did not become seizure-free during the first
frontiersin.org
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few months of life, developed epileptic spasms. Together with

the observation that none of the patients with STXBP1

mutations evolved to West syndrome later in life after

controlling seizure. Four cases (patients 2, 4, 5, and 8) were

free of seizures after treatment with LEV. Two patients

received LEV monotherapy, they got seizures free when the

dose of LEV got 40 mg/kg/d. Others received LEV

combination therapy. Initially, patient 4 was treated with

bolus doses of topiramate (TPM), nitrazepam (NZP) and

VPA, but there was no significant improvement. Next, NZP

was replaced with LEV, and the seizures were completely

controlled. Patient 5 had failed with bolus doses of

oxcarbazepine (OXC), clonazepam (CZP) and VPA. Next,

CZP and OXC were replaced with LEV, and the seizures were

completely controlled after treatment with LEV and VPA. To

make things even better, he tried VNS after being seizure-free

and improved his psychomotor ability. Patients 2 and 8 were

free of seizures after treatment with LEV alone. Patient 6 had

frequent convulsions after a two-day history of fever. The CSF

analysis showed an elevated white count of 14 per cubic

millimeter. Serum MOG antibodies were requested, and he

was started on intravenous immunoglobulin, OXC, TPM, and

glucocorticoid (GC). Two weeks later, although his repeat

lumbar puncture (LP) was negative and the serum titer of

MOG antibodies disappeared, his seizure status had not

changed. Next, CZP and VPA were added successively;

however, the seizures failed to respond to any medical

treatment. Fortunately, he tried VNS, and his seizures

promptly ceased after 20 days of VNS therapy. Although the

effects of treatment on seizure frequency might be

quantifiable, the effect on intellectual disability is not so easily

assessed. The good news is that one case (patient 5)

experienced improved psychomotor ability after VNS.
Discussion

STXBP1 is a member of the evolutionarily conserved Sec1/

Munc-18 gene family that plays a central role in vesicular

docking and fusion. Splicing mutations, a frameshift mutation,

and nonsense mutations can lead to loss-of-function, which is

a common mechanism underlying STXBP1-E (22). In this

study, two novel recurrent missense mutations in STXBP1

(c.1315A > T, c.751G > C) were detected in three patients with

unclassified epileptic encephalopathy (patients 5 and 7). We

found that all the patients with novel mutations had similar

clinical symptoms: early onset seizures and intellectual

disability.

Barcia et al. (15) and Wolking et al. (16) demonstrated that

the clinical features in STXBP1-E are mostly shared with early

onset seizures, a poor prognosis with severe intellectual

disability and a high mortality rate and a frequent evolution

to infantile spasms (IS). However, in our study, 10 patients
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FIGURE 2

Initial electroencephalograms of patients with syntaxin-binding protein 1 (STXBP1) mutations. (A) Patient2 1year and 1months, Multifocal spikes and
slow waves during sleep status. (B) Patient3 1year and 5months, slow background, multifocal slow waves. (C) Patient4 2 months and 29 days, spasms
and focal epileptic activities originating from the left Anterior and middle temporal area. (D) Patient5 1 year and 2 months, slow background and Slow
wave activity originating from the left middle and posterior temporal regions. (E) Patient6 9 months and 10days, sharp-slow waves originating from
the right Posterior temporal area during sleep status on interictal EEG. (F) Patient7 8 months and 20 days, slow and spikes-slow waves originating
from bilateral Parietal, Occipital, mid-posterior temporal areas during sleep status. (G) Patient10 1 months, burst suppression (BS).
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eventually became seizure-free, three of the 10 patients were

West syndrome and they were reducing the development of

West syndrome. We consider this result to be related to

prompt and early seizure control. If the notion is that seizures

must be controlled as soon as possible to optimize prognosis,

then optimal targeted therapies are needed to shorten

exposure to repetitive seizures.

EOEE are characterized by recurrent clinical seizures and

prominent interictal epileptiform discharges seen during the

early infantile period. The underlying genetic cause often

results in developmental delay in its own right, with the

epileptic encephalopathy further adversely affecting

development. Frequent epileptiform activity that impacts

adversely on development, typically causing slowing or

regression of developmental skills. Similar to the study from

Wolking et al. (16), all the patients were also divided into

four groups (DEE, GEFS+, GTCS and focal epilepsy)

according to their clinical characters. In our study, we noted

that developmental delay and epilepsy are characteristic
Frontiers in Pediatrics 07
features of STXBP1-E, in keeping with previous reports (7, 8).

Although developmental delay can be seen at seizure onset,

some degree of developmental delay is present prior to the

onset of seizures in many patients (patients 1, 3, 4, 5, 6, and

10). Furthermore, in 2009, Hamdan et al. (8) reported de

novo mutations, p. R388X and c.169 + 1G > A in 2 cases, with

intellectual disability and nonsyndromic epilepsy. In 2011,

Hamdan et al. (9) reported 1 case with a novel de novo

truncating mutation, c.1206delT/p.402X, presenting with

nonsyndromic intellectual disability deficit and no history of

epilepsy. These findings suggest no correlation between

seizures and intellectual disability, as described previously

(23). STXBP1 plays an important role in many aspects of

neurodevelopment.

The initial EEG was abnormal in all patients. The main EEG

finding was (multi)focal abnormality, while burst suppression or

hypsarrhythmia was observed in three patients. This type of

alteration is much less specific. At the last follow-up, the

repeat EEG recordings of 3 cases (patients 3, 4, and 5) were
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normal. Structural imaging with MRI was normal in most cases,

although delayed myelination was present in two patients,

subdural effusion was observed in one patient, and hypoxic-

ischemic change was observed in one patient.

Treating STXBP1-E involves a multidisciplinary approach,

including epilepsy control and neurological rehabilitation.

Currently, there is no treatment for intellectual, motor or

behavioral disturbances, which exert a significant impact on

the quality of life of patients. Several studies have reported

antiepileptic effects of LEV through modulating the synaptic

vesicle release affected by STXBP1 mutations (11, 24). LEV

had a specific effect on the children with STXBP1-E in our

study, and four patients presented a dramatic response to

LEV with full epilepsy control. Among the various

antiepileptic drugs, valproic acid and topiramate were partially

effective in some patients. Serum MOG antibodies were found

in patient 6, and he was given immunomodulation treatment.

Although the study from Lopez et al. (25) have identified

STXBP1 as an important player in cytotoxic lymphocytes

function, the immunomodulation treatment did not reduce

seizure status in patient 6. Further studies are needed to

clarify the correlation between STXBP1-E and autoimmune

mechanism.

VNS has been used in the treatment of epilepsy in clinic,

but the mechanism of its application is not completely clear,

its mechanism may be: 1. VNS can increase the number of

neurotransmitters, such as norepinephrine, 5-

hydroxytryptamine and γ-aminobutyric acid (γ-

aminobutyricacid) which can produce antiepileptic effect

(26, 27). VNS treatment can cause the desynchronization of

cortical electrical activity, and the number of spike waves

and electrodes decreased significantly during the opening

phase (28). The mechanism of VNS in the treatment of

epilepsy might be the asynchrony of neural circuits in the

hippocampus and thalamic cortex (29). At present, it is

believed that the indications for the treatment of epilepsy

with VNS include drug refractory epilepsy, unable to take

other surgical treatment or poorly controlled epilepsy after

other types of surgery. VNS is a relatively safe surgical

method, which can be tolerated by most patients, it has low

incidence of complications. Because the mechanism of this

operation is not clear, ASMs is still the first choice for

epileptic control. Fortunately, 1 patient showed

improvement in cognitive function after VNS. This

improvement may be a direct effect of VNS on behavior,

concentration, and affect (30) and may be related to seizure

reduction, reduced ASM load in association with successful

antiepileptic treatment or putative effects of VNS on mood

(26). The most favorable treatment regimens should note

the improvement of the prognosis on both seizures and

psychomotor ability. VNS may represent the patient’s

option for optimal seizure and cognitive outcomes. A
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recent study identified miR-218 and miR-424 as regulators

of STXBP1 expression. Inhibiting their interaction with

STXBP1 resulted in an increase in STXBP1 protein levels

(27). Guiberson et al. identified three chemical chaperones,

trehalose, sorbitol, and 4-phenylbutyrate, which are able to

restore STXBP1 protein levels (28) and rescue synaptic

deficits. A clinical pilot trial of 4-phenylbutyrate in a small

group of STXBP1 patients began in 2020, and it will be the

first trial of a disease-modifying therapy in this patient

population (27). Further studies are required to screen for

and identify molecules that are effective for both wild-type

and mutant STXBP1.

In conclusion, STXBP1 analysis should be considered for

infants with seizures and severe ID, and we have shown that

the major clinical features of STXBP1 mutations are frequent

seizures from epilepsy, abnormal initial EEG, and intellectual

disability. Frequent seizures with fever should also be

considered with the STXBP1 mutation when intracranial

infection is eliminated. This study demonstrates better

response to LEV in STXBP1 disorder. Thus, we would

suggest early consideration of the use of LEV in this

population. VNS may be worthy of consideration as an

option for treating STXBP1-E. Further studies are needed to

determine the adequacy and ideal duration of VNS for

optimal management.
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