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Prediction of endotracheal tube
size in pediatric patients:
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Objective: We aimed to construct and validate machine learning models for
endotracheal tube (ETT) size prediction in pediatric patients.
Methods: Data of 990 pediatric patients underwent endotracheal intubation
were retrospectively collected between November 2019 and October 2021,
and separated into cuffed and uncuffed endotracheal tube subgroups. Six
machine learning algorithms, including support vector regression (SVR),
logistic regression (LR), random forest (RF), gradient boosting tree (GBR),
decision tree (DTR) and extreme gradient boosting tree (XGBR), were selected
to construct and validate models using ten-fold cross validation in training set.
The optimal models were selected, and the performance were compared with
traditional predictive formulas and clinicians. Furthermore, additional data of 71
pediatric patients were collected to perform external validation.
Results: The optimal 7 uncuffed and 5 cuffed variables were screened out by
feature selecting. The RF models had the best performance with minimizing
prediction error for both uncuffed ETT size (MAE=0.275 mm and RMSE=
0.349 mm) and cuffed ETT size (MAE=0.243 mm and RMSE=0.310 mm). The
RF models were also superior in predicting power than formulas in both
uncuffed and cuffed ETT size prediction. In addition, the RF models
performed slightly better than senior clinicians, while they significantly
outperformed junior clinicians. Based on SVR models, we proposed 3 novel
linear formulas for uncuffed and cuffed ETT size respectively.
Conclusion: We have developed machine learning models with excellent
performance in predicting optimal ETT size in both cuffed and uncuffed
endotracheal intubation in pediatric patients, which provides powerful decision
support for clinicians to select proper ETT size. Novel formulas proposed
based on machine learning models also have relatively better predictive
01 frontiersin.org
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performance. These models and formulas can serve as important clinical references for
clinicians, especially for performers with rare experience or in remote areas.
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Introduction

Endotracheal intubation, a fundamental skill required for

the practice of medicine, has been widely used in pediatric

patients from emergency department to operating room (1, 2).

Children have specific airway morphology and anatomy, and

the physiological and airway responses of them are more

complex and changeable (3, 4). Thus, selection of ETT size

may be straightforward for adults, but is more inaccurate in

pediatric patients. An excessive ETT size may result in

laryngeal injuries, such as tissue edema, local ischemia and

even subglottic stenosis. Oppositely, an under-estimulated

ETT size may lead to hypoventilation, poor end tidal gas

monitoring and leakage of anesthetic gases (5, 6). Therefore,

choice of optimal ETT is an important guarantee for safe

airway management especially in pediatric patients.

Various methods have been proposed for prediction of

appropriate ETT size. A variety of formulas based on

parameters of growth and development of children were

available. Age-based formulas were the most frequently used.

However, they have been reported to have some imprecision,

because children’s physical development is a physiological

process in constant and individualized change (7). Many recent

studies also confirmed the advantages of using ultrasound to

select appropriate ETT size (3, 4, 8). Nevertheless, pediatric

patients in the awake state cannot cooperate with the ultrasound

examination. In addition, ultrasound prediction would not be

suitable during intubation in emergency situations.

Consequently, it is necessary to find an accurate, simple and

individualized method to predict the optimal ETT size.

Machine learning, an important part of Artificial

intelligence (AI), use advanced mathematical approaches to

integrate complex association of clinical data and develop

highly predictive algorithms for individualize predictions in

real-time (9, 10). It has been used in multiple aspects of safe

airway management in pediatric patients, including diagnosis

and assessment of difficult airway, monitoring of ventilator

parameters and ventilator-associated event, and risk prediction

of airway adverse events (11–13). However, to our knowledge,

there are no relevant studies to predict ETT size of pediatric

patients by machine learning models at present.

Here, we sought to develop and validate machine learning

models for ETT size prediction. The present study had 3

main objectives: first, to explore the best predictive machine

learning models of ETT size; second, to derive new predictive

formulas based on machine learning models; and third, to
02
validate the machine learning models by comparison with

traditional formulas, clinicians, and external verification.
Methods

Patient population and database

This retrospective studywas performedwith obtaining approval

from the local ethics committee (no. XHEC-QT-2021-067). Patient

identity remained anonymous, and informed consent was

exempted due to the retrospective nature of the data acquisition.

We retrospectively collected electronic medical record data of

patients who underwent tracheal intubation from 5 centers

between November 2019 and October 2021. Inclusion criteria

included pediatric patients (aged 0–14 years, American Society of

Anesthesiologists (ASA) status of I - III) who had undergone

general anesthesia (leak evaluation was performed immediately

after intubation for selecing the optimal ETT size), and who had a

preoperative chest radiograph. The exclusion criteria were as

follows: spinal abnormalities, tracheal and laryngeal pathologies,

pulmonary disease (airway hyper-reactivity or bronchial asthma

previous), and history of tracheostomy.

To develop machine-learning models, patients from Shanghai

Xinhua hospital and Shanghai Changzheng Hospital were pooled

together as an internal cohort. Additionally, data of patients from

Children’s Hospital of Fudan University, Shanghai Pudong New

Area People’s Hospital and First Hospital of Nanping City

Affiliated to Fujian Medical University were used for external

validation. In order to study rigor and clinical authenticity, we

divided the pediatric patients into two data sets (cuffed and

uncuffed group) both in internal and external cohort, and

performed all the analysis independently.

After anaesthesia induction, all patients’ tracheas were

intubated by cuffed or uncuffed ETT. Leak evaluation was

performed immediately after intubation. The optimal ETT size

was defined as that size which allowed an air leak around the tube

at an inspiratory airway pressure of 15–30 cmH2O. If an air leak

occurred at airway pressure of less than 15 cmH2O or there was

no air leak above an airway pressure of 30 cmH2O, the ETT was

exchanged for a larger one or smaller one. This process was

continued until an optimal size was achieved. Accordingly, the

final size of ETT recorded was the optimal ETT size (14–16).

The anesthesia records of patients were retrospectively

investigated. Data were collected and extracted by specialized

anesthesiologists not involved in data analysis. Age, sex, height,
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weight, BMI, BMI class, ideal BMI and final size of ETT (internal

diameter) were recorded. Tracheal data (tracheal diameter at C6,

C7, T2 level respectively, and distance from C6 to tracheal carina)

were obtained from chest radiographs which were limited to a

standard posteroanterior projection in flat supine position. All

chest radiographs were derived from the picture archiving and

communication system of medical record system. Tracheal data

were measured at the mid-body of C6, C7 or T2 with electric

caliper by three anesthesiologists, and the mean values were

recorded (17–19).
Machine learning and data Pre-
processing

Python (version 3.7.1.1) was used to build the predictionmodel.

RF, GBR, DTR, SVR and LR analysis models were implemented

using Python’s scikit-learn package, while XGBR was

implemented using Python xgboost package. The collected clinical

cases were matched to generate cuffed and uncuffed datasets.
FIGURE 1

Detailed flow chart of the entire study. Patients with valid information were u
training, test, and external validation sets. Feature selection was then performe
optimal predictive models, while new SVR formulas were derived to interp
decisions. Finally, the performance of the models was evaluated by asse
compared with both traditional formulas and clinicians.
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Then the data were initialized and modifed to a uniform format.

In order to get a higher quality data set, missing values were filled

with the mean value based on age (20). The main prediction

module used the Scikit-Learn machine learning library to train the

model and predict the results. The data processing module used

the Pandas machine learning library to pre-process the data set.

Themain process ofmachine learning can be illustrated in Figure 1.
Feature selection

Ensemblemodels including extreme random tree (ET), gradient

decision tree (GBDT), random forest (RF), and extreme gradient

boosting tree (XGBR) were used to select the appropriate subset of

features. First, continuous variables were transformed into four

types of data: min-max normalization, z-score normalization, L2

normalization, and original data. Then, these four types of data

were analyzed using the four algorithms mentioned above, and 16

models were constructed through 10 rounds of hierarchical cross-

validation to obtain the median importance (final ranking of
sed as the total data set, and the data were processed to further derive
d, and six machine models were developed and validated to obtain the
ret the meaning of existing clinical formulas and they guide clinical
ssing the metrics (RMSE, MAE and the prediction accuracy) when
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feature importance) of each variable in all models (14). Then, by

using the RF algorithm, a new model is generated iteratively by

adding one variable at a time, starting from the head of the

variable ranking list (the most important variable), and calculating

the classification accuracy. Finally, we selected the smallest list of

features with the highest prediction accuracy.
Evaluation metrics of models

All training sets were input into the model for retraining to

obtain the final model, and the test sets were input into the model

for testing. Mean absolute error (MAE) and root mean square

error (RMSE) were utilized as evaluation metrics to assess the

performance of machine learning algorithms as well as the

prediction effectiveness. MAE is the mean absolute error of all

samples. RMSE is the square root of the ratio of the square of the

deviation of the predicted value from the true value to the number

of observations. MAE and RESE value closer to 0 means the

algorithm is better. Their statistics are defined as follows. In

formulas, ypre represents predicted value, ytrue represents true value

(optimal ETT size), and n represents the number of observations.

MAE ¼
P jypre � ytruej

n
, RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ypre � ytrue)

2

n

s

Model development and generation

In this study, we used 6 models, including 2 linear (SVR and

LR) and 4 non-linear machine learning models (RF, GBR, DTR

and XGBR), to compare the performance of different models for

ETT size prediction and ultimately developed the optimal

performance prediction models for uncuffed and cuffed ETT

respectively. Both uncuffed group data and cuffed group data

were randomly divided into training and test sets in the ratio of

7: 3. The above models were trained in the training set using the

training set feature values (minimum feature list). A Bayesian

optimizer was used for internal validation. After training,

predictions of models were tested in the test set. The prediction

models with optimal performance were determined by

comparing evaluation metrics. Subsequently, we further validated

the optimal models in an external validation set. Equally

important, the optimal linear models could be used to help us

deduce novel formulas. It provided a reliable way for describing

the growth law of children’s tracheal diameter with mathematics.
Comparison of optimal models and
predictive formulas

The optimal models were selected to compare with

traditional available formulas and our novel formulas for
Frontiers in Pediatrics 04
the predictive judgment of ETT size, and the evaluation

metrics were MAE, RMSE and accuracy. In the comparison

of uncuffed ETT size prediction, three traditional formulas

were selected, they are presented as follows. First, Cole

formula (21), ID (mm) = age/4 + 4. Second, Penlington

formula (22): ID (mm) = age/4 + 4.5, when age is less than

6.5 years; ID (mm) = age/3 + 3.5, when age is greater than

6.5 years. Third, Height-based formula (23): ID (mm) = 2 +

height/30, when age is from 3 months to 6 years. In the

comparison of cuffed ETT size prediction, two traditional

formulas were selected, they are presented as follows. Khine

formula (24): ID (mm) = age/4 + 3, when age is less than 2

years; and Motoyama formula (25): ID (mm) = age/4 + 3.5,

when age is 2 years or older. Age (in years) and height (in

cm) for all formulas above.
Comparison of optimal models and
clinicians

Doctors including three junior and three senior clinicians,

who participated in this study, predicted ETT size of patients

in test set based on the variables collected retrospectively.

They did not know the true ETT size throughout. And then

the optimal models were compared with the predictive

performance of clinicians in terms of predictive accuracy.

Senior clinicians were defined as having more than or equal

to 3 years’ experience of pediatric intubation, and senior

clinicians were defined as having less than 3 years’ experience

in pediatric intubation.
Statistical analysis

Continuous variables were presented as medians

(interquartile range), and categorical variables were expressed

as the number of cases or percentage. Python (version 3.7.1.1)

was performed to conduct all machine learning models and to

analyze data. Evaluation metrics of machine learning models

and other methods were MAE, RMSE and prediction

accuracy. Prediction accuracy was calculated with a 95%

confidence interval (CI). Group differences of prediction

accuracy were evaluated using chi-square tests, and p < 0.05

was used to indicate statistical significance.
Results

Study population

The flow chart of the study is shown in Figure 2. During the

study period, 1,119 pediatric patients were collected from the 5

centers. After excluding 58 patients, a total of 1,061 patients
frontiersin.org
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FIGURE 2

Population flow chart. In total, 1,061 patients were included in the final analysis (990 in internal cohort and 71 in external cohort). The cohort was
further divided into uncuffed and cuffed groups, and each group was divided into training set and test sets. Machine learning (ML) models were built
in the training set to perform feature selection and cross-validation. Developed models were then evaluated in the test set and external cohort.
Center 1 = Shanghai Xinhua hospital; Center 2 = Shanghai Changzheng Hospital; Center 3 = Children’s Hospital of Fudan University; Center 4 =
Shanghai Pudong New Area People’s Hospital; Center 5 = First Hospital of Nanping City Affiliated to Fujian Medical University.

Zhou et al. 10.3389/fped.2022.970646
(990 in the internal cohort and 71 in the external cohort) were

included in the final analysis. 619 and 34 patients were

intubated with uncuffed ETT in the internal and external

cohort respectively. The clinical characteristics of our study

population are presented in Table 1. The median

(interquartile range) age, weight and height of all patients

included were 3.5 (1.5, 6.4) years, 15.0 (11.0, 23.0) kg and

100.0 (81.5, 120.0) cm respectively.
Feature selection

The importance ranking of all features were shown in

Figures 3A,B. The minimum and optimal features were
Frontiers in Pediatrics 05
selected according to the RF model. We evaluated the

predictive performance of the most prominent features

and identified the cut-off at which there was no

considerable decrease in RMSE and MAE when adding

the feature of the next highest ranking one to the model.

Finally, seven features (e.g., height, age, weight, tracheal

length from C6 to carina, tracheal diameter at level of C7,

ideal BMI and tracheal diameter at level of C6) were

selected to be the optimal features in the uncuffed

subgroup (Figures 3C,D). In the cuffed subgroup, five

features (e.g., age, height, ideal BMI, weight, and tracheal

diameter at level of T2) were screened out (Figures 3E,F).

The significant features were listed above the red line in

Figures 3A,B.
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TABLE 1 Patient demographic data and variable features.

Variables Internal Cohort (N = 990) External Cohort (N = 71)

Uncuffed (N = 619) Cuffed (N = 371)

Uncuffed
(N = 34)

Cuffed
(N = 37)

Training set
(n = 433)

Test set
(n = 186)

Training set
(n = 258)

Test set
(n = 113)

Male 280 (64.7) 121 (65.1) 145 (56.2) 76 (67.3) 23 (67.6) 17 (45.9)

Age, years 2.4 (1.1–3.9) 2.0 (1.0–4.0) 6.3 (4.2–8.9) 6.4 (4.3–9.3) 1.7 (0.7–3.2) 5.7 (3.1–8.1)

Height, cm 90.0 (76.5–104.0) 86.0 (73.0–105.0) 119.0 (105.0–133.0) 121.0 (102.0–135.0) 84.5 (71.3–97.8) 120.0 (98.0–130.0)

Weight, kg 12.5 (9.9–16.5) 12.5 (9.0–16.7) 22.9 (17.0–30.0) 23.0 (16.8–30.0) 11.2 (8.2–16.7) 21.0 (15.0)

BMI, kg/m2 15.9 (14.7–17.3) 16.2 (14.9–17.9) 16.2 (14.6–17.9) 16.2 (14.9–18.1) 15.6 (14.7–17.8) 16.6 (15.1–17.8)

BMI Class

I 363 (83.8) 157 (84.4) 211 (81.8) 90 (79.6) 28 (82.7) 30 (81.1)

II 63 (14.6) 25 (13.4) 37 (14.3) 18 (15.9) 6 (17.6) 5 (13.5)

III 7 (1.6) 4 (2.2) 10 (3.9) 5 (4.4) 0 2 (5.4)

Ideal BMI, kg/m2 14.4 (12.9–16.2) 14.4 (12.9–16.2) 18.1 (15.8–20.0) 18.1 (15.8–20.0) 14.9 (6.7–16.4) 15.1 (8.0–17.3)

ETT Size, mm 5.0 (4.5–5.5) 5.0 (4.5–5.5) 5.5 (5.0–6.0) 5.5 (5.0–6.0) 5.0 (4.0–5.0) 5.0 (4.5–5.5)

Tracheal diameter at T2 levels, cm 0.8 (0.7–0.9) 0.8 (0.7–0.9) 1.0 (0.9–1.1) 1.0 (0.9–1.2) 0.7 (0.6–0.9) 1.0 (0.9–1.2)

Tracheal diameter at C6 levels, cm 0.7 (0.6–0.9) 0.7 (0.6–0.9) 0.9 (0.8–1.1) 0.9 (0.8–1.0) 0.7 (0.6–0.8) 0.9 (0.7–1.1)

Tracheal diameter at C7 levels, cm 0.8 (0.7–0.9) 0.8 (0.7–0.9) 0.9 (0.8–1.1) 0.9 (0.8–1.1) 0.7 (0.6–0.8) 0.9 (0.7–1.0)

Distance from C6 to tracheal carina, cm 5.9 (5.0–6.9) 5.9 (5.0–6.9) 7.8 (6.9–8.8) 7.8 (6.7–9.0) 5.6 (4.2–6.4) 7.7 (6.4–8.6)

Values are median (interquartile range) or n (%); BMI: body mass index.

Zhou et al. 10.3389/fped.2022.970646
Performance evaluation of different
models

Six machine learning models were developed based on the

optimal features subset and their performances were compared.

The RF models had the best performance in minimizing

prediction error for prediction of both uncuffed and cuffed

ETT size, and SVR was the better-performing linear models

(Figure 4). In the test set, the performance of RF model for

prediction of uncuffed ETT size was as follows: MAE =

0.275 mm and RMSE = 0.349 mm; and the prediction error of

SVR model (MAE = 0.319 mm, RMSE = 0.396 mm) was lower

than LR model (MAE = 0.320 mm, RMSE = 0.397 mm)

(Figure 4A). Meanwhile, the cuffed ETT size RF predictor has

a similar performance with MAE = 0.243 mm and RMSE =

0.310 mm; and the prediction error of SVR model (MAE =

0.268 mm, RMSE = 0.336 mm) was also lower than LR model

(MAE = 0.271 mm, RMSE = 0.339 mm) (Figure 4B). Therefore,

the RF models were selected as the final predictors to compare

with traditional predictive formulas and clinicians. And SVR

models were selected to derive linear predictive formulas.
Derivation of formulas based on SVR
machine learning model

According to feature selection and convenience of use, three

formulas based on SVR models from complexity to simplicity
Frontiers in Pediatrics 06
were obtained in uncuffed and cuffed ETT size predictor

respectively. Formula 1 has all the feature parameters.

Formulas based on age, height, weight and formulas based on

age only were proposed as formula 2 and formula 3. These

formulas are presented as follows:

SVR Formula 1 (uncuffed, 7 parameters): ID(mm) = 2.34−
0.0139 × age + 0.0264 × height− 0.00621 × weight− 0.0187 × C6

tracheal diameter + 0.577 × C7 tracheal diameter + 0.0388 × C6

to carina tracheal length− 0.0234 × ideal BMI

SVR Formula 2 (uncuffed, 3 parameters): ID(mm) = 2.14−
0.0314 × age + 0.0330 × height− 0.00752 × weight

SVR Formula 3 (uncuffed, 1 parameter): ID (mm) = 4.34 +

0.208 × age

SVR Formula 1 (cuffed, 5 parameters): ID(mm) = 3.34 +

0.131 × age + 0.00296 × height + 0.00682 × weight + 0.166 × T2

tracheal diameter + 0.0293 × ideal BMI

SVR Formula 2 (cuffed, 3 parameters): ID(mm) = 3.68 +

0.146 × age + 0.00491 × height + 0.00734 × weigh

SVR Formula 3 (cuffed, 1 parameter): ID(mm) = 4.09 +

0.200 × age
Performance of optimal models and
predictive formulas

We then compared the prediction error and accuracy of RF

models and SVR formulas with traditional formulas (Table 2,

Figure 5 and Figure 6). In terms of prediction of uncuffed
frontiersin.org
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FIGURE 3

Feature importance ranking and forward feature selection results. The bar graph shows the importance ranking of variables usd for uncuffed ETT (A)
and cuffed ETT (B) size prediction. The shorter the transverse column, the greater importance of the median ranking of the variable. The finally selected
features were indicated above the red line. The line graphs show the forward feature selection results for uncuffed ETT (C-D) and cuffed ETT (E-F) size
prediction. We examined the performance of the most prominent feature and identified the point at which there was no considerable decrease in RMSE
and MAE, when adding the feature of the next highest ranking one to the model. As can be seen from the graph, the seventh feature is the lowest point
in uncuffed ETT size prediction and the fifth is the lowest point in cuffed ETT size predciton. BMI: body mass index.
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FIGURE 4

Comparison of the six machine learning models. The bar graphs showing the MAE and RMSE for uncuffed ETT (A) and the cuffed ETT (B) size
prediction with six machine learning models. The random forest model performed the best of all models, and among the linear models, the
support vector regression model performed better. SVR = support vector regression, LR = linear regression, RF = random forest, GBR = gradient
boosting tree, DTR =Decision tree, XGBR = extreme gradient boosting tree.

Zhou et al. 10.3389/fped.2022.970646
ETT size, RF model had the best performance with the

minimizing prediction error of MAE = 0.272 mm and RMSE =

0.343 mm and the highest accuracy of 52.3% (Table 2), and

the regression line of machine learning model (Figure 5A)

approached the line of identity more closely than formulas

(Figures 5B–G); SVR formula 1 had a better performance with

prediction accuracy = 50.3%; Cole formula had the worst

prediction performance (MAE = 0.560 mm, RMSE = 0.666 mm

and prediction accuracy = 17.4%). Comparison of RF model

and formulas was performed in only 149 patients in test set,

because height-based formula is applied with the age restriction

(from 3 months to 6 years). We performed analysis on the

whole patients (n = 187) in test set after height-based formula

was removed, and the results showed that RF model also

perform better than formulas (Supplementary Table 1). Thus,

our RF model performed best in predicting uncuffed ETT size

when compared with SVR formulas and traditional formulas.

In cuffed ETT size prediction, RF model also performed

best with MAE = 0.242 mm, RMSE = 0.310 mm and prediction
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accuracy = 57.5% (Table 2), and the regression line of

machine learning model (Figure 6A) approached the line of

identity more closely than formulas (Figures 6B–E); SVR

formula 1 had a better performance with prediction accuracy

= 54.9%, while MAE (0.268 mm) and RMSE (0.336 mm) were

very close to SVR formula 2 (MAE = 0.267 mm, RMSE =

0.331 mm) and SVR formula 3 (MAE = 0.263 mm, RMSE =

0.328 mm); Motoyama/Khine formula had the worst

prediction performance (MAE = 0.473 mm, RMSE = 0.572 mm

and prediction accuracy = 29.2%). Thus, our RF model also

performed best in predicting cuffed ETT size when compared

with SVR formulas and traditional formulas.
Performance of optimal models and
clinicians

The performances of these models were then compared

with clinicians. RF models performed slightly better than
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TABLE 2 Validation of performance of the optimal machine learning
models.

Precative methods MAE RMSE Prediction
accuracy
[95% CI]

Comparison of optimal models with predictive formulas

Uncuffed
(n = 149)

RF model 0.272 0.343 52.3% [44.3–60.4]
Cole formula 0.560 0.666 17.4% [11.4–23.5]a

Penlington formula 0.305 0.395 45.6% [37.6–53.6]
Height-based formula 0.297 0.364 46.3% [38.3–54.3]
SVR Formula 1 0.317 0.400 50.3% [42.3–58.4]
SVR Formula 2 0.314 0.388 45.6% [37.6–53.6]
SVR Formula 3 0.356 0.443 38.3% [30.5–46.1]a

Cuffed
(n = 113)

RF model 0.242 0.310 57.5% [48.4–66.6]
Motoyama/Khine
formula

0.473 0.572 29.2% [20.8–37.6]b

RF model 0.242 0.310 57.5% [48.4–66.6]
SVR Formula 1 0.268 0.336 54.9% [45.7–64.0]
SVR Formula 2 0.267 0.331 52.2% [43.0–61.4]
SVR Formula 3 0.263 0.328 53.1% [43.9–62.3]

Comparison of optimal models with clinicians

Uncuffed
(n = 187)

RF model 0.264 0.336 54.0% [46.0–62.3]
Junior doctors 1 0.497 0.611 23.0% [16.1–29.8]a

Junior doctors 2 0.375 0.489 34.8% [26.9–42.5]a

Junior doctors 3 0.740 0.887 13.4% [7.7–18.7]a

Senior doctors 1 0.306 0.460 49.2% [41.1–57.5]
Senior doctors 2 0.295 0.435 49.2% [41.1–57.5]
Senior doctors 3 0.340 0.500 45.5% [37.0–53.3]

Cuffed
(n = 113)

RF model 0.251 0.308 57.5% [44.7–65.2]
Junior doctors 1 0.489 0.613 27.4% [18.3–36.6]b

Junior doctors 2 0.302 0.489 54.0% [43.6–64.1]b

Junior doctors 3 0.401 0.562 37.2% [27.4–47.3]
Senior doctors 1 0.269 0.423 54.9% [44.7–65.2]
Senior doctors 2 0.275 0.419 53.1% [42.5–63.0]
Senior doctors 3 0.236 0.403 61.1% [50.4–70.5]

RF, random forest; SVR, support vector regression; CI, confidence interval.

Data of 95% CI are presented as percentages.
aRepresents as P < 0.05 when compared with RF model in uncuffed ETT size

prediction.
bRepresents as P < 0.05 when compared with RF model in cuffed ETT size

prediction.
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senior clinicians, while they significantly outperformed junior

clinicians. In terms of prediction of uncuffed ETT size, MAE,

RMSE, accuracy and accuracy within 5 mm of RF model

prediction were 0.264 mm, 0.336 mm, 54.0% and 95.2%

respectively, while total accuracy of senior clinicians and

junior clinicians were 48.1% and 23.5%, and accuracy within

0.5 mm of them were 90.4% and 76.5% (Table 2 and

Supplementary Table 2); The regression line of machine

learning model (Figure 7C) approached the line of identity

more closely than clinicians (Figures 7A-B).

In cuffed ETT size prediction, MAE, RMSE, accuracy and

accuracy within 5 mm of RF model prediction were

0.251 mm, 0.308 mm, 57.5% and 99.1% respectively, while

total accuracy of senior clinicians and junior clinicians were

55.8% and 39.8%, and accuracy within 5 mm of them were

92.0% and 83.2% (Table 2 and Supplementary Table 2); The

regression line of machine learning model (Figure 7F)
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approached the line of identity more closely than clinicians

(Figures 7D,E).
External verification

Data of 71 patients were applied for external validation.

Thirty-four of them were intubated with uncuffed ETT, and

37 with cuffed ETT. Comparison of prediction error and

accuracy of RF models with formulas in external set is shown

in Table 3. Similarly, RF models performed better in external

verification. The performance of RF model in uncuffed ETT

size prediction were MAE = 0.215 mm, RMSE = 0.284 mm and

accuracy = 67.6%. In cuffed ETT size prediction, the

performances of RF model were MAE = 0.327 mm, RMSE =

0.417 mm and accuracy = 45.9%.
Discussion

Currently, there are several methods for prediction of ETT size,

of which traditional predictive formulas are the most widely used in

view of safety and convenience, but these formulas are not accurate

and may produce conflicting results (8, 17, 26). In this multicenter

retrospective study, we developed and validated machine learning

models, which could be used to predict the optimal ETT size in

pediatric patients. To our knowledge, the present study is the first

to predict ETT size of pediatric patients using machine learning

algorithms. There are three important findings in this study. First,

the random forest models were identified to be the best models

for predicting both uncuffed and cuffed ETT size. Second, based

on machine learning models, we proposed three novel formulas

for uncuffed and cuffed ETT size prediction, respectively. Third,

the random forest models outperformed traditional formulas and

clinicians in predicting ETT size.

In the present study, seven features (e.g., height, age, weight,

tracheal length from C6 to carina, tracheal diameter at the level

of C7, ideal BMI and tracheal diameter at the level of C6) were

selected to be the optimal features subset in the uncuffed ETT

size prediction, and five features (e.g., age, height, ideal BMI,

weight, and tracheal diameter at the level of T2) were

screened out to be the optimal features subset. In base of the

results of feature selection, we proposed novel formulas using

SVR models (the optima linear models) for uncuffed and

cuffed ETT size prediction, respectively. Furthermore,

formulas based on age, height and weight and formulas based

on age only were proposed, due to easy availability of the

three variables. The validation results showed that these

formulas, with accuracy from 38.3 to 54.0%, performed

relatively better than traditional formulas. Among them,

multivariate-based formulas performed better than one-

parameter formulas. The novel formulas we proposed could

be used to account for the growth law of children’s tracheal
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FIGURE 5

Relationship of predicted values and true values in uncuffed ETT size prediction (model vs. Formulas). Scatter plots show the relationship of optimal
ETT size (x-axis) vs. predicted ETT size (y-axis) for uncuffed ETT size prediction with RF model (A), SVR formulas (B-D) and traditional formulas (E-G).
The blue line represents the linear regression line, and the orange line represents the standard line for absolutely accurate prediction. The area
between the two red dashed lines represents the 95% CI (confidence interval). RF = random forest, SVR = support vector regression.
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diameter in China and even Asia. Furthermore, these formulas

provide important reference information to guide clinicians in

prediction of ETT size.

We also compared RF models’ performance (the optimal

machine learning models) directly to the performance of

traditional predictive formulas, and the results demonstrated

that the RF models, with the accuracy of 52.3% to 57.5%, were

much superior to the traditional formulas. This might be

because traditional formulas are mostly linear formulas, while

growth and development of children rise in a non-linear

manner (27). It has previously been shown that the allometric

growth curve can be used to account for the tracheal diameter

in infants and young children. Apart from this, the other

possible reason may lie in the fact that traditional formulas

compared with our RF models are all one-parameter formulas,

while RF models developed in base of multiple variables. Other

scholars have also proposed multivariate-based formulas to

improve predictive accuracy, but their clinical use has been

limited since they involve more complex calculations (28). Our

RF models can make accurate predictions in a matter of

seconds, implying superior clinical utility.

However, we had expected our machine learning models and

formulas to have higher accuracies. There are multiple possible

reasons why the accuracies of our machine learning models

and formulas were modest. First, patients with malnutrition or

congenital disease (such as congenital heart disease and cleft
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lip/palate) show different growth patterns in airway anatomical

structures (29–31). Our machine learning models might have

performed better if the nutritional status and congenital disease

of patients would have been considered in the development of

machine learning models. Second, this was a retrospective

study. We used a limited set of clinical variables when machine

learning models were developed. And it is possible that

increased accuracies can be achieved as more clinically relevant

variables are added to our machine learning models.

Additionally, we compared our RF models to clinicians,

since ETT size is selected eventually at the clinicians’

discretion in clinical work. The results showed that RF models

outperformed junior clinicians, while performed comparable

to senior clinicians, and even slightly better than senior

clinicians. In most hospitals, endotracheal intubation is

commonly performed by senior clinicians, with limited

opportunities for junior residents (32). And for some

clinicians working in non-specialized hospitals, pediatric

intubation is simply uncommon. The machine learning

models we developed may provide a reliable basis and

reference for junior clinicians or less experienced clinicians.

Notably, the accuracy of senior clinicians’ prediction in real

clinical work may be higher than the result of the current

study. The reasons may be as follows. Senior clinicians

predicted ETT size based on the variables collected

retrospectively in the present study, while they choose a
frontiersin.org

https://doi.org/10.3389/fped.2022.970646
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 6

Relationship of predicted values and true values in cuffed ETT size prediction (model vs. Formulas). The scatter plots show the relationship of
optimal ETT size (x-axis) vs. predicted ETT size (y-axis) for cuffed ETT size prediction with RF model (A), SVR formulas (B-D) and Motoyama/
Khine formula (E). The blue line represents the linear regression line, and the orange line represents the standard line of absolutely accuracte
prediction. The area between the two red dashed lines represents the 95% CI (confidence interval). RF = random forest, SVR = support vector
regression.
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suitable ETT size using other factors such as experience, other

variables (e.g., the width of little finger), or even in intuition

(33). This issue could be addressed in prospective future studies.

Selecting a suitable ETT size is a key step to ensure the

success of pediatric intubation, and it is strictly related to

clinical experience of intubation providers (34). Tracheal

intubation is frequently performed in general anesthesia. In

operating room, intubation is usually provided by senior

anesthesiologist, while junior residents have less experience.

Sometimes, in emergency department or intensive care

medicine (ICU), emergency intubation may be required for

critically ill pediatric patients, but those patients vary from

only 0.1% to approximately 5% (35). Therefore, exposure to

pediatric intubation is rare for clinicians in emergency

department and ICU. In addition, the ability to intubate is

also a basic skill required for clinicians in a setting of primary

care center in the developing world or at remote locations,

but they may have little experience of intubating pediatric

patients. The infrequency of exposure creates substantial

challenges, for clinicians, to develop a confident method to

predict ETT size, and it may limit opportunities to minimize
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the risk of adverse events for patients (32). Prediction of ETT

size by machine learning models in current study is non-

invasive and quick. RF models can give predictive results in

few seconds, with no need of specialist train or complex

formulas. Our machine learning algorithms may play an

important role in ETT size prediction for intubation

providers, especially for non-specialist intubating pediatric

ETT infrequently or in remote areas. Furthermore, RF

models, as assistant tools, may be integrated into medical

record system. In this setting, they can automatically provide

predictive results of ETT size as references for clinicians, by

identify patients’ clinical data in medical record system.

There are some limitations in the present study to be

considered. First, it was a retrospective study which might

cause the loss of some clinical data. Despite Missing-data

were substituted with mean values of missing items, the

predictive performance of machine learning models may be

improved by collecting more complete data in the future. In

addition, retrospective data collection may be more prone to

recording errors (e.g., ETT size and type of ETT). Thus, it

seems reasonable to conduct prospective studies on this
frontiersin.org

https://doi.org/10.3389/fped.2022.970646
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 7

Relationship of predicted values and true values in ETT size prediction (models vs. Clinicians). The scatter plots show the the relationship of optimal
ETT size (x-axis) vs. predicted ETT size (y-axis) for uncuffed ETT (A-C) and cuffed ETT (D-F) size prediction with jonior clinicians (A, D), senior
clinicians (B, E) and RF models (C, F). RF = random forest.

TABLE 3 External validation of machine learning models.

MAE RMSE Prediction
accuracy
[95% CI]

Uncuffed
(n = 34)

Cole formula 0.423 0.510 35.3% [16.3–52.9]a

Penlington formula 0.308 0.380 47.1% [27.0–65.3]
Height-based
formula

0.270 0.353 58.8% [38.7–76.7]

RF model 0.215 0.284 67.6% [47.1–83.7]

Cuffed
(n = 37)

Motoyama/Khine
formula

0.331 0.409 40.5% [24.7–56.4]

RF model 0.327 0.417 45.9% [29.9–62.0]

RF, random forest; CI, confidence interval.

Data of 95% CI are presented as percentages.
aRepresents as P < 0.05 when compared with RF model in uncuffed ETT size

prediction.
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subject. Second, all the patients included in this study were of

Chinese ethnicity, and therefore the generalization of the

novel machine learning models and formulas to other ethnic

groups is difficult. Third, we assumed that only one size of

ETT was appropriate for each patient, but that was not the

case. As pressure requiring to achieve air leakage around ETT

differs in type of cuffed ETT (microcuff or others), future
Frontiers in Pediatrics 12
studies will continue to explore this issue. And whether RF

model can be directly used for clinical decisions is yet to be

confirmed in further prospective clinical studies.

In conclusion, our RF models demonstrated good

performance for predicting optimal ETT size. They performed

comparable to senior clinicians, while significantly outperformed

traditional formulas and junior clinicians. Novel formulas

proposed based on machine learning models also have relatively

better predictive performance. These models and formulas can

serve as important clinical references for clinicians, especially for

performers with rare experience or in remote areas.
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