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Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia occurs
when the brain does not receive enough oxygen and blood. A surrogate marker
for “intact survival” is necessary for the successful management of HIE. The
severity of HIE can be classified based on clinical presentation, including the
presence of seizures, using a clinical classification scale called Sarnat staging;
however, Sarnat staging is subjective, and the score changes over time.
Furthermore, seizures are difficult to detect clinically and are associated with a
poor prognosis. Therefore, a tool for continuous monitoring on the cot side is
necessary, for example, an electroencephalogram (EEG) that noninvasively
measures the electrical activity of the brain from the scalp. Then, multimodal
brain imaging, when combined with functional near-infrared spectroscopy
(fNIRS), can capture the neurovascular coupling (NVC) status. In this study, we
first tested the feasibility of a low-cost EEG-fNIRS imaging system to
differentiate between normal, hypoxic, and ictal states in a perinatal ovine
hypoxia model. Here, the objective was to evaluate a portable cot-side device
and perform autoregressive with extra input (ARX) modeling to capture the
perinatal ovine brain states during a simulated HIE injury. So, ARX parameters
were tested with a linear classifier using a single differential channel EEG, with
varying states of tissue oxygenation detected using fNIRS, to label simulated HIE
states in the ovine model. Then, we showed the technical feasibility of the low-
cost EEG-fNIRS device and ARX modeling with support vector machine
classification for a human HIE case series with and without sepsis. The classifier
trained with the ovine hypoxia data labeled ten severe HIE human cases (with
and without sepsis) as the “hypoxia” group and the four moderate HIE human
cases as the “control” group. Furthermore, we showed the feasibility of
experimental modal analysis (EMA) based on the ARX model to investigate the
NVC dynamics using EEG-fNIRS joint-imaging data that differentiated six severe
HIE human cases without sepsis from four severe HIE human cases with sepsis.
In conclusion, our study showed the technical feasibility of EEG-fNIRS imaging,
ARX modeling of NVC for HIE classification, and EMA that may provide a
biomarker of sepsis effects on the NVC in HIE.

KEYWORDS

hypoxic-ischemic encephalopathy, electroencephalogram, near-infrared spectroscopy,

neurovascular coupling, experimental modal analysis
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2023.1072663&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fped.2023.1072663
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2023.1072663/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1072663/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1072663/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1072663/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2023.1072663
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Hagan et al. 10.3389/fped.2023.1072663
1. Introduction

Hypoxic-ischemic encephalopathy (HIE) is one of the most

common causes of neonatal death worldwide, accounting for

approximately 23% of all neonatal deaths (1). Worldwide, it is

estimated to account for more than one million deaths annually.

HIE also accounts for considerably higher numbers of chronic

neurological deficits that create an economic burden, more so in

developing countries. Despite having such an immense societal

impact, an adequate rapid diagnostic method for HIE is lacking

(2). In HIE, there is a prolonged lack of oxygen entering the

brain, which causes serious neuronal damage within a very short

window of time, approximately 2–3 min if complete lack of

oxygen, and will lead to a cessation of any neuronal activity

shortly thereafter. Due to the direct effect of HIE on the

neuronal state, current monitoring and outcome prediction are

predominantly based on the electroencephalogram (EEG), which

measures neuronal activity in the cerebral cortex. Amplitude-

integrated EEG (aEEG) is an effective prognostic method for

long-term neurologic deficits induced by HIE with a 90%

classification accuracy at 6 h after injury in both positive and

negative predictions. Here, positive predictions dictate that a

subject will have significant deficits caused by the hypoxic event

and negative predictions characterize recovery of normal

neuronal function after the injury. In most studies, the least time

to obtain an accepted and accurate prediction of extended

deficits was found to be around 6 h and the lowest acceptable

was 3 h, where the positive prediction scores were below 80%,

and prior to that time window, the method did not provide any

consistent predictive value (3, 4). Other alternative methods for

prognosis in HIE such as magnetic resonance imaging (MRI)

have fallen out of favor as they lack prognostic ability or speed in

the early stage of brain injury. For example, T1- and T2-

weighted MRI takes approximately 1 week for an accurate

prognosis resulting from brain swelling from the injury. Also,

there is a lack of MRI facilities in resource-poor settings and it is

often cost-prohibitive. According to a meta-analysis by van

Laerhoven (5), the diagnosis is at best on par with the 6-h aEEG

with a positive predictive score of 83% and a negative score of

90%. Then, Chalak et al. (6) presented a neurovascular coupling

(NVC)-based approach in HIE using multimodal imaging with

aEEG combined with functional near-infrared spectroscopy

(fNIRS) and wavelet coherence analysis. Here, the challenge

remains in the continuous monitoring of NVC, where Sood et al.

(7) presented a Kalman filter-based method that allowed online

autoregressive with extra input (ARX) parameter estimation

using time-varying signals and could capture transients in the

coupling relationship between EEG and fNIRS signals. Then, the

availability of low-cost portable brain imaging devices, e.g.,

OpenBCI (https://openbci.com/) and M3BA (8), can be leveraged

for clinical translation of continuous cot-side brain monitoring in

limited resource settings that can potentially help for better

management of neonates with perinatal asphyxia and improve

the long-term neurodevelopmental outcome. In the current

study, the overarching objective was to test the feasibility of a

low-cost multimodal brain imaging device (8) and an ARX-based
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support vector machine (SVM) classifier for point-of-care HIE

monitoring in limited resource settings.

Continuous monitoring of neurovascular coupling may be

superior to clinical scores for HIE classification (9). The

hypoxic state can be rapidly detrimental for the brain neurons

due to a large amount of oxygen needed in continuous supply

(∼10 ml/100 g tissue/min) and its low reserve, leading to large

changes in neuronal firing during oxygen deficits that can affect

the EEG power spectrum. Indeed, hypoxia effects on the EEG

power spectrum have been extensively studied in both humans

and animal models (10, 11). The spectral density, more

commonly referred to as the power spectrum of the signal,

makes the EEG signal easier to analyze based on rhythms that

can be monitored over time as a spectrogram. The effect of

hypoxia on the power spectrum has been studied using animal

models (12); for example, Goel et al. (13) in an animal model

of a neonatal piglet showed results from hypobaric hypoxia that

was induced for 30 min using 10% oxygen concentration in air.

Then, the airway was occluded for min, during which the

piglet’s neural firing ceased, and the piglet was resuscitated

afterward. Throughout the protocol, the EEG was monitored

while the piglet was anesthetized. The power spectrum was

calculated at the end of both segments, airway occlusion and

resuscitation, and one remarkable feature was spectral

dispersion, where the low-frequency alpha and theta firings

were most affected by hypoxia; also, there was a degree of

disproportionality in the recovery of power of the three

dominant frequency bands (1.0–5.5, 9.0–14.0, and 18.0–

21.0 Hz) relative to their mean recovered power. Time domain

features, such as Hjorth parameters, have also been used. The

Hjorth parameters are simple statistical calculations on the EEG

signal, with the first parameter known as the activity of the

signal, which is the variance of the amplitude for a window of

the signal in time, and the second Hjorth parameter known as

the mobility of the signal. Mobility is defined as the square root

of the ratio of the first parameter of the rate of change of the

signal, divided by the actual first parameter of the signal, or the

rate of change of the activity divided by the activity of the

signal. The last of the Hjorth parameters is known as the

complexity of the signal, which is the second derivative of the

activity divided by the first derivative of the activity. Each of

these Hjorth parameters changed during HIE and was found

useful, especially in the classification of early partial seizure

onset (14). Then, aEEG is a major clinical tool for the long-

term prognosis of HIE; however, it uses 10-min windows for

calculation and needs at least 6 h of data for accurate prognosis.

Here, aEEG on its own needs prolonged data acquisition for an

accurate prognosis that may outrun the early treatment window

for HIE. Also, aEEG can be processed using Washington

University-Neonatal EEG Analysis Toolbox (WU-NEAT) to

estimate NVC in conjunction with fNIRS (9), which can be

used for HIE classification (6). Another time series analysis is

autoregressive (AR) modeling, which takes a segment of data

and fits it to the current data point in a linear combination of

previous data points multiplied by parameters that have a fixed

value throughout the segment. The AR model requires matrix
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calculations to acquire these parameter values and requires

validation to ensure that it is adequately capturing the EEG

signal properties and not the noise especially when detecting

seizure activity (15). If the AR model adequately fits the data,

the power spectrum trends are captured in the transfer function

output of the system model and can be reconstructed. Then,

operational modal analysis using AR with the eXogenous input

(ARX) model can provide mechanistic insights from the NVC

system model with the simultaneously acquired EEG-fNIRS

data. We have extended published algorithms for online

multimodal brain imaging using EEG and fNIRS in our prior

work (7).

The current study is motivated by recent findings on the role

of NVC in the prediction of brain abnormalities in neonatal

encephalopathy (9). Das et al. (9) found NVC to be a

promising biomarker in neonatal HIE that was superior to the

total Sarnat score (16) for the prediction of abnormal brain

MRI in the later stages. In estimating coherence, stationarity

and ergodicity of the signal are assumed, which needs

preprocessing of the raw EEG data to remove trends and low-

frequency variations. Then, the modeling accuracy becomes

more challenging when the spectra contain sharp peaks, e.g.,

during rhythmic activity (17). Therefore, an ictal classifier based

on EEG spectral features was developed using the Children’s

Hospital of Boston and the Massachusetts Institute of

Technology (CHB-MIT) dataset (18) to separately label seizure

activity (19). Then, a SVM was used with the AR parameters to

classify EEG (20) into various experimentally induced states in

an ovine model of perinatal asphyxial arrest (21). Here, we

applied AR modeling and assumed AR parameters being

constant throughout the selected window size (22). Ahmed

et al. (20) have used a multiclass SVM classifier for the best

estimation of an outcome based on a commonly used clinical

grade of one to four: a grade of one being non- to mild

abnormalities, two being moderate, three being major EEG

depression, and four being a severe EEG discontinuity. Their

classifier overall had an 87% accuracy in classifying the recovery

grade of newborns from HIE and was found to be one of the

most effective such classifiers, while others were as accurate as

77% (23). Here, we also performed ARX modeling using EEG-

fNIRS data from the ovine model of perinatal asphyxial arrest

(21). The objective was to test the feasibility of a low-cost EEG-

fNIRS device and the ARX-based linear classifier to label

simulated HIE states in a perinatal ovine hypoxia model. Then,

we applied the ARX-based linear classifier trained with

perinatal ovine hypoxia model data to a human case series on

perinatal HIE with and without sepsis. We also investigated

experimental modal analysis (EMA) of the NVC system model

that provided mechanistic insights from simultaneously

acquired EEG-fNIRS data. Here, the ARX model allowed the

estimation of the modal parameters and frequency response

functions (FRFs) of the NVC system. Then, the FRFs of the

EEG power as input and the hemodynamic (fNIRS) changes as

output were used for the EMA of the NVC system dynamics

for the mechanistic insights into the HIE (with vs. without sepsis).
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2. Materials and methods

2.1. Animal model and data processing

The preparation of ovine subjects was carried out in

accordance with the Institutional Animal Care and Use

Committee at the State University of New York at Buffalo,

United States (24–26). Term (140–147 days) pregnant ewes were

obtained from New Pasteur Family Farms (Attica, NY, United

States). After an overnight fast, the pregnant ewe was

anesthetized with intravenous diazepam and ketamine. The ewe

was continuously monitored using a pulse oximeter and an end-

tidal carbon dioxide monitor. The ewe was intubated with a 10-

mm cuffed endotracheal tube and ventilated with 21% oxygen

and 2%–3% isoflurane at a breathing rate of 16 breaths per

minute. The perinatal ovines were delivered by a cesarean section

and partially exteriorized and intubated. Once the delivery

process was completed, excess fluid that remained in the lungs of

the newborn was removed via passive measures, by tilting the

head back and forth for simulating the process by which fluid is

removed during birth. Once the excess liquid was removed, the

airway was occluded to prevent gas exchange. The catheters were

then placed in the jugular vein and right carotid artery to sample

blood and administer any necessary medication. A 2-mm flow

probe (Transonic Systems Inc., Ithaca, NY, United States) was

placed around the left carotid artery and a 4-mm flow probe was

placed in the left pulmonary artery. The electrocardiogram

electrodes were then placed in the right and left axilla and right

inguinal area, a standard three-lead setup. The ECG100C

(Biopac, Inc.) was used with Acknowledge software to record

data from leads I, II, and III of the ECG. The saturation of

preductal arterial oxygenated hemoglobin was monitored by a

pulse oximeter placed on the right forelimb of the neonate. Low-

cost wireless EEG-fNIRS (750 nm and 850 nm) sensors (OEM

from Technische Universität Berlin) (8) were placed on the

forehead for continuous measurement at 500 Hz for EEG and

10 Hz for fNIRS (see Figure 1). Our low-cost wireless EEG-

fNIRS (750 nm and 850 nm) sensors (Bionics Institute, Australia)

were validated using off-the-shelf EEG (Biopac Inc., United

States) and fNIRS (Nonin Medical, United States) sensor data

from the established perinatal asphyxiated lamb model

experiments; see the experimental protocol by Vali et al. (26).

Following instrumentation, the umbilical cord was occluded

until asystole, which is defined as the complete lack of carotid

artery flow, arterial blood pressure, and heart rate. The lamb

remained in the asystole for 5 min, and then resuscitation was

started. Positive pressure ventilation (PPV) via an endotracheal

tube was provided with 20% oxygen and was performed using a

T piece at a rate of 40 breaths per minute (25). After 1 min of

ventilation, chest compressions (CCs) were initiated and

coordinated with CCs in the ratio of 3:1 (3 CC: 1 PPV). After

5 min of resuscitation, if the lambs did not have a spontaneous

return of circulation (ROSC—defined as heart rate >60/m with

systolic blood pressures >30 mmHg), medications (epinephrine

or vasopressin) were administered through an umbilical venous
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FIGURE 1

Differential EEG and the fNIRS sensors were added to the perinatal asphyxiated lamb model experiments (26). The figure was adapted from Figure 1 of Vali
et al. (25). EEG, electroencephalogram; fNIRS, functional near-infrared spectroscopy.
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catheter. Blood gases were obtained at intervals, and the lambs were

ventilated after ROSC for 2–3 h. If the lambs had ROSC,

resuscitation was stopped at 20 min. Data from five ovine

subjects were analyzed in this study with a gestational time of

139–142 days, as shown in Table 1. The data analysis followed

five major portions: raw data extraction, preprocessing,

autoregressive modeling, classification, and validation. The

workflow presented in Figure 2 was used to obtain results from

the EEG and fNIRS systems starting with the extraction of raw

data.
2.1.1. Major events were labeled offline as follows
First, we start the EEG or initiate our experiment; then, neonate

delivery was performed, followed by the asphyxiation of the

subject. Here, from the beginning of EEG to the start of

asphyxiation, the data were labeled as control or normal. The

next major event was the point of no cardiovascular function,

known as asystole. Data between the time of neonate delivery

and asystole were labeled as ischemic data. The next event was

the start of resuscitation. The data between the asystole and the

start of resuscitation were labeled the asystole segment. The two
TABLE 1 Five full-term ovine subjects used in the animal study.

Subjects Gestational time (days) Weight (lbs) Sex
11/16-1 142 5.5 Male

12/13 141 3.05 Female

3/26 139 4 Male

11/16-2 142 5.5 Male

11/15 141 4.4 Male
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portions consisting of ischemic and asystole data segments were

combined into a more generalized hypoxia phase for our AR-

SVM classifier testing. The last event was the recovery of

spontaneous circulation or ROSC. So, the data segment between

the start of resuscitation and the ROSC was labeled as the chest

compression segment, and then, the last segment was the

recovery segment in the case of ROSC of the subject.

2.1.1.1. Data preprocessing—removal of chest compression
As EEG is affected by the movement artifacts due to chest

compressions, the data segment was completely removed during

preprocessing.

2.1.1.2. Data preprocessing—removal of flat lines
The next stage of preprocessing was to remove sections of the data

where electrode contact was lost or obstructed, which can appear as

a flat-line artifact in the EEG. The EEG flat lines were removed by

measuring the standard deviation of the signal in the sliding

window after visual confirmation.

2.1.1.3. Data preprocessing—correcting for baseline drift
The removal of the baseline drift is the next step in the

preprocessing pipeline. EEG is considered a zero mean signal;

therefore, if the signal mean is not zero over time, then it was

considered a baseline drift artifact. In the case of a baseline drift

artifact, the EEG data were adjusted back to a zero mean using

the “detrend” function in MATLAB (MathWorks, Inc.).

2.1.1.4. Data preprocessing—bandpass filtering of data
A bandpass filter was designed with cutoff frequencies set to 0.5–

50 Hz [neonates rarely have high gamma activity (27)], thereby

removing both low-frequency artifacts (common causes of
frontiersin.org
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FIGURE 2

Algorithmic workflow for processing perinatal ovine EEG data. EEG, electroencephalogram.
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nonstationarity) and high-frequency noise. We applied a fifth-

order filter that provided a stable filter for our specific cutoff

frequencies using the “butter” function in MATLAB

(MathWorks, Inc.).

2.1.1.5. Data preprocessing—LDA binary classifier for
seizure
The next stage of the preprocessing pipeline was to label ictal

activity using a sliding window of the data (22) as seizure activity

occurred frequently, and we aimed at hypoxia classification using

background (nonseizure) EEG activity (28). Linear discriminant

classifier (LDA) classifier training used the CHB-MIT dataset

(18). The CHB-MIT scalp EEG dataset contains 22 subjects from

children who have been removed from antiepileptic medication

and suffered seizures. The sampling rate for all data was 256 Hz,

and the international 10–20 standard montage was used for

recording. A physician trained in EEG-based seizure detection

manually labeled the occurrence of ictal activity in the CHB-MIT

dataset. To maximize the scalability of the LDA classifier from

the CHB-MIT dataset to our EEG measurement, only one

channel of differential data was chosen for training the classifier,

as described next.

The differential EEG channel used in our perinatal ovine study

was comparable to the Fz-Cz electrode pair from the human 10–20

labels. Therefore, Fz-Cz electrode data were processed for

differential EEG like our perinatal ovine data but we did not use

their (19) SVM classifier that had several hyperparameters. We

used a simpler LDA that was trained using the labeled CHB-MIT

dataset [using 3.4-s sliding window that was longer than 2 s used

in their SVM classifier (19)]. Our chosen features were alpha and

low gamma band power (29). Here, LDA is a binary classifier

that generates a linear decision plane to maximize the accuracy

of binary classification. To avoid overfitting, a fivefold cross-

validation was used, which divided the EEG data into five

segments and used four-fifth of the data to train the classifier

and one-fifth to test and performed this processing five different

times, so all the EEG data can be used for both testing and

training. This method is widely used in machine learning to
Frontiers in Pediatrics 05
avoid generating overfit classifiers. Once the LDA classifier was

trained by the labeled CHB-MIT dataset, the Fz-Cz EEG ovine

data in a 2-s sliding window was run through the binary

classifier, and the windows with seizure were labeled.

2.1.1.6. Data preprocessing—removal of large-amplitude
data segments
The last in the preprocessing was to remove data segments

containing large activity (and not labeled as a seizure); this was

done by finding the overall standard deviation of the EEG data

and removing data segments that had a mean larger than two

standard deviations of the whole EEG data.

2.1.1.7. Autoregressive (AR) modeling of the EEG data
The AR model is a linear model that fits the current output using a

defined number of previous outputs, multiplied by the same

number of coefficients, known as AR parameters. The AR

parameters are optimized based on the linear algebra principle of

least-squared estimate for the best fit, where the AR model yields

higher resolution for spectral analysis than nonparametric

approaches when the signal length is short. If an accurate AR

model is constructed, then the spectral analysis of the signal can

be solely described and reconstructed from AR parameters. AR

model delay was included in our model, and the delay

calculation was done using autocorrelation, which is a measure

of mutual information shared between the signal and a time-

shifted version of itself. The analysis of the data autocorrelation

was performed for every possible positive delay. The maximum

value denotes the time point when there is the most shared

information. The delay was calculated for each ovine subject

separately from the control phase of the EEG data. The AR

model order is the other property of the model that must be

optimized, which was done to make sure that the system is being

accurately modeled while also being the least computationally

expensive, e.g., using Akaike’s information criterion (AIC). Prior

work (13) also found an optimal AR model order of six for a

similar kind of EEG data. After AR modeling the EEG data,

these AR parameters were plotted in 3D to visualize clusters
frontiersin.org
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from the nonictal background EEG activity. The ictal activity was

labeled using a first-level LDA classifier—see section

Preprocessing—seizure binary classifier. Then, AR parameters

were used as features to visualize the clusters for all the three

different experimental conditions in the 3D AR feature space;

seizure state, hypoxia state, and normal/control state.

2.1.1.8. SVM classification using EEG AR parameters
Separation into the three experimentally induced states, normal/

control, hypoxia, and seizure, was done using two different

linear classifiers in the hierarchy. The first of the two linear

classifiers in the hierarchy was the LDA seizure classifier that

was trained using the CHB-MIT dataset—see section

Preprocessing—seizure binary classifier. This binary classifier

was applied to identify the data segments that contained ictal

activity, which were removed before training and testing the

second-level SVM classifier using the background EEG (3.4-s

sliding window). The second-level SVM classifier was used to

classify the AR parameters from the seizure-free (background)

EEG data segments into the hypoxia state and the control

(normal) state. Here, AR parameters were used as features (see

Supplementary material Figures S1–S3), and the response

variable used for training and validation were the event

markers from the animal experiment. The SVM classifier was

chosen for a more generalizable decision plane since this SVM

classifier that was trained using perinatal ovine data was then

applied to human perinatal case series. To avoid overfitting

the SVM classifier, a fivefold cross-validation was used.

2.1.1.9. SVM classification using EEG-fNIRS ARX
parameters
We applied the ARX model to the EEG-fNIRS data (here, a 60-s

sliding window was used due to a slower fNIRS signal) for the

second-level SVM classifier using seizure-free data segments

for labeling hypoxia and control (normal) states. We used the

basic nirs-toolbox (30) script in MATLAB (MathWorks, Inc.)

to process the fNIRS data (750 and 850 nm). Specifically, we

used the following modules with default parameters:

nirs.modules.OpticalDensity, nirs.modules.BeerLambertLaw,

and nirs.modules.AR_IRLS. We used the AR-IRLS model (31)

that employed both prewhitening and robust regression to

remove noise from the data. The ARX model order of six from

AIC was comparable to our previous work (7) that used the

fNIRS oxyhemoglobin signal in the low-frequency (0.1 Hz)

range as the output and the transformed EEG band power as

the input (7). In this study, we used an EEG frequency band

of 1.0–21.0 Hz due to the dominant frequencies found in a

related prior work (13). Then, the ARX parameters (“arx” in

MATLAB) were used as features in the SVM classifier, and the

response variable used was the event markers from our animal

experiment. To avoid overfitting the classifier, a fivefold cross-

validation was used.

2.1.1.10. Hierarchical classifier outcome vis-à-vis carotid
flow
After the hierarchical classifier was found from the perinatal ovine

data, the classifier outcome was compared with the carotid blood
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flow data. Here, the objective was to compare the changes in the

carotid flow rate (irrespective of the manually placed event

boundaries) when the ovine subject physiologically entered the

global hypoxia stage.
2.2. Human data acquisition and feasibility
testing

The human perinatal study was conducted based on

convenience sampling at the Department of Neonatology and

approved by the Institutional Review Board (IRB) of the IMS &

SUM Hospital, Bhubaneswar, India. The study objectives were to

test the feasibility of the EEG-fNIRS joint imaging for the ARX-

based SVM classifier that was trained with the perinatal ovine

data to detect the severity of human perinatal HIE. The study

was a prospective observational study. Ten newborns with

moderate to severe HIE and four severe HIE cases with sepsis

were recruited for the feasibility study. Sepsis screening was

performed according to the clinical guidelines at the IMS &

SUM Hospital, Bhubaneswar, India. Specifically, sepsis was

suspected when there was a history of lethargy, poor feeding,

fever, hypothermia, or temperature instability, abdominal

distension, feeding intolerance, and tachypnea. The suspicion was

corroborated with a positive sepsis screen (total leukocyte count

< 5,000/cmm or absolute neutrophil count < 1,800/cmm, micro-

ESR > 15 mm in the first hour, immature-to-total neutrophil

ratio > 0.2, CRP > 10 mg/dl, any two of the four positive

parameters meant sepsis screen positive). Sepsis was also

confirmed if the blood culture was positive. Here, the physical

and neurological examination was performed by neonatologists

trained with Sarnat and Sarnat scoring criteria (32).

The inclusion and exclusion criteria were the following:

• Inclusion criteria: Neonates with gestation >35 weeks and

>1,800 g admitted to the neonatal intensive care unit (NICU)

for the treatment of perinatal asphyxia.

• Exclusion criteria: Premature babies <35 weeks, babies with

multiple congenital anomalies, and not giving consent for

inclusion in the study.

The experimental setup is shown in Figure 3, where the

parietal EEG channels were averaged and subtracted from

the averaged frontal channels to get a single channel EEG data.

The bilateral frontal–parietal fNIRS channels were also averaged

to get a single channel of fNIRS data. The preprocessing used in

the perinatal ovine model study was applied to the human EEG-

fNIRS data. The first-level LDA classifier [trained using human

perinatal EEG data from the CHB-MIT dataset (19)—see section

Preprocessing—seizure binary classifier] was applied to label the

seizure segments in the EEG data. Then, the second-level SVM

classifier in the hierarchical classifier, trained using the ovine

EEG-fNIRS data, was applied to 60-s sliding windows of the

human EEG-fNIRS data to label the hypoxia and the control

(normal) states. Then, for mechanistic investigation of the NVC

system using modal analysis (33), we applied EMA using the

ARX system model (“arx”, System Identification Toolbox). Here,
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FIGURE 3

Experimental setup for perinatal human study in the NICU using the low-cost EEG-fNIRS device (OEM from Technische Universität Berlin)—see the
bottom left inset. The eight EEG electrodes were distributed bilaterally in the frontal and the parietal areas—see the top right inset. The two fNIRS
sources were placed bilaterally in the frontal area, while the two fNIRS detectors were placed bilaterally in the parietal area in the cap (using a black
cloth headband). NICU, neonatal intensive care unit; EEG, electroencephalogram; fNIRS, functional near-infrared spectroscopy.
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we performed EMA of the estimated NVC system that was

estimated from the EEG-fNIRS data. Input and output time

series were stored using a data object in the time domain

(“iddata” in MATLAB). We used the modal analysis functions

“modalfrf” to determine the FRFs, “modalfit” to determine the

modal parameters of the FRF, and “modalsd” to generate a

stabilization diagram for the modal analysis in MATLAB

(MathWorks, Inc.). A single set of modal parameters was

generated using the least-squares complex exponential (LSCE)

algorithm in MATLAB (MathWorks, Inc.) by analyzing multiple

response signals simultaneously in “modalsd”. Then, a

stabilization diagram was used to identify the physical modes by

examining the stability of the poles as the number of modes

increased. Here, the given pole was considered stable in

frequency if its natural frequency changes by less than 1% and

stable in damping if the damping ratio changes by less than 2%

as the model order increases in the stabilization diagram.
3. Results

3.1. Results from the perinatal ovine
study—classification based on
autoregressive parameters

Clustering of the AR parameters for the experimentally

induced HIE states in the ovine model (see the upper panel of
Frontiers in Pediatrics 07
Figure 4) allowed binary decision planes for the first level

(seizure vs. nonseizure EEG data) and the second level (hypoxia

vs. control EEG data) in the hierarchical linear classifier using a

sliding window of 3.4 s for the EEG data. Here, a sliding window

of 3.4 s [longer than 2 s used in the prior work with the SVM

classifier (19)] was found to be adequate for the estimation of

AR parameters for the reconstruction of the EEG power

spectrum (22)—more details are in the thesis (24). The first level

of the hierarchical linear classifier determined the seizure state

using the LDA classifier applied to EEG data in sliding windows

of 3.4 s, where the confusion matrix of the binary classifier

trained with the human CHB-MIT dataset is shown in Table 2.

Here, the accuracy is 92.68%, sensitivity is 76.88%, and specificity

is 93%, which are comparable to those in the prior work (19).

Then, the decision plane of the LDA seizure classifier was used

to identify and label the seizure data segments (=3.4 s) in the

perinatal ovine EEG data. Then, the second-level classifier was

trained to separate the control (normal) segment from the

hypoxia segment using either the AR parameters from EEG data

(with a 3.4-s sliding window) or the ARX parameters from the

EEG-fNIRS (with a 60-s sliding window). AR parameters

performed moderately well to separate the control (normal)

segment from the hypoxia segment (see Table 3), where the

accuracy was 98.44%, sensitivity was 70.75%, and specificity was

81.78%. However, with ARX parameters from EEG-fNIRS data,

the classifier performance to separate the control (normal)

segment from the hypoxia segment (see Table 4) (also
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FIGURE 4

Illustrative example of subject 11/16-1—comparing EEG classifier labels vis-à-vis carotid blood flow and oxygen influx data. The top panel shows the
labeling by the hierarchical classifier in the AR feature space that could discriminate the brain state—control or normal (blue), hypoxia (green), and
seizure (yellow). The bottom panel shows the corresponding carotid flow and oxygen (O2) influx from the oxygen saturation (SpO2) data. Note that
around the 4,000-s timepoint, the carotid blood flow increase is followed by a steep decrease—the response of the neonate to asphyxial arrest (21).
The chest compression and resuscitation data sections were removed (around 5,000 seconds), which was followed by ROSC with the return of the
carotid flow and oxygen influx. Here, the gap in the EEG data (in black) before ROSC and after the asphyxial arrest is due to the removal of the
artifactual (due to chest compression) EEG data. EEG, electroencephalogram; AR, autoregressive; ROSC, spontaneous return of circulation.
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Supplementary material Figures S1–S3) improved sensitivity and

specificity, with the accuracy at 95.30%, sensitivity at 91.95%, and

specificity at 96.75%. Figure 4 shows an illustrative example of

the correspondence of the classification of the control (normal)

segment from the hypoxia segment vis-à-vis normalized carotid

flow recordings and global hypoxia (oxygen influx based on

oxygen saturation).
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3.2. Results from the human feasibility study

A nontechnical staff was trained to conduct cot-side continuous

EEG-fNIRS data acquisition in NICU that was established in a

limited resource setting with 1 day of shadowing of a technical

expert to learn the experimental protocol—the setup is shown in

Figure 3. The two-level hierarchical classifier developed using the
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TABLE 4 Confusion matrix of the hypoxia classification based on ARX
parameters from EEG-fNIRS using the SVM classifier.

N = 8,484 Predicted class

8,484 P N
Actual class P 2,364 207

N 192 5,721

EEG, electroencephalogram; fNIRS, functional near-infrared spectroscopy.

TABLE 2 Confusion matrix of the ictal state classification using the LDA
classifier.

N = 8,670 Predicted class

8,670 P N
Actual Class P 143 43

N 592 7,892

LDA, linear discriminant classifier.

TABLE 3 Confusion matrix of the hypoxia classification based on AR
parameters from EEG using the SVM classifier.

N = 8,484 Predicted class

8,484 P N
Actual class P 1,819 752

N 1,077 4,836

EEG, electroencephalogram; AR, autoregressive; SVM, support vector machine.
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ovine EEG-fNIRS data (see Figure 4) was applied to the human EEG-

fNIRS data. The hierarchical classifier labeled the six severe HIE cases

and four severe HIE cases with sepsis as “hypoxia” and the four

moderate HIE cases as the “control”—hypoxia and control labels

are based on the perinatal ovine experiment (see Figure 4). Here,

EMA provided insights into the NVC modes (33), where the severe

HIE and the severe HIE with sepsis cases were found to be

different in the stabilization diagram.
3.3. Results from the EMA of the human
NVC

Figure 5 shows the stabilization diagrams of the NVC system

estimated from the EEG-fNIRS signals (60-s sliding window)

from six severe HIE human perinatal cases, four severe HIE

human perinatal cases with sepsis, and four moderate HIE

human perinatal cases. Here, the stabilization diagrams of the

four moderate HIE human perinatal cases did not show a dip at

around 1 Hz in the averaged frequency response function;

however, the four severe HIE human perinatal cases with sepsis

had a dip at around 1 Hz and a stable pole mainly in the

frequency between 0.5 and 1 Hz—is this related to respirocardiac

dysfunction?
4. Discussion

Our study showed the feasibility of training an SVM classifier

with the ARX parameters from the perinatal ovine model
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EEG-fNIRS data and then applying the SVM classifier to the

human data to detect HIE severity. The SVM classifier was at the

second level of our hierarchical classifier, where the first level was

an LDA seizure classifier that was trained using the human

CHB-MIT dataset (18). The LDA seizure classifier had an

accuracy of 92.68%, a sensitivity of 76.88%, and a specificity of

93%, which were comparable to those in the published prior

work using the CHB-MIT dataset (19). Then, the trained LDA

seizure classifier was used to label the seizure data segments

(=3.4 s) in the perinatal ovine model EEG data and the human

EEG data. ARX parameters from the EEG-fNIRS seizure-free

data segments (in 60-s windows) from the perinatal ovine model

achieved an accuracy of 95.30%, a sensitivity of 91.95%, and a

specificity of 96.75%. The perinatal ovine model-trained

hierarchical classifier was applied to the human data, where it

labeled the six severe HIE cases and four severe HIE cases with

sepsis as “hypoxia” and the four moderate HIE cases as the

“control.” Therefore, we showed the technical feasibility of our

two-level hierarchical classifier in differentiating severe HIE from

moderate HIE, which is feasible for hardware implementation (34).

Prolonged hypoxic events in the ovine model led to substantial

seizure activity when the neonates were inherently susceptible to

seizures with many more excitatory synapses than inhibitory

synapses. So, the seizure data segments (=3.4 s) were removed

using the LDA classifier trained with the CHB-MIT dataset (18)

before second-level HIE classification. Here, the LDA classifier

used only EEG data for the classification of the seizure data

segments since the manually labeled CHB-MIT dataset did not

provide simultaneous fNIRS data. Then, our second-level SVM

classifier using ARX parameters from the EEG-fNIRS seizure-free

data segments (in 60 s windows) performed better in terms of

sensitivity and specificity than the SVM classifier using AR

parameters from the EEG seizure-free data segments—see

Tables 3, 4. Indeed, tissue oxygenation and hemodynamics can

provide additional information (35) including seizure effects on

the neurovascular tissue (36), as shown by our perinatal ovine

model data (see that bottom panel of Figure 4), that may guide

the hemodynamic care (37), especially in severe HIE cases with

seizure load, which is time-critical (38). Under oxygen starvation,

an extracellular increase in the gamma-aminobutyric acid

(GABA), the most common inhibitory neurotransmitter, can

help in metabolic suppression (39), which correlates with the

hemodynamics and neurovascular coupling (40)—the excitation/

inhibition (E/I) ratio can be estimated with EEG-fNIRS (41).

Importantly, the neurodevelopmental circuits in neonates under

HIE insults may maladaptively coordinate their excitatory and

inhibitory inputs to establish an E/I ratio (42), where

neuroenergetics may play a crucial role (43). For example,

hypoglycemia may reduce GABA levels due to ATP depletion in

the hypoxia state (44). Also, the HIE effects on the cerebellum

(45) may be underestimated (46), which needs future

development of whole head fNIRS technology (47, 48) for

neonates as the thin skin and skull allow deep penetration of the

NIR light. Cerebellar Purkinje fibers are sensitive to hypoxic

injury and can show damage even in the mild cases of HIE (49).

Indeed, HIE accounts for chronic cerebellar deficits, including
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FIGURE 5

Stabilization diagram of the ARX model of the neurovascular coupling system. (A) Subj 1: moderate HIE, (B) subj 2: severe HIE with sepsis, (C) subj 3: severe
HIE with sepsis, (D) subj 4: moderate HIE, (E) subj 5: severe HIE with sepsis, (F) subj 6: severe HIE, (G) subj 7: severe HIE, (H) subj 8: severe HIE, (I) subj 9:
severe HIE, (J) subj 10: severe HIE, (K) subj 11: moderate HIE, (L) subj 12: severe HIE with sepsis, (M) subj 13: severe HIE, and (N) subj 14: moderate HIE. ARX,
autoregressive with extra input; HIE, hypoxic-ischemic encephalopathy. (continued)
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FIGURE 5

Continued.
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schizophrenia and other nonaffective psychoses (50), which create

an economic burden; hence, low-cost technological innovations are

crucial (51).

Our perinatal ovine hypoxia model benefited from previous

studies on hypoxia-ischemia animal models for a mechanistic

understanding of the SVM classifier results. In the study by

Bjorkman et al. (52), the ictal activity was subclassified into two

subgroups, clinical and subclinical. Clinical seizures had some

visual effect on movement, limb jerks, or mouth quivering,

while subclinical seizures can only be detected by abnormalities

in the EEG with the absence of movement. In this study on 28

piglets with 77% ictal activity, the background EEG showed

lower amplitude compared to that of the nonseizure ischemic

state. This supports our SVM classifier approach, where we

analyzed the background EEG after removing seizure data

segments (using the first-level LDA seizure classifier). Here, a
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lower amplitude background EEG activity can be a marker of

increased neurological damage, where the importance of a lower

amplitude background EEG activity was shown by histological

analysis after euthanasia (52). Then, fast oscillations (>40 Hz)

in neonatal EEG are rare, and high gamma frequencies (27)

evaded our first-level LDA classifier. More advanced seizure

detection methods are available to identify fast oscillations

(>40 Hz) (27); for example, in previous publications (53, 54),

researchers have used backpropagation neural networks (53)

with an input layer of 9 neurons, a hidden layer of 2–3

neurons, and an output layer containing 1 neuron. The input

layer was trained on statistical measures of the ictal waveform

itself. Researchers used this classifier to identify the differences

between EEG activity and obtained a 93.75% accuracy. Another

group (54) attempted to identify all ictal activity with one

classifier by dividing peaks that are separated enough to be
frontiersin.org

https://doi.org/10.3389/fped.2023.1072663
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Hagan et al. 10.3389/fped.2023.1072663
considered seizures, that is, at least 100 ms. Then, the researchers

analyzed the portions of the wave before and after the peak with

the amplitude difference and the duration of the wave. These

parameters of each half-wave were used to train an SVM with a

high sensitivity of 97%. Many advanced machine learning

algorithms are under development; however, their clinical utility

beyond conventional EEG needs further investigation, especially

in limited resource settings (55).

In the current study, we showed the importance of EMA of the

NVC system estimated from the seizure-free background EEG and

fNIRS data that provided insights. Here, stabilization diagrams with

and without stable poles were found for the different cases of severe

HIE, severe HIE with sepsis, and moderate HIE. However, the

clinical and physiological significance of the dip at around 1 Hz

and a stable pole mainly in the frequency between 0.5 and 1 Hz

in the four severe HIE human perinatal cases with sepsis (see

Figure 5) needs a larger clinical study with another control

group with depressed neonates without HIE. Here, changes in

the NVC due to HIE have been demonstrated by previous works

by Chalak’s group (6, 9); however, our system analysis using

EMA may provide further insights into the neurovascular (and

neurometabolic) dynamics. Neurovascular (and neurometabolic)

dynamics is also relevant to adult acute brain injury cases, where

normalization of neurovascular coupling may herald recovery of

consciousness (56). Here, the effects of seizure activity on the

coupling dynamics of the neural activity (measured with EEG)

with the cerebral metabolism, oxygen delivery, and blood volume

may be crucial to guide medication (36, 57), especially by

leveraging optical monitoring in neonates (58). Other relevant

chromophores, cytochrome c oxidase (CCO) and water, can also

be investigated with optical monitoring in the neonates (58),

which was developed in another study by adding four different

wavelengths (780, 810, 820, and 840 nm) to the low-cost EEG-

fNIRS sensor (https://neuromodec.org/nyc-neuromodulation-

online-2020/P18.html) (59). In that case series (59), we found

that neurometabolic coupling was specifically affected in HIE

with sepsis, which may be related to the differences in the

stabilization diagrams (see Figure 5) between the six severe HIE

human perinatal cases and the four severe HIE human perinatal

cases with sepsis. Howard et al. (58) highlighted the importance

of the estimation of the oxidation state of the CCO (oxCCO)

concentration changes in HIE. Here, CCO is essential to generate

ATP efficiently during aerobic respiration, so the effects of

seizure activity on the background EEG and oxCCO will be

important to study its metabolic effects (58). Then, Howard et al.

(58) reviewed the literature that showed preictal changes in the

cerebral hemodynamics that aligns with our perinatal ovine data

(24)—see Figure 4. Figure 4 shows a small increase in the

preictal carotid artery flow that was also detected with fNIRS and

may improve the latency [or even predict (60)] of ictal period

classification when fNIRS is added to EEG monitoring of seizure

activity. Also, the accuracy of the ictal period classification may

be improved with multimodal EEG-fNIRS data due to the

primarily biphasic response of oxyhemoglobin and

deoxyhemoglobin concentration changes (58). Nevertheless, the

hemodynamic responses to seizures are not uniform across
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the literature (58), and the individual differences in the

neurovascular and neurometabolic coupling may subserve the

effects of seizures on the brain tissue (57). For example, any

progressive decrease in oxCCO baseline with sequential seizures

(61) needs future investigation vis-à-vis clinical outcomes

including exacerbation of epileptogenesis following HIE (62).

Hypoglycemia is a common metabolic problem among

malnourished newborn babies (63), which can also disturb brain

metabolism in HIE. A multiscale model will be needed for the

mechanistic understanding of the hypoglycemia effects on the

outcome from HIE and sequential seizure events. Sepsis is

characterized by systemic changes in the metabolism (64) that

can further disturb brain metabolism in HIE where optical

monitoring can provide insights (58). Prior work by Jolivet et al.

(65) provided a detailed neurometabolic model that captured the

concentration of lactate in the neuronal, astrocytic, and

extracellular compartments that was coupled as modulatory

feedback (66, 67) with the voltage of the neuronal membrane.

Such mechanistic investigation is crucial since oxygen and

glucose deprivation can lead to an increase in the extracellular

concentrations of excitatory amino acid neurotransmitters (68),

leading to an E-I imbalance in the brain tissue (at the level of

neuronal circuits) (43). Then, neuronal circuits may try to self-

organize toward E-I balance (69) via changes in the connectivity

that can be dysfunctional when there is a genetic risk (70, 71).

Also, hypoxia-ischemia-induced gene transcription effects are

possible (72). Previous work on patient-derived cerebral

organoids has revealed gene expression patterns suggesting

dysregulation of mitochondrial function (73) that can lead to

long-term deficits in synaptic E-I balance in susceptible

individuals. Such gene–environment interactions can be

investigated mechanistically using a subject-specific brain

organoid model from human-induced pluripotent stem cells

(iPSCs) to test optical theranostics (59). Then, oxygen–glucose

deprivation can be implemented in an in vitro subject-specific

brain organoid model (59) for mechanistic studies. Notably, our

in vitro subject-specific brain organoid study (https://

neuromodec.org/nyc-neuromodulation-online-2020/P18.html) (59)

showed an increase in the CCO activity and pH in the organoid

tissue and a decrease in the electrophysiological spectral exponent

[related to the E-I balance (74)] following photobiomodulation.

These preliminary results are important for future works on

nonpharmacological therapeutics since histogenous hypoxia and

acid retention are closely related to glucose metabolism (71)

that may be photobiomodulated (https://neuromodec.org/nyc-

neuromodulation-online-2020/P18.html) (59), which needs future

investigation. In phase zero studies (43), the brain organoid

platform (59) can use a dual-polymer sensor in the Matrigel

matrix to provide real-time glucose and oxygen monitoring (75)

during mitochondrial photobiomodulation to capture the

neurometabolic dose/response relationship for individualized

delivery (33). However, our brain organoid platform (59) cannot

currently model neurovascular coupling, which may be feasible

with vascularized organoids (76).

In conclusion, the current study showed the feasibility of

multimodal EEG-fNIRS data acquisition and the EMA approach
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for the systems analysis of NVC that may provide biomarkers of the

sepsis effects on the neurovascular brain tissue in human HIE. Here,

the EMA approach to the NVC dynamics using EEG-fNIRS data is

novel in our knowledge; however, the systems analysis may need to

be extended beyond the neurovascular bundle (77) to include

noninvasive measurements of blood pressure and cardiac output

(e.g., electrocardiogram of the heart rate) in the human studies

[see Figure 1 and the published results from the perinatal

asphyxiated lamb model experiments (26)]. Then, cerebral blood

flow (CBF) is regulated by cerebral autoregulation, cerebral

vasoreactivity, and neurometabolic coupling (78, 79), which can be

monitored using cerebral near-infrared spectroscopy (35). Also,

seizure-induced autonomic dysfunction is possible (80), which

requires systems analysis beyond EEG and fNIRS with the

inclusion of simultaneous blood pressure and cardiac monitoring.

Here, the effect of the preictal increase in the CBF during a severe

metabolic deficit in HIE (e.g., slowing of background EEG) may

be physiologically important (52, 81–83)—see Supplementary

material Figure S4 from the perinatal asphyxiated lamb model

experiments in the Supplementary Material. So, a unified theory

of seizure-induced brain state abnormalities including the effects

of sepsis in HIE, which may share a common point of origin with

hypoperfusion/hypoxia (57), needs future investigation for the

development of a robust biomarker amenable to optical brain

tissue monitoring in the neonates (58).
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SUPPLEMENTARY FIGURE S1

AR parameter 1 in the three cases: control, hypoxic, and ictal states. The
control and hypoxic clusters have average separation but are not
completely separated, while the ictal activity is clearly separated.

SUPPLEMENTARY FIGURE S2

AR parameter 2 in the three cases: control, hypoxic, and ictal states. The
control and hypoxic clusters have average separation but are not
completely separated, while the ictal activity is clearly separated.
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SUPPLEMENTARY FIGURE S3

AR parameter 3 in the three cases: control, hypoxic, and ictal states. The
control and hypoxic clusters have average separation but are not
completely separated, while the ictal activity is clearly separated.

SUPPLEMENTARY FIGURE S4

Reduction in the amplitude of the discharges in EEG (black line) during an
increase in the normalized flow (green line) and normalized oxygen (O2, red
line) delivery (based on constant oxygen saturation, SpO2, dashed black line).
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