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Introduction: The Apple Watch valuably records event-based electrocardiograms
(iECG) in children, as shown in recent studies by Paech et al. In contrast to adults,
though, the automatic heart rhythm classification of the Apple Watch did not
provide satisfactory results in children. Therefore, ECG analysis is limited to
interpretation by a pediatric cardiologist. To surmount this difficulty, an artificial
intelligence (AI) based algorithm for the automatic interpretation of pediatric
Apple Watch iECGs was developed in this study.
Methods: A first AI-based algorithm was designed and trained based on
prerecorded and manually classified i.e., labeled iECGs. Afterward the algorithm
was evaluated in a prospectively recruited cohort of children at the Leipzig
Heart Center. iECG evaluation by the algorithm was compared to the 12-lead-
ECG evaluation by a pediatric cardiologist (gold standard). The outcomes were
then used to calculate the sensitivity and specificity of the Apple Software and
the self-developed AI.
Results: The main features of the newly developed AI algorithm and the rapid
development cycle are presented. Forty-eight pediatric patients were enrolled in
this study. The AI reached a specificity of 96.7% and a sensitivity of 66.7% for
classifying a normal sinus rhythm.
Conclusion: The current study presents a first AI-based algorithm for the
automatic heart rhythm classification of pediatric iECGs, and therefore provides
the basis for further development of the AI-based iECG analysis in children as
soon as more training data are available. More training in the AI algorithm is
inevitable to enable the AI-based iECG analysis to work as a medical tool in
complex patients.
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1. Introduction

Recently, smartwatches like the Apple Watch gained popularity and are used by adults

and children. These devices offer many features: one of them is the mobile recording of a

high-quality iECG. While the recording of an iECG is already possible, an AI-based

automated interpretation of the iECG is currently only available for adults and the

classification of a minimal amount of rhythms, meaning normal sinus rhythm or atrial

fibrillation. In recent studies, Paech et al. and Leroux et al. demonstrated that the Apple

Watch valuably records event-based iECGs in children (1–4). Yet, in contrast to adults,

the automatic heart rhythm classification of the Apple Watch did not provide satisfactory

results in children as the algorithms need to be designed and trained in this group of

users. Therefore, this study aimed to design an AI-based algorithm for the automatic
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high-quality interpretation of pediatric Apple Watch iECGs. In this

first step, the created algorithm should identify a sinus rhythm in

children. When more data of pediatric arrhythmias become

available, the algorithm will be trained, and in the second step, it

should detect pediatric arrhythmias.
2. Methods

2.1. Convolutional neuronal network (CNN)
choice

TheScrumteamat theWestSaxonUniversityofAppliedSciences in

Zwickau designed anAI software for us, using a convolutional neuronal

network (CNN).The software consists of twoparts: anAI-basedanalysis

of the single-beatmorphology and the evaluation of theRR interval. The

analysis is performed according to age-specific thresholds to ensure it

can also be used in children.

Jun et al. presented a CNN model that is well suited for

processing ECGs: the model served as a starting point for our

development of the model w_ws_c70 (5). This served as our

prototype and was compared to the model Xception, which

outperforms in accuracy on the ImageNet dataset (6) and is

therefore highly effective in image analysis.

Based on the data of about 500 fully labeled pediatric iECGs

and the open-source MIT data set, our team trained and

optimized these convolutional neuronal networks.
2.2. ECG training data

The raw data consisted of 500 labeled 30 s long pediatric iECGs.

These data were acquired at the Department for Pediatric Cardiology

at the Leipzig Heart Center as part of a previous study (2). They were

registered using an Apple Watch and an iPhone. After recording, the

data were available on the paired iPhone and could be sent to another

device via the iPhone’s Health app profile menu under “Export all

health data”. After being exported from the iPhone, the data were

available as a.csv file (7–9).
FIGURE 1

Examples of different beat morphologies.
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For the analysis via CNNs, the data had to be converted into a two-

dimensional form.Matplotlib andOpenCVprogramswere used to split

the iECG signals into images of individual beats following a special

algorithm (10). The programs designed images in different sizes for

both CNNs: for the CNN w_ws_c70 images with 128 × 128 pixels and

for the Xception images with 299 × 299 pixels.

After this procedure, the following data became available:

19,320 regular beats (N), 2941 right bundle branch block beats

(RBBB, R), 813 pacemaker beats (P), 238 Wolff-Parkinson-White

(WPW, W) beats, ten premature ventricular contractions (PVC,

V), and five premature atrial contractions (APC, S). Figure 1

shows examples of those beat morphologies.
2.3. Data setup and augmentation

The individual beats were then separately assigned to their

classes. Due to the small number of examples in the classes

WPW and APC, they were excluded.

Since a CNN needs large amounts of training data for good

performance, two methods for data augmentation can be used to

increase the amount of training data. While data for the

premature ventricular contractions class could be extended with

examples from the open-source MIT-BIH dataset (11), including

7,125 PVC beats, data for the pacemaker beats could be extended

using the augmentation method: Nine sections with the size of

two-thirds of the original image are cut out, enlarged to the

target size and result in ten similar images.

Subsequently, the same number of images was selected for all

classes to obtain balanced training data.

In the last step, this raw data was divided into training,

validation, and test data for training the models.
2.4. Training of the two different models

The CNNs differ in their architecture: While the w_ws_c70

network uses a linear structure in which the individual layers are

traversed one after the other, the architecture of Xception is
frontiersin.org
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more complex, with three flows being traversed one after the other

and repeated if necessary (12). The result of the training runs with

the Xception model was the model Xveption_v8. This was the run

with the best performance.

Training of the models was achieved with different methods:

optimization of hyperparameters, number of neurons in the last

dense layer, size of the last conv2d layer, learning rate, or

dropout. The Tensorboard program helped to perform an

analysis comparing potentially relevant parameter combinations.

Optimization of hyperparameters is demonstrated in Figure 2:

The best setting is highlighted in green.

Dropout is a method for regulating models and

works by removing a defined number of connections
FIGURE 2

Hyperparameter optimization.

FIGURE 3

Baseline examination workflow used to evaluate the final AI-based algorithm.

Frontiers in Pediatrics 03
between the layers, leading to redundant representations being

learned.

In order to achieve a better generalization of the models, two

percent of the pixels were randomly colored black, which is

called “Salt and Pepper Noise”. If 70% of their training images

had this “noise”, CNN models produced the best results.
2.5. iECG examination workflow

After training, the algorithm had to be tested. The workflow of

the measurement up to the final diagnosis is shown in Figure 3.
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First, the watch is attached to the wrist, and the patient is asked

to record an iECG, automatically transferred to the paired iPhone.

The iECG is then sent to the evaluation computer. The first five

seconds are removed in iECGs with strong artifacts at the

beginning. There was a higher chance of artifacts in younger

patients especially in neonates. This difficulty was surmounted by

the cutting of the ECG. In the first few seconds motion artifacts

were much more prevalent but the potential removal of the first

five seconds lead to good results. We decided to remove these

few seconds based on the quality of the ECG because they were

not related to the heart rhythm but mainly to the patients age.

Step 2 illustrates the analysis: A segmenter captures all R-peaks

and cuts the iECG into pieces, each containing a single cardiac

cycle. Each of these frames is subsequently evaluated by the

trained AI and classified into a beat morphology category. The

result is then assigned to a specific decision tree, e.g., “normal

beat with PVC”. Step 3 demonstrates the RR interval analysis

based on a decision tree following an “if, then” structure.

Influences include the existing beat morphologies, the RR

intervals, and the patient’s age. After going through these

different criteria within the decision tree, a diagnosis is available.

After the testing data were obtained, the chief investigator

made the final evaluation. The results of those tests are shown in

Table 1 along with the results from Apple.
2.6. Patient collective

This prospective, single-arm study included pediatric patients

of the outpatient clinic of the Leipzig Heart Center, Department

for pediatric cardiology. Children with no (e.g., Syncope), simple

(e.g., ventricular septal defect), and complex congenital heart

disease (e.g., Ebstein’s anomaly) were incorporated. After the

informed consent of the parents was given, a single-lead- iECG

was obtained using the Apple Watch Series 6. Simultaneously a

12-lead-ECG was recorded as a gold standard to compare the

accuracy of the analysis afterward. The exclusion criterion was

the refusal to give informed consent.

The reproducibility is given but the research seams to be

limited to special facilities. Otherwise, the needed number of
TABLE 1 Results of the final evaluation.

Apple Watch Predicted positive Predicted negative
Pathology 7 11

Normal sinus rhythm 7 23

Sensitivity: 38.9% Specificity: 76.7%

w_ws_c70 Predicted positive Predicted negative
Pathology 9 9

Normal sinus rhythm 0 30

Sensitivity: 50.0% Specificity: 100%

Xception_v8 Predicted positive Predicted negative
Pathology 12 6

Normal sinus rhythm 1 29

Sensitivity: 66.7% Specificity: 96.7%
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pediatric patients with cardiac arrhythmias will not be able to be

found due to the low prevalence of those arrythmias.
2.7. Recordings

The Apple Watch was placed on the left wrist, and a finger of

the right hand pressed the “digital crown”. If this wasn’t possible,

the recording positions were changed. Due to motion artifacts,

one recording had to be excluded.

The iECGs have a length of 30 s each and were recorded at a

rate of 512 hertz, with the individual readings measured in

micro-volts (µV).

The 12-lead ECGs were recorded using a Nihon Kohden

Cardiofax M ECG-2,350. The writing speed was set to 50 mm/s.
2.8. Measurements

The single-lead-iECG was recorded by nurses and an assistant

that were instructed beforehand. Nurses measured the 12-lead-

ECG, and the analysis and heart rhythm classification was done

by two pediatric cardiologists blinded to the patient’s data apart

from the patient’s age. The recordings were performed

consecutive within a few minutes. Due to motion artefacts the

recordings could not be performed at the same time. Afterwards

all ECGs were reviewed by an experienced pediatric cardiologist

and no significant change in heart rhythm could be detected.
2.9. Statistics

Statistical analysis was performed using Microsoft Excel

(Version 2,108) and SPSS (Version 28.0.1.0). The sensitivity and

specificity of the different self-developed AI analyzation models

and the Apple Watch were compared. In addition, the

significance level was calculated using McNemar’s test on paired

nominal data.
3. Results

Overall, 48 patients were enrolled in this study. The data was

collected in two months with the goal of testing the newly

developed software. Table 2 shows the patients’ characteristics.
TABLE 2 Patients’ characteristics.

Patients’ characteristics (n = 48) Median Range
Age (years) 9.88 0–17.92

Gender (1 = female; 2 = male) male = 25/female = 23

Weight (kg) 32.25 3.72–91.70

Height (cm) 131.75 52–181

Congenital heart disease (0 = none;
1 = simple; 2 = complex)

0 = 6/1 = 22/2 = 20
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FIGURE 4

Frequency of beat morphologies and rhythm recorded.
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Figure 4 shows the frequency of beat morphologies and

rhythm prevalent in the 48 iECGs.

The heart rhythm classification of the 12-lead-ECG by a

pediatric cardiologist was set as the gold standard. ECGs were

regarded as healthy, if a sinus rhythm with narrow QRS

complexes was prevalent. All other ECGs were classified as

pathological, including the appearance of bradycardia or right

bundle branch blocks. All tests that correctly identified the

pathology were counted as predicted positive. All tests that

diagnosed a sinus rhythm or a false pathology were counted as

predicted negative. Both, the self-developed software and the

original software of Apple occasionally showed the diagnosis

inconclusive. This diagnosis was treated as false by the chief

investigator. Table 1 shows the results of the final evaluation.

The different CNNs, w_ws_c70, Xception_v8 and others, were

used to identify the prevalent beat morphology. The results varied

in some iECGs due to the different structure and training which

lead to a different conclusion although the same decision tree

was used afterwards. Those results of the different CNNs are

shown in the study and illustrate the capability of the various

CNNs.

We could demonstrate a significant difference (p = 0.004)

between the results of the original Apple-designed algorithm that

reached a sensitivity of 38.9% and a specificity of 76.7%, and the

best algorithm developed by this team that achieved a sensitivity

of 66.7% and a specificity of 96.7%. The research if there was

any difference in sensitivity or specificity based on age of the

patient was not conducted. The number of patients in some age

categories were so small that a calculation of sensitivity and

specificity could not deliver significant results.
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4. Discussion

This study demonstrates a first and successful development

of an AI-based algorithm for the high-quality automatic

classification of pediatric Apple Watch iECGs with regard to

the presence of a normal sinus rhythm in differentiation from

pathologic heart rhythms. The currently presented data show

the potential of developing a fully versatile algorithm

specifically designed for pediatric iECGs with the availability of

bigger data sets.

Along with the progressive emergence of smart devices like the

Apple Watch, people can monitor their health semi-professionally

(13–16). While smartwatches have collected data for at least a

decade, an interpretation is only possible with the help of newer

AI-based algorithms. However, these AI-based automatically

interpreted data are mainly restricted to adults. Two main

reasons are: the lower availability of pediatric data and the

possibility of opening a Google or Apple account only with a

certain minimum age.

In this study, the authors opted for a relatively new workflow in

the sense of a scrum team. This enabled the study team to present

solutions after only four months of development (17). The

advantages of designing a program with Scrum are: economic

time management, high effectiveness, and flexibility (the product

owner can test the newly developed software after each

development cycle, and changes can be requested throughout the

designing process). Due to the requirements of a huge number of

complete data sets, only a part of the heart rhythm classification

tool could be initialized using a novel AI algorithm, while a

second part of the application still works as a rule-based model.
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The newly developed algorithm with the model Xception_v8

showed a specificity of 96%, while the sensitivity of this program

was relatively low at 66.7%. The AI does not recognize certain

pathologies, yet, mainly due to two facts: The amount of datasets

with pathologies was relatively low, and some pathologies might

not be detected due to the mode of a single-lead-iECG. The first

problem can be fixed with further training and more data from a

more extensive database (18). The second difficulty could be

matched with more leads, maybe even new ones. But the AI

securely diagnoses a normal sinus rhythm in differentiation from

a pathologic heart rhythm and may represent valuable

information to, for example, parents of a child with suspected

arrhythmia.

Finally, further research with the goal of improving the

algorithm and enforce the development of a completely AI-based

heart rhythm classification in children is currently planned and

under development. Further studies and enhanced data collection

will be needed to present a fully functioning and reliable

algorithm, for example, in the form of an app.
5. Conclusion

The current study presents a first AI-based algorithm for the

automatic heart rhythm classification of pediatric iECGs. It

furthermore represents a basis for further development of the

AI-based iECG analysis in children as soon as more training data

are available. Further improvement may help to transfer this tool

from a lifestyle health product into a reliable medical tool.
6. Limitations

This study is limited by the limited training data on pediatric

iECGs and therewith limiting the study to a proof of concept.

The results must be validated by further research in a bigger

population, with a bigger number of pathologies and a healthy

control group.
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