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Respiratory distress syndrome
prediction at birth by optical skin
maturity assessment and machine
learning models for
limited-resource settings: a
development and validation study
Zilma Silveira Nogueira Reis1*, Gisele Lobo Pappa2,
Paulo de Jesus H. Nader3, Marynea Silva do Vale4, Gabriela Silveira
Neves5, Gabriela Luiza Nogueira Vitral6, Nilza Mussagy7,
Ivana Mara Norberto Dias7 and Roberta Maia de Castro Romanelli1

1Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2Departamento de
Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 3Pediatrics and
Neonatology Department, University Hospital, ULBRA, Canoas, Brazil, 4Neonatal Intensive Care Unit,
University Hospital, UFMA, São Luis, Brazil, 5Hospital Sofia Feldman, Belo Horizonte, Brazil, 6Faculdade de
Medicina da Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil, 7Hospital Central de Maputo,
Maputo, Mozambique

Background: A handheld optical device was developed to evaluate a newborn’s
skin maturity by assessing the photobiological properties of the tissue and
processing it with other variables to predict early neonatal prognosis related to
prematurity. This study assessed the device’s ability to predict respiratory distress
syndrome (RDS).
Methods: To assess the device’s utility we enrolled newborns at childbirth in six
urban perinatal centers from two multicenter single-blinded clinical trials. All
newborns had inpatient follow-up until 72 h of life. We trained supervised
machine learning models with data from 780 newborns in a Brazilian trial and
provided external validation with data from 305 low-birth-weight newborns
from another trial that assessed Brazilian and Mozambican newborns. The index
test measured skin optical reflection with an optical sensor and adjusted
acquired values with clinical variables such as birth weight and prenatal corticoid
exposition for lung maturity, maternal diabetes, and hypertensive disturbances.
The performance of the models was evaluated using intrasample k-parts cross-
validation and external validation in an independent sample.
Results: Models adjusting three predictors (skin reflection, birth weight, and
antenatal corticoid exposure) or five predictors had a similar performance,
including or not maternal diabetes and hypertensive diseases. The best global
accuracy was 89.7 (95% CI: 87.4 to 91.8, with a high sensitivity of 85.6% (80.2 to
90.0) and specificity of 91.3% (95% CI: 88.7 to 93.5). The test correctly
discriminated RDS newborns in external validation, with 82.3% (95% CI: 77.5 to
86.4) accuracy. Our findings demonstrate a new way to assess a newborn’s lung
maturity, providing potential opportunities for earlier and more effective care.
Abbreviations

LMICs, low- and middle-income countries; ACU, accuracy; ACTFM, antenatal corticosteroid therapy for fetal
maturation; CI, confidence interval; CPAP, continuous positive airway pressure; DB, diabetes; HD,
hypertensive disease; IQR, interquartile range; LBW, low birth weight; LR+, likelihood ratio positive; LR,
likelihood ratio negative; NICU, neonatal intensive care unit; NPV, negative predictive value; RDS,
respiratory distress syndrome; SEN, sensibility; SPE, specificity; TTN, transient tachypnea of the newborn;
PPV, positive-pressure ventilation; PPV, positive predictive value.
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Trial registration: RBR-3f5bm5 (online access: http://www.ensaiosclinicos.gov.br/
rg/RBR-3f5bm5/), and RBR-33mjf (online access: https://ensaiosclinicos.gov.br/
rg/RBR-33rnjf/).
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Introduction

Infant mortality is a critical human development indicator since

it reflects the quality of assistance, and social, economic, and

environmental factors (1). Most child deaths occur due to

prematurity meeting lung immaturity as the main bare reason (2).

Approximately 11% of newborns worldwide are preterm, born

earlier than 37 weeks of gestational age, and of whom 6% are late

preterm, born between 34 and 37 weeks of gestational age (3) and

require specialized care (4). Respiratory distress syndrome (RDS)

is a common reason for neonatal intensive care unit (NICU)

admission and neonatal mortality. Since lung immaturity due to

surfactant deficiency is the cause of the disease, respiratory failure

occurs soon after birth. However, most respiratory insufficiency at

birth is not accurately evaluated, leading to poor outcomes because

of delays in appropriate treatment (4, 5). Indeed, on many

occasions, the respiratory picture at birth can be confused with an

adaptive syndrome such as transient tachypnea of the newborn

(TTN), as well as non-respiratory reasons, which may be cardiac,

neurological, metabolic, or hematological, among others (6).

Clinical history, lung image assessment, and blood lab tests are

clues to discriminate between RDS and other respiratory distress,

pointing newborns at higher risks of severe complications (7).

Beyond clinical manifestation, assessing lung maturity is supported

by biochemical and biophysical tests on amniotic fluid, genetic

approaches, and microbubble evaluation in gastric aspirates (8).

Unfortunately, the lack of healthcare technologies increases

exponentially in low- and middle-income countries (LMICs) in

scenarios with limited neonatal assistance, where the burden of

preterm birth is higher than in other countries (4).

To achieve lower infant morbidity and mortality rates focused

on the day of birth, early identification of lung maturity risk

enhances chances of survival even based on referral safe

transportation among facilities. Nevertheless, very often, especially

late preterm infants are inappropriately classified as full-term

newborns, delaying care for the former (9). This way,

improvements centered on equity of technology access and quality

of antenatal and childbirth care can reduce neonatal health

disparities among birth scenarios with or without full support for

preterm children identification and treatment (1, 10). The search

for an affordable approach to quickly identify premature infants

according to the degree of lung maturity remains a relevant target

for health systems. Early intervention to manage respiratory

distress in a newborn could mean the difference between survival

and, possibly, a reduction in mortality (11).

Lungs develop linearly before childbirth; however, the

maturational competence for extrauterine breathing occurs later
02
in pregnancy or under stressful influences such as maternal

disease, placental dysfunction, and drug exposition (12). Under

the scientific basis, evidence is extensive concerning the influence

of corticosteroid exposition during the prenatal period to prepare

fetuses for after-birth life (13). At the same time, the skin is a

tissue with late maturation, postponing the protective external

barrier to near-term and term gestation (14, 15). Meanwhile,

there is a direct relationship between epidermal layer competence

and neonatal survival, facing risks of hypothermia, water loss,

and infections (16, 17). Likewise, in this organ, antenatal

corticotherapy induces cytodifferentiation and keratinization,

enhancing the chances of survival (13). Beyond visual inspection

of skin appearance, which characterizes preterm newborns (18),

an objective measure of skin reflectance with a photometer was

correlated with gestational age (19). Based on a multicenter

clinical trial, a new medical device was able to assess the

gestational age by adjusting a machine learning model for optical

skin maturity to antenatal corticosteroid therapy for fetal

maturation (ACTFM) and birth weight, discriminating preterm

from term newborns, with 37 weeks of gestational age or more,

with an area under ROC curve of 0.970, [95% CI: 0.959–0.981]

(20). The present study explored new machine learning

algorithms on the same optical device, to evaluate its ability to

predict RDS in the first 72 h of life, even in places with scarce

resources.
Methods

Cohorts

We analyzed two birth scenarios, one to provide predictive

models and the other to apply them to a more realistic picture of

the usage of the model. Accordingly, both studies were

multicenter prospective, concurrent cohorts comprised of six

urban referral perinatal centers. Five Brazilian urban referral

centers for high-complexity perinatal care took part in the study:

Clinical Hospital—Universidade Federal de Minas Gerais (as

coordinator), Minas Gerais State; Sofia Feldman Hospital—Minas

Gerais State; Hospital da Universidade Luterana do Brasil—Rio

Grande do Sul State; Hospital Materno-infantil de Brasília—

Federal District; and Hospital Universitário da Universidade

Federal do Maranhão—Maranhão State. One referral center in

Mozambique, the Maputo Central Hospital, the largest in the

country, is headquartered in its capital.

Both cohorts shared inclusion criteria for live newborns

enrolled within the first day of life, with the available reference
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standard gestational age, and childbirth after 24 weeks of gestation.

Combining the last menstrual period with obstetric ultrasound

assessment, we assessed gestational age at birth following

international consensus for the due date (21). Anhydramnios,

edema, congenital skin diseases, or chorioamnionitis were the

exclusion criteria because they could modify skin structure,

affecting the optical properties of the tissues. Teams of trained

and certified health professionals and health professionals’

research assistants enrolled and evaluated skin optical reflectance

and clinical data at birth. All newborns had inpatient follow-up

within the first 72 h of life to monitor immediate neonatal

outcomes, with an early ending when discharge or death

occurred, according to clinical trial protocols deposited in

protocolos.IO (22). However, differences between the clinical

characteristics of the newborns express different realities provided

by birth weight eligibility criteria below 2.5 kg in the validation

cohort (Figure 1).

For transparency, the clinical trials register and details of

enrollment remain public. From clinical trial 1, registered under

the number RBR-3f5bm5 (23), we evaluated Brazilian newborns

with a gestational age of 24 weeks, and with any birth weight.

The enrollment occurred from 2 January 2019 to 30 May 2021.

Data from this study grounded the modeling process of

machine learning prediction, thus being the baseline cohort.

From clinical trial 2, registered under the number RBR-33rnjf

(24), we assessed only newborns with birth weights under

2.5 kg in Brazil and Mozambique. The enrollment occurred

from 15 February 2019 to 11 December 2021, and the dataset

was used as the validation cohort. Most of the newborns were

Mozambican (n = 177, 58.0%).
FIGURE 1

Database, birth scenarios, and index test (outcomes). LBW, low birth weight;
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Primary outcome

The primary outcome was to predict the RDS. The reference

standard for RDS diagnosis has a basis in clinical, laboratory,

and radiological findings and respiratory outcomes (7).

However, concerning the reference standard in the scenario of

LBW Mozambican newborns, when a radiological exam was

absent, the diagnosis was based on clinical evaluations such as

tachypnea, nasal flaring, retractions, and grunting with the

possibility of progress to respiratory failure (24). In such a

scenario where propaedeutics and other resources are

unavailable, maternal and delivery context and clinical

progress of respiratory failure were considered, based on

clinical priority in 72 h of follow-up. Transient tachypnea of

the newborn (TTN) was a differential diagnosis of respiratory

complications at birth. Despite RDS being the target outcome,

we introduced an exploratory modeling step by discriminating

between RDS, TTN, or none. The diagnosis had a basis in

clinical findings and respiratory outcomes (7). Again, TTN

was diagnosed for exclusion in the Mozambican center,

typically with clinical evidence of tachypnea shortly after

birth, grunting, nasal flaring, retractions, and occasionally

cyanosis (24). The procedures for clinical evaluation,

complementary exams of the newborn, and RDS diagnosis are

available in the Supplementary Material. Subgroups of

analysis, according to LBW and very-LBW newborns, with a

birth weight of less than 2.5 Kg and 1.5 Kg, respectively,

provided a potential picture of the application according to

ranges of birth weight.
RDS, respiratory distress syndrome.
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The index test

The assessment of newborns’ skin maturity with the optical

device was possible with the development of the equipment. We

already noticed a high agreement between gestational age

calculated by this device with the best available gestational age as

a reference, as well the accuracy for discrimination of preterm

against term infants (24). The error of the optical component

had a prior evaluation, resulting in an intraobserver error of

1.97% (95% CI: 1.84–2.11) and an interobserver error of 2.6%

(95% CI: 2.1–3.1) (24). The present analysis focused on RDS

prediction as an additional value beyond the gestational age.

Here, the index test was intended to analyze newborn lung

maturity, clinically represented by RDS, as an unprecedented

association with the optical skin maturity measurement in a

machine learning algorithm.

In this study, data temporality of predictors was the first day of

life, a moment when the user did not receive the result of RDS

prediction to provide test blinding. Alongside skin reflectance,

automatically acquired with the device when it touches the sole

of the newborn, clinical variables were added by the user, and

machine learning algorithms delivered the RDS prediction and

were stored in the processor (Figure 2). In the future, the RDS

prediction will be available on the device’s screen.

The testing steps were standardized and supported by the

prior proof of concept publications. The sole was the site of the

newborn’s body with a higher correlation between the skin

reflection and pregnancy dating than other body sites, with the

advantage of fulfilling the patient security recommendation for
FIGURE 2

Steps of the testing process. (1) The device touches the skin over the
sole of a newborn. (2) The sensor acquires skin maturity by assessing
the photobiological properties of the tissue when measuring the
reflection portions of the light beam incident on the skin. (3) The user
inputs clinical data. (4) The data processor uses machine learning
algorithms to predict respiratory distress syndrome.
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minimum manipulation of newborns (19). The influence of skin

color and environmental conditions such as humidity,

temperature, and ambient light were reasons for enhanced

sensor design, achieving a prediction model without its

adjustments (19, 25). This approach to newborns attended to

requirements of patient security, including disinfection of the

device with alcohol 70, and minimum manipulation of the child

anywhere they were: inside incubators, warm crib, or in the

mother’s lap.
Standard and data collection

According to recommendations for good clinical practices

involving human research with medical devices, and according to

the International Organization for Standardization (ISO

14155:2011), trained research assistants collected data on 65

demographic and clinical features and 25 skin variables. The

framework of variables is available in a previous report (20).

Clinical information was collected through structured

questionnaires using software developed for the clinical trials,

and, simultaneously, in paper formularies containing the exact

requests. The data curation process double-checked the data from

paper and electronic collection conducted by senior researchers,

before opening the outcome blinding. Data consistency and

completeness resulted in only one exclusion.
Data availability

Data is available upon reasonable request and after

anonymization to ensure ethical and legal data sharing, thus

preserving the confidentiality of the persons who participated in

this study.
Ethics and dissemination

The studies involving humans had independent ethical board

approval at each hospital. The Brazilian National Research

Council approved the clinical trials under numbers

81347817.6.1001.5149 and 91134218.4.0000.5149. In

Mozambique, ethical approval was under the number

IRB00002657, according to the National Bioethics Council.

Parents signed an informed consent form on behalf of the

newborns as recommended by the Regulatory Bodies for Good

Clinical Research Practice, and copies were retained in case they

should be needed. Patients were not involved in the design of

clinical trials. However, participants’ parents received oral

explanations and a press-illustrated folder with the proposal of

the studies. Besides scientific articles, the results are continuously

disseminated by non-scientific publications in media and on the

project website: http://skinage.medicina.ufmg.br.
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Methods for estimating or comparing
measures of diagnostic accuracy

Model development
We trained the models to binary prediction of RDS occurrence

until 72 h of life with the five variables, and, additionally, for RDS,

TTN, or none. The variables were: skin reflection, birth weight,

ACTMF, diabetes, and hypertensive disturbances. The choice of

independent variables took into account the easy access to data

in the delivery scenario, the biological plausibility, and the

importance-feature graphic analysis. Furthermore, we compared

models based on three or five independent variables, including or

not including maternal diseases. A wide range of models was

tested, and the best results were obtained by the XGBoost

Regressor model (26).
Model validation
The model was created using data from Clinical Trial 1. Two

experiments were performed. In the first one, a ten-fold cross-

validation procedure was used to assess the robustness of the

model. This procedure was repeated 30 times, generating a total

of 300 models that had their metrics of accuracy averaged and

reported together with confidence intervals. The second

experiment used data from Clinical Trial 1 to generate the model

and from Clinical Trial 2 to validate the model.
Statistical analysis
For descriptive analysis of variables, we used average (SD)

and median (IQR) to describe continuous variables for

symmetric and asymmetric distributions, respectively. We used

frequencies (%) for categorical variables. The Mean-T and Mann-

Whitney U tests were used to compare the mean or median

between two groups of interest as RDS yes or no, according to

the variables’ parametric or non-parametric frequency

distribution. For comparisons between frequencies, the Chi-

square Test evaluated the independence hypothesis between

categorical variables as preterm vs. RDS yes or no, and the

Likelihood ratio chi-square statistic was the alternative when

more than 20% of expected values were above five. ANOVA or

Kruskall Wallis tests compared three groups analysis as RDS,

TTN, and none according to the variables’ parametric or non-

parametric frequency distribution.

The set of machine learning models provided outcomes

for binary RDS (yes or no) and three classes (RDS, TTN,

none). The choice of the best models occurred by means of

reliability analysis. The accuracy of the prediction of best

models was evaluated using sensitivity, specificity, positive

predictive value, negative predictive value, positive

likelihood ratio, and negative likelihood ratio. P-values of

<0.05 were considered suggestive of statistical significance.

SPSS software (version 19.0; IBM Corp) was used for statistical

data analysis.
Frontiers in Pediatrics 05
Results

Description of newborns

Newborns from two clinical trials summed up 1,085 tests with

the medical device. From the baseline scenario dataset where we set

the RDS predictive models, we analyzed data from 702 Brazilian

pregnant women who gave birth to 781 newborns with

gestational ages older than 24 weeks (scenario 1). One exclusion

occurred due to uncertainty in either an TTN or RDS diagnosis.

Among 780 included newborns, 325 (41.7%) were low-birth-

weight (LBW), and 27.6% (n = 215) had RDS. In the validation

scenario, we analyzed data from 263 pregnant women who gave

birth to 308 newborns with birth weights under 2.5 kg (scenario

2). Three exclusions occurred due to incorrect enrollment.

Among the 305 included newborns, 37.7% (n = 112) had RDS.

An overview of participants, according to development and

model validation steps with respective birth scenarios and test

outcomes, for the best models of prediction, is shown in Figure 3.

The participants’ baseline demographic and clinical

characteristics are shown in Table 1, considering subgroups of

newborns with and without RDS in the birth scenarios of the

study. Regarding prenatal data, newborns with RDS had a higher

frequency of mothers with diabetes (p < 0.001) and hypertensive

disease (p < 0.001) in birth scenario 1, but not in scenario 2 (p =

0.086 and p = 0.453, respectively). An important baseline

characteristic to highlight is the no-RDS subgroup profile with

high maternal disease frequency, ventilatory support, and NICU

admission. For instance, the no-RDS subgroup of LBW newborns

in the validation scenario comprised 102 (53.1%) newborns with

mothers affected by hypertensive diseases and 115 (59.6%)

newborns admitted to NICU. In both scenarios, children with

RDS had higher ACTMF exposition (p < 0.001), lower gestational

age (p < 0.001), lower birth weight (p < 0.001), and lower first-

minute Apgar score (p < 0.001) than those without RDS.

Comparing birth scenarios, the newborns had similar

characteristics concerning rupture of membranes more than 18 h

(p = 0.421), positive-pressure ventilation (p = 0.844), intubation at

birth (p = 0.131) surfactant resuscitation steps, (p = 0.697), and

mechanical ventilation (0.864) until 72 h of life. However, the

LBW newborns in the birth scenario 2 had higher morbidity and

mortality rates (p < 0.001) than newborns in the birth scenario 1.

Despite the primary outcome being RDS prediction, we still

provided a more detailed analysis in the Supplementary

Material, comparing three subgroups: RDS newborns, TTN

newborns, and newborns without RDS or TTN.
Primary outcome

The machine learning modeling incorporated combinations of

maternal and newborn characteristics associated with RDS to

develop predictive algorithms that are useful at birth. Analyzing

the importance feature given by XGBoost (Figure 4), and metrics
frontiersin.org
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FIGURE 3

Flowchart of participants using STARD diagram, according to development and model validation birth scenarios.
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of accuracy, precision, and recall (Supplementary Material), we

consider the gain insufficient when maternal disease variables

were inserted into the model. Models including hypertensive

disease and diabetes data for the binary outcome for RDS had

similar accuracy and F1 scores to models with the three baseline

variables: skin reflection, birth weight, and ACTMF. The ACTMF

was the variable with the highest importance in predicting RDS,

followed by birth weight and skin reflection acquired by the

optical component of the medical device in model 1 and model

2 (Figure 4).

In relation to discriminating among RDS, TTN, and neither of

them using three classes of outcome modeling (models 3 and 4,

Supplementary Material), the performance was worse than

binary RDS yes/no prediction (models 1 and 2, Supplementary

Material). When applying the models in the scenario of LBW

newborns for external validation, metrics of prediction

performance confirmed the advantages of the three-variable

model with a binary RDS yes or no outcome, with an accuracy

of 89.4% (95% CI: 88.6 to 90.3) and 82.3% in the cross-

validation and external validation, respectively (model 1,

Supplementary Material). As detailed in Supplementary

Material, we chose the most parsimonious models for complete

accuracy analysis.

There were no adverse events when performing the index test.

The prediction accuracy of the test using the medical device at birth

for RDS occurrence until 72 h of life is detailed in Table 2. Using
Frontiers in Pediatrics 06
cross-validation in the birth scenario used for modeling, algorithms

with three or five independent variables delivered similar

predictions regarding RDS discrimination, 89.7% (95% CI: 87.4

to 91.8) and 89.4% (95% CI: 87.0 to 91.4), respectively. Such

accuracy occurred with high sensitivity and specificity, and the

likelihood ratio for RDS was increased by approximately 10 times

when the index test was positive. According to LBW and very-

LBW newborns subgroup analysis, RDS prediction occurred with

a high accuracy of 91.9% (95% CI: 86.0 to 95.9) despite a low

specificity of 9.1% (95% CI: 0.23 to 41.3) when using model

1. Model 2, obtained with five variables, had no utility for RDS

prediction in very-LBW newborns.

Using the models for external validation in LBW newborns,

algorithms with or without maternal diseases included had

similar performance in predicting RDS as RDS occurrence

was correctly predicted in 82% of newborns (95% CI: 77.5 to

86.4). The likelihood ratio for RDS increased approximately

five times when the index test was positive (Table 2).

Regarding the subgroup analysis of very-LBW newborns, global

accuracy was similar to the overall group: 84.9% (95% CI: 74.6

to 92.2) for the model with or without maternal diseases as

predictors.

Analyzing the confusion matrix for RDS prediction according

to gestational age at birth (Figure 5), we found false positives

and false negatives more frequently around 33 and 34 weeks of

gestation in both birth scenarios. However, it is relevant to notice
frontiersin.org
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TABLE 1 Baseline demographic and clinical characteristics of the pregnancy and newborns of the baseline and validation cohorts.

Birth scenario 1 (modeling) Brazil
(n = 780, 100%)

Birth scenario 2, LBWb (validation) Brazil
(n = 128, 42.0%); Mozambique

(n = 177, 58.0%)

Comparison
between
scenarios

Characteristics Total
(n = 780)

RDS
(n = 215)

No-RDS
(n = 565)

p-
value

Total
(n = 305)

RDS
(n = 112)

No-RDS
(n = 193)

p-
value

p-value

Prenatal conditions
ACTFM, n/N (%) 273 (35.1) 184 (86.0) 89 (15.8) <0.001# 141 (46,4) 86 (77.5) 55 (28.5) <0.001# <0.001#

Mother with diabetes, n/N (%) 125 (16.0) 54 (25.1) 71 (12.6) <0.001# 20 (6.6) 11 (9.8) 9 (4.7) 0.086# <0.001#

Mother with hypertensive disease,
n/N (%)

169 (21.7) 80 (37.2) 89 (15.8) <0.001# 156 (51.5) 54 (48.6) 102 (53.1) 0.453# <0.001#

Rupture of membranes more than
18 h, n/N (%)

91 (11.7) 39 (18.1) 52 (9.3) 0.001# 41 (13.5) 22 (19.8) 19 (9.9) 0.015# 0.421#

Childbirth
Reference gestational age at birth
(weeks), median (IQR)

37.3 (6.3) 31.1 (4.4) 39.0 (3.4) <0.001** 34.3 (3.5) 31.7 (3.5) 35.9 (3.3) <0.001* <0.001*

Preterma, n/N (%) 366 (46.9) 214 (99.5) 152 (26.9) <0.001# 234 (76.7) 109 (97.3) 125 (64.8) <0.001# <0.001#

Birth weight (g), median (IQR) 2,740
(1496)

1,360 (870) 3,085 (823) <0.001** 1,930 (687) 1,385 (771) 2,075 (430) <0.001* <0.001*

Low-birth-weightb, n/N (%) 325 (41.7) 211 (98.1) 114 (20.2) <0.001# 305 (100) 112 (100) 193 (100) – –

Very-low-birth-weightc, n/N (%) 136 (17.4) 125 (58.1) 11 (1.9) <0.001# 73 (23.9) 65 (58.0) 8 (4.1) <0.001# 0.015#

Sex, male, n/N (%) 389 (50.1) 113 (52.6) 276 (48.8) 0.355# 131 (43.0) 54 (51.8) 116 (60.1) 0,157# 0.033#

Anthropometric referenced <0.001# 0.001# <0.001#

• Small for gestational age, n/N (%) 114 (14.6) 55 (25.6) 59 (10.4) 139 (45.6) 73 (65.2) 82 (42.5)

• Appropriate for gestational age,
n/N (%)

607 (77.8) 154 (71.6) 453 (80.2) 155 (50.8) 35 (31.3) 104 (53.9)

• Large for gestational age, n/N (%) 59 (7.6) 6 (2.8) 53 (9.4) 11 (3.6) 4 (3.6) 7 (3.6)

1-min Apgar score, median (IQR) 8 (1) 7 (3)* 9 (1) <0.001** 7 (2) 7 (2) 7 (1) 0.037** <0.001*

5-min Apgar score, median (IQR) 9 (1) 9 (1) 9 (1) <0.983** 9 (1) 9 (2) 9 (1) 0.653** <0.001*

Resuscitation steps: initial, n/N (%) 384 (49.4) 202 (94.0) 182 (32.4) <0.001# 152 (50.8) 87 (77.7) 65 (34.8) <0.001# <0.001#

Resuscitation steps: PPV, n/N (%) 155 (19.9) 105 (48.8) 50 (8.8) <0.001# 59 (19.5) 44 (39.6) 15 (7.9) <0.001# 0.844#

Resuscitation steps: Intubation at
birth, n/N (%)

49 (6.3) 42 (19.5) 7 (1.2) <0.001# 12 (4.0) 11 (9.8) 1 (0.5) <0.001# 0.131#

Resuscitation steps: drugs, n/N (%) 2 (0.3) 1 0 – 3 (1.0) 3 (2.7) 0 – –

72 h of life follow-up
NICU admission, n/N (%) 239 (30.6) 210 (97.7) 70 (12.4) <0.001# 225 (73.8) 110 (98.2) 115 (59.6) <0.001# <0.001#

Surfactant, n/N (%) 112 (14.4) 112 (52.1) 0 <0.001# 41 (13.4) 41 (36.6) 0 <0.001# 0.697#

Ventilatory support: CPAP, n/N (%) 250 (32.1) 181 (84.2) 69 (12.2) <0.001# 128 (42.0) 97 (86.6) 31 (16.1) <0.001# 0.002#

Ventilatory support: other
noninvasive ventilation, n/N (%)e

56 (7.2) 55 (25.6) 1 (0.2) <0.001# 37 (12.1) 32 (28.6) 5 (2.6) <0.001# 0.009#

Ventilatory support: mechanical
ventilation, n/N (%)

95 (12.2) 87 (40.5) 8 (1.4) <0.001# 36 (11.8) 33 (29.7) 3 (1.6) <0.001# 0.864#

Newborn mortality, n/N (%) 15 (1.0) 15 (7.0) 0 <0.001## 20 (6.6) 18 (16.1) 2 (1.0) <0.001## <0.001##

ACMF, antenatal corticosteroid therapy for fetal maturation; CPAP, continuous positive airway pressure; IQR, interquartile range; LBW, low birth weight; NICU, neonatal

intensive care unit; NTT, transient tachypnea of the newborn; PPV, positive-pressure ventilation; RDS, respiratory distress syndrome.
aLess than 37 weeks.
bbirth weight <2.5 kg.
cbirth weight <1.5 kg.
dAccording to Intergrowth 21st.
eHood, nasal cannula, face mask and Biphasic Positive Airway Pressure.

*Mann Whitney U Test.
#Chi-square.
##Likelihood ratio chi-square statistic.
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that, in external validation, the three-variable model (model 1)

discriminated most of the LBW newborns with (true positive)

and without (true negative) RDS in the range of 29 to 37 weeks

of gestation.

In order to inspect similarities and differences between

newborns with or without correct RDS prediction, we compared
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the clinical characteristics in the validation scenario

(Supplementary Material). Gestational age, birth weight,

maternal diseases, and TTN occurrence were statistically similar

between subgroups. Only NICU admission within the first 72 h

occurred more frequently in newborns with an incorrect

prediction (90.7% vs. 70.9%, p = 0.002).
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FIGURE 4

Attribute importance given by XGBoost when considering information gain that a variable brings when inserted into the model. (A) Model 1: trained with
skin reflection + birth weight + Antenatal corticosteroid therapy for lung maturation, for the binary outcome RDS vs. non-RDS. (B) Model 2: trained with
Skin reflection + birth weight + Antenatal corticosteroid therapy for lung maturation + diabetes + hypertensive diseases for the binary outcome RDS vs.
non-RDS.
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Discussion

Main findings

Improving healthcare equity is a primary goal of the United

Nations — this aim makes the reduction of infant mortality a

priority (27). Digital health, including affordable and valuable

medical devices and artificial intelligence, has brought hope to

improve health for everyone (28, 29). The main outcome of the

present study was providing a promissory predictive model using

a medical device with an AI algorithm inside. Of every 100

newborns assessed, 90 were correctly classified as a higher risk or
Frontiers in Pediatrics 08
not for RDS until 72 h of life, considering the dataset that

provides predictive models. The prediction accuracy remained

high in the LBW newborns that composed the validation

scenario, 82 in every 100, where the RDS and other neonatal

morbidities and mortality were more frequent than in the model

development scenario.

The same sort of study has been presented, integrating

computational technology to identify predictors of neonatal

mortality, such as the lecithin and sphingomyelin ratio by

machine learning applied to mild-infrared spectra (30) or

acoustic features of the crying of newborns (31). Reviews have

highlighted the importance of birth weight, Apgar score, and
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TABLE 2 Accuracy for respiratory distress syndrome during the first 72 h of life, according to the predictive algorithms with binary outcomes.

Birth scenario 1—cross-validation (n = 780) Birth scenario 2, LBW—external validation (n = 305)

Model 1 (skin reflection,
BW, ACTMF)

Model 2 (skin reflection,
BW, ACTMF, DB, HD)

Model 1 (skin reflection,
BW, ACTMF)

Model 2 (skin reflection,
BW, ACTMF, DB, HD)

Occurrence in
overall group

RDS 215/780 (27.6%) RDS 215/780 (27.6%) RDS 112/305 (36.7%) RDS 112/305 (36.7%)

All sample Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI)
ACU (%) 89.7 (87.4 to 91.8) 89.4 (87.0 to 91.4) – –

SEN (%) 85.6 (80.2 to 90.0) 84.7 (79.1 to 89.2) – –

SPE (%) 91.3 (88.7 to 93.5) 91.2 (88.5 to 93.4) – –

VPP (%) 79.0 (74.1 to 83.2) 78.5 (73.5 to 82.7) – –

VPN (%) 94.3 (92.3 to 95.8) 94.0 (91.9 to 95.5) – –

LR+ 9.87 (7.51 to 12.97) 9.57 (7.30 to 12.54) – –

LR- 0.16 (0.11 to 0.22) 0.17 (0.12 to 0.23) – –

Occurrence in LBW RDS 211/325 (64.9%) RDS 211/325 (64.9%) RDS 112/305 (36.7%) RDS 112/305 (36.7%)

Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI)
ACU (%) 76.6 (71.6 to 81.1) 75.7 (70.7 to 80.3) 82.3 (77.5 to 86.4) 82.3 (77.5 to 86.4)

SEN (%) 87.2 (81.9 to 91.4) 86.3 (80.9 to 90.6) 82.1 (73.8 to 88.7) 79.5 (70.8 to 86.5)

SPE (%) 57.0 (47.4 to 66.3) 56.1 (46.5 to 65.4) 82.4 (76.3 to 87.5) 83.9 (78.0 to 88.8)

VPP (%) 79.0 (75.1 to 82.4) 78.5 (74.6 to 81.9) 73.0 (66.3 to 78.8) 74.2 (67.2 to 80.1)

VPN (%) 70.7 (62.1 to 78.0) 68.8 (60.3 to 76.3) 88.8 (84.2 to 92.2) 87.6 (83.0 to 91.1)

LR+ 2.03 (1.63 to 2.52) 1.97 (1.59 to 2.44) 4.66 (3.40 to 6.40) 4.95 (3.54 to 6.92)

LR- 0.22 (0.15 to 0.33) 0.24 (0.17 to 0.36) 0.22 (0.14 to 0.32) 0.24 (0.17 to 0.35)

Occurrence in VLBW RDS 125/136 (91.9%) RDS 125/136 (91.9%) RDS: 65/73 (89.0%) RDS: 65/73 (89.0%)

Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI)
ACU (%) 91.9 (86.0 to 95.9) 91.2 (85.1 to 95.4) 84.9 (74.6 to 92.2) 84.9 (74.6 to 92.2)

SEN (%) 99.2 (95.6 to 100) 99.2 (95.6 to 100) 93.9 (85.0 to 98.3) 93.9 (85.0 to 98.3)

SPE (%) 9.1 (0.23 to 41.3) 0 (0.0 to 28.5) 12.5 (0.32 to 52.7) 12.5 (0.32 to 52.7)

VPP (%) 92.5 (91.1 to 93.7) 91.9 (91.7 to 92.0) 89.7 (86.9 to 91.9) 89.7 (86.9 to 91.9)

VPN (%) 50 (6.3 to 93.7) 0 22.0 (3.1 to 66.3) 22.0 (3.1 to 66.3)

LR+ 1.09 (0.90 to 1.32) 0.99 (0.98 to 1.01) 1.07 (0.82 to 1.40) 1.07 (0.82 to 1.40)

LR− 0.09 (0.01 to 1.31) – 0.49 (0.06 to 3.88) 0.49 (0.06 to 3.88)

ACU, accuracy; ACTFM, antenatal corticosteroid therapy for fetal maturation; BW, birth weight; DB, diabetes; CI, confidence interval; HD, hypertensive disease; LBW, low-

birth-weight; LR+, likelihood ratio positive; likelihood ratio negative; LR-. SEN, sensibility; SPE, Specificity; NPV, negative predictive value; PPV, positive predictive value;

VLBW, very-low-birth-weight.
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antenatal steroids (28). Our approach has the advantage of using

only three predictive variables obtained from a prospective

temporality clinical trial approach to provide prediction before

the disease occurrence. Models with five predictive variables,

including maternal diseases (i.e., diabetes and hypertensive

diseases) did not show advantages over models based on skin

maturity optical assessment, birth weight, and steroids. This

finding will certainly facilitate the use of the device by caregivers

who deliver care at birth in LMICs.
Comparisons and subgroups of analysis

Considering the very-LBW subgroup of analysis, our results

with a three-variables predictive model achieved an accuracy of

84.9% (95% CI, 74.6 to 92.2). In comparison, using an extensive

historical 14-year inpatient dataset and many predictive variables,

Jaskari et al. classified bronchopulmonary dysplasia in a

retrospective dataset of very-LBW, with an accuracy of around

0.899 AUROC (32). Furthermore, analyzing a prospective dataset
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of newborns older than 24 weeks of gestation, our modeling

achieves an accuracy of 89.7% (95% CI, 87.4 to 91.8), while Betts

et al. reported RDS prediction with an accuracy of 0.923 (0.917,

0.928) among inpatients younger than 39 weeks of gestation (33),

using the same dataset as Jaskari et al. (32). So far, our study is

the first that has used a physical measurement of skin maturity,

previously described (16, 19, 20), using a prospective dataset

from clinical trials with nearly similar accuracy to other more

complex models.

Early detection of severe neonatal morbidities such as RDS is

critical to halt disease progression and prevent further

complications or death. Risk identification of the occurrence

might provide means for opportune diagnosis and due care with

surfactant access, enhancing chances of survival with minimal

sequelae, even with the referral of newborns (5). In LMICs, the

availability of a NICU in a center of excellence is often far from

the place of birth of this preterm infant (4). The limited number

of intensive care beds that can receive real RDS-risk newborns

justifies a reliable and helpful predictive test to support low-risk

newborns’ retention decisions, optimizing resources. By analyzing
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FIGURE 5

Confusion matrix for Respiratory Distress Syndrome prediction until 72 hours of life, according to gestational age at birth, using a three-variable-mode.
(A) Incorrect prediction in birth scenario 1 - Cross-validation (n= 780). (B) Incorrect prediction in birth scenario 2, LBW - External validation (n= 305).
(C) Correct prediction in birth scenario 1 - Cross-validation (n= 780). (D) Correct prediction in birth scenario 2, LBW - External validation (n= 305).
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the confusion matrix, the outcome of the present study showed

early and promising discrimination of RDS even in late preterm

newborns in the development and LBW validation scenarios.

Worldwide, hard decisions in scenarios with scarce resources

are taken daily based on birth weight, with particular attention to

late preterm births that account for most preterm births (34).

Birth weight is the most accessible and significant determinant of

the likelihood of survival at birth, but it alone is not enough to

predict neonatal outcomes. Placental dysfunction, maternal-fetal

conditions affecting lung maturation such as smoking,

cardiovascular diseases, and prenatal exposure to drugs such as

steroids are also determinants (35). Known antenatal predictors

of RDS, such as prenatal Doppler velocimetry and the lamellar

body count test on gastric aspirates have limitations in LMICs

due to high costs and a lack of professionals with the necessary

skills (8, 36).
Implications for practice and the role of the
index test

The role of the index test used to predict RDS might be a

prompt risk indication immediately at birth, anticipating best

practices of management in scenarios with limited resources or
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optimizing access to existing facilities. This study is a premarket

approach using data from two clinical trials to validate the

algorithm for real-time RDS prediction at birth. The skin

reflection can be acquired from the device, and the user quickly

introduces some clinical variables, as presented in Figure 1.

Facilities without neonatologists, mobile emergency services, and

caregivers in primary units where a preterm birth can occur are

the potential targets of this device. The approach is intended to

quickly offer a prediction based on variables easily accessible at

birth scenarios added to the skin maturity assessment, even

outside hospitals. In the same way, a professional in maternity

and NICU settings could be interested in this prediction to

manage clinical follow-up of newborns and bed occupancy.

Despite recent advances in the perinatal management of RDS,

controversies still exist. Lower emphasis on radiographic diagnosis

and classification of RDS, such as ground glass with air

bronchograms, directs management toward a preventive

surfactant treatment approach. Definitions based on blood gas

analyses are also redundant, as management has moved towards

a preventive surfactant treatment approach based on clinical

assessment of the work of breathing and oxygen requirement to

avoid worsening the syndrome. Current RDS management aims

to maximize survival by minimizing complications such as air

leaks and bronchopulmonary dysplasia (5).
frontiersin.org

https://doi.org/10.3389/fped.2023.1264527
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Reis et al. 10.3389/fped.2023.1264527
Sources of potential bias and
generalizability

Despite the development of a new technology that allows skin

maturity associated with birth data to be used as a marker of lung

maturity, sources of potential bias can limit the generalizability of

the outcomes. The development and validation scenarios had

relevant differences regarding RDS frequency in newborns,

morbidity, and mortality. Moreover, the accuracy of the machine

learning models was sustained by a high specificity of 91.3% (95%

CI, 88.7 to 93.5). In false-positive RDS prediction in LBW

newborns, unnecessary interventions such as transferring to a

referral center can occur in approximately 18% of newborns.

Nonetheless, assuming the implementation of a screening test, a

point-of-care prediction in conjunction with clinical protocols, this

approach has the potential to enhance neonatal care. Future

studies are necessary to measure the influence of disease incidence

on generalizing the models, as in the primary care birth scenario

or low complexity hospitals where the incidence of preterm birth

and RDS is lower than ours. The performance of the prediction in

the subgroups analysis considering ranges of gestational age and

birth weight might still require further large samples.

Regarding skin maturity importance in the model, the rationale

which relies on a direct relationship between epidermal barrier

competence and neonatal survival faces limitations after 35 weeks

of gestation, when the epidermis is complete (37). Therefore, the

test may perform better in preterm newborns than in term

newborns; similar to previous studies, we used the device to

predict gestational age (38). Finally, there is a potential bias

associated with suboptimal pregnancy dating in the validation

scenario since the inclusion criteria admitted obstetric ultrasound

examinations before 24 weeks or just using a reliable last

menstrual period, which has already been reported (38). At the

same time, data from the clinical trials in Brazil and

Mozambique provided a picture of using the test under natural

conditions with barriers to high-cost technologies.
Conclusions

The objective measurement of skin maturity alongside machine

learning models opens new opportunities to recognize complex

patterns among variables in RDS outcome prediction. The

models adjusted for skin reflection, birth weight, and ACTMF at

birth as RDS predictors for 72 h of life achieved high accuracy in

developing and validating modeling using clinical trial datasets.

This study demonstrates a new way to assess neonatal lung

immaturity, providing potential opportunities for more effective

and early caring with an automated medical device tester.
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