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Effect of docosahexaenoic acid
and olive oil supplementation on
pup weight in alcohol-exposed
pregnant rats
Deepak Yadav1*, Enrique M. Ostrea Jr.1, Charlie T. Cheng1,
Esther Kisseih1, Krishna R. Maddipati2 and Ronald L. Thomas1

1Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States,
2Bioactive Lipids Research Program, Wayne State University School of Medicine, Detroit,
MI, United States
Background: Low birth weight has been observed in offspring of alcoholic
mothers due likely to unresolved inflammation and oxidative injury. Dietary
lipids play a role in inflammation and its resolution. The primary objective was
to investigate the effect of DHA and olive oil on the birth weight of pups born
to alcohol-exposed dams.
Methods: Pregnant rats were randomized to the control or three treatment
(alcohol) groups. From gestational days (GD) 8–19, the control group received
daily olive oil and malto/dextrose, whereas groups 2 and 3 received olive oil
and low-dose alcohol or high-dose alcohol, respectively. Group 4 received
daily DHA and high-dose alcohol. The dam’s blood was collected on GD 15
and 20 for cytokine analysis. Dams were sacrificed on GD 20. The mean birth
weight of pups was compared by one-way ANOVA with post hoc Duncan’s test.
Results: There was a significant increase in the pups’ mean birth weight in
the high-dose alcohol/DHA and high-dose alcohol/olive oil. Higher pro-
inflammatory cytokines (IL-1β and IL-12p70) were noted in the alcohol-
exposed dams.
Conclusions: DHA and olive oil supplementation in alcohol-exposed pregnant
rats significantly increased their pups’ birth weight despite having high pro-
inflammatory cytokines. The mechanism of this effect remains to be determined.
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Introduction

Alcohol use during pregnancy in humans is a significant public health problem that can

result in a spectrum of fetal abnormalities known as Fetal Alcohol Spectrum Disorders

(FASD), including Fetal Alcohol Syndrome (FAS) (1, 2). Despite public health warnings,

10%–15% of pregnant women drink alcohol (3, 4), with about 3% of pregnant women

engaging in binge drinking, according to the CDC. The estimated prevalence of FAS varies

between reports, and it’s thought to occur in 0.3–0.8 per 1,000 children in the United

States and in 2.9 per 1,000 globally (5). The FAS remains a significant health problem

since it is a leading cause of mental retardation in children. The mechanisms underlying

FASD are poorly understood. Thus, there is no effective treatment that targets the disorder.

Evidence from the human literature suggests that alcohol consumption during

pregnancy results in adverse outcomes in fetuses and neonates (6). Fetal growth appears
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TABLE 1 Groups and treatment categories after randomization of
pregnant rats.

Group Label Treatment given
Group 1 (N = 9) Control/Olive 0.8 ml olive oil + 1.8 ml Malto/dextrose

Group 2 (N = 5) LD Alc/Olive 0.8 ml olive oil + 1.6 g/kg/day ethanol

Group 3 (N = 5) HD Alc/Olive 0.8 ml olive oil + 2.4 g/kg/day ethanol

Group 4 (N = 5) HD Alc/DHA 0.8 ml DHA + 1.6 g/kg/day ethanol

N= total number of pregnant rats (dams) per group; LD Alc, low dose alcohol; HD

Alc, high dose alcohol; DHA, docosahexaenoic acid.
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more sensitive to prenatal alcohol exposure than postnatal growth

(7). Despite controlling for potential psychosocial confounders like

tobacco use and partner violence, alcohol use during pregnancy

appears to be associated with lower infant weight for age, height

for age, and head circumference for age (8).

The animal model provides the opportunity to evaluate the

effects of prenatal alcohol exposure on pups’ birth weight in a

controlled setting. Animal studies consistently suggest decreased

fetal weight with prenatal alcohol exposure (9–11). The

mechanism underlying FASDs is poorly understood. Thus, there

is no effective treatment that targets the disorder. Novel therapies

are critically needed to limit alcohol’s adverse effects on the fetus

exposed to alcohol during pregnancy.

Alcohol dose is also an important factor that plays a role in

FASD. Effects of prenatal ethanol exposure on fetal growth,

placentation, synaptic plasticity, and learning in mature offspring

appear to be dose-dependent (12, 13). The threshold for eliciting

subtle yet significant learning deficits in the offspring born to

dams with prenatal alcohol exposure seems to be less than

30 mg/dl (3% alcohol diet), which equates to a blood ethanol

concentration in the dam roughly equivalent to the consumption

of 1–1.5 oz of ethanol per day in humans (12).

Maternal immune activation and elevation of cytokine levels

(IFN-ɣ, IL-10, TNF-β, TNF-α, IL-15, IL-17) are associated with

neurobehavioral impairment secondary to prenatal alcohol

exposure (14–17). The ratio of TNF-α/IL-10 appears to be

directly linked to the increased risk of having a child with FASD

(18). Increased spontaneous production of interleukin-1β,

interleukin-6, interleukin-12, and tumor necrosis factor-alpha by

peripheral blood monocytes are seen in human adults with

chronic alcoholism (19). Evidence suggests that inflammatory

mediators may play a role in fetal growth restriction (20).

Inflammation is the principal response of the body to noxious

insults. The initial response to injury involves specific cellular

infiltrates and the release of pro-inflammatory lipid mediators, e.g.,

eicosanoids (prostaglandins, cytokines, leukotrienes, etc.), and

immediately after, resolution occurs through anti-inflammatory

and pro-resolution mediators (resolvins, protectins, epoxins,

neuroprotectins, etc.). Both pro-inflammatory and pro-resolving

mediators result from precursor polyunsaturated fatty acids (PUFA),

principally arachidonic acid (AA), eicosapentanoic acid (EPA), and

DHA (21). Alcohol is a noxious agent and, when ingested, initiates

an inflammatory response characterized by the elaboration of

reactive oxygen species and inflammatory mediators (22–26). Likely,

the low birth weight associated with prenatal alcohol exposure

results from unresolved inflammation and oxidative injury (27).

A preliminary study (27) from our group showed a significant

decrease in mean pup weight with incremental prenatal alcohol

exposure. The study utilized a control (pair-fed) and two alcohol

(low-dose, i.e., 2.2 g/kg/day, and high-dose, i.e., 5.5 g/kg/day)

treatment groups. Results showed a significant decrease in mean pup

weight in the high-dose alcohol group when compared to the control

group (1.91 g vs. 2.17 g, p = 0.007). However, the dose of alcohol

used in the preliminary study was different from the current study.

Dietary lipids play a significant role in inflammation and its

resolution. DHA (22:6n-3) is an n-3 polyunsaturated fatty acid
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(PUFA) and an essential precursor of the lipid mediators that

help resolve inflammation (21, 28). We aim to utilize DHA as a

novel nutritional intervention to determine if DHA

supplementation in the pregnant rat will alleviate the effects of

prenatal alcohol exposure on the fetus.
Materials and methods

Experimental design and procedures

The study utilized four groups of timed-pregnant Sprague-

Dawley rats obtained from Charles River Laboratories and

delivered to the Mott Center vivarium on gestational day (GD)

4. The animals were placed in individual housing to avoid

confusion as to whom the pups belonged to in the event of

premature delivery and to monitor food consumption per dam.

Animals were provided with ad lib water and standard rat chow.

The housing room was kept at a constant (22°C) temperature on

12 h dark and 12 h light schedule (lights off from 1,730 to

0530 h). Each pregnant rat was randomly assigned to the Control

or Treatment (alcohol) group, as shown below.

Nine pregnant rats were assigned to Group 1 (Control) and five

to each treatment group (Groups 2–4)—see Table 1. We randomly

assigned three pregnant rats to a practice group to assess their

tolerance to gavage feeding and alcohol, olive oil, and DHA.

Group 1 (control; N= 9)
The pregnant rats were fed standard rat chow and water ad lib

and served as the control. Group 1 was given two gavages; 1st

gavage was pure olive oil (obtained from Essential Ingredients,

Inc.), followed by distilled water plus maltose/dextrin. These two

feeding sessions were about 1–2 h apart, starting approximately

10 AM each day, from gestational day 8 to day 19. Olive oil was

used as a control lipid to DHA and given to all the rats in the

study, except in the DHA supplementation group (Group 4). The

volume of olive oil was equal to the average volume of DHA

gavaged in Group 4 (0.8 ml). Maltose/dextrin solution served as

the control for the caloric load of alcohol given to the treatment

group, based on the caloric content of alcohol of 7 calories per

gram and caloric content of maltose/dextrin of 95 calories per

25 g. A total of 9 rats were assigned to Group 1 to anticipate

replacing rats in the treatment groups (Groups 2–4) that either

resisted initial gavage feedings or died before the end of the

study. It was estimated that 10% of the total rats (N = 15) in the

treatment group might need replacement. There was no pair-fed
frontiersin.org
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control group because our previous study showed no significant

difference in the ad-lib and pair-fed control groups. Similarly, we

did not include a group given alcohol alone without lipid (DHA

or olive oil) supplementation since our previous study showed

that prenatal alcohol exposure alone resulted in low birth weight,

brain weight in the fetus, and low placental weight (27).

Groups 2–4 (alcohol exposed groups)
Ethanol was administered to separate groups of pregnant rats

based on alcohol dose or DHA supplementation. Each group

received olive oil or DHA in 1st gavage and their daily alcohol

dose in the 2nd gavage at 1–2 h apart, starting at approximately

10 AM from gestational day 8 to day 19. We used a 30% (v/v)

ethanol solution made by diluting 30 ml of 99.5% ethanol solution

(Spectrum Chemical MFG Corporation, New Brunswick, New

Jersey) with 70 ml of distilled water. Peak blood alcohol levels at

0.5 h for the 2 g/kg dose and 3 g/kg doses have been reported in

the literature as 91 ± 31 and 103 ± 29 mg%, respectively (29).

a) Groups 2 and 3 (Alcohol Dose Group: N = 5 per group)—Both

groups received olive oil in their 1st gavage feeding and alcohol

in 2nd gavage feeding. The alcohol doses were 1.6 g/kg/day

(group 2) and 2.4 g/kg/day (group 3). For dosing, we used

the initial weight of the dam as its weight throughout the

experiment. Considering the concentration of the stock

alcohol solution of 99.5% and specific gravity of alcohol of

0.7964 (density = 0.7964 g/ml), the volume of 30% alcohol

needed for the 1.6 g/kg/day (group 2) and 2.4 g/kg/day

(group 3) was calculated for each dam.

b) Group 4 (DHA supplementation)—A safety study in pregnant

rats showed that a DHA dose of 1,250–2,500 mg/kg was safe

and did not produce overt maternal toxicity. This dose did

not result in changes in implantation losses, resorptions, live

births, sex ratios, or fetal malformation (30). A daily dose of

1,250 mg/kg of DHA as DHASCO oil (from DSM Nutritional

Products, Columbia, MD) was given as 1st gavage feeding.

This group was also given daily 2.4 g/kg/day ethanol (30% v/v

solution) as 2nd gavage feeding on gestational day 8 to day

19. DHASCO is a triglyceride extracted from the algae

Crypthecodinium cohnii. DHASCO oil contains approximately

42.5% DHA and saturated and monounsaturated fatty acids.

Group 3 served as the control group for group 4. To provide a

dose of DHA of 1,250 mg/kg, assuming an initial weight of

the dam of 0.4 kg (DHASCO oil contains 42.5% DHA

or 42.5 g/100 ml or 425 mg/ml DHA), we calculated dose of

DHA = 1,250 × 0.4 = 500 mg DHA, that was equivalent to 500/

425 = 1.18 ml of DHA.

Gavage feeding

The alcohol was administered directly into the dam’s esophagus

by a 3-in 18–20 gauge curved stainless steel, blunted needle

designed especially for this purpose (Perfectum #7916 CVD). The

animal was neither anesthetized nor tranquilized for this procedure

not to confound the effects of prenatal alcohol exposure on the
Frontiers in Pediatrics 03
offspring by other drugs. Importantly, anesthetization or

tranquilization was not required because this procedure was brief

and tolerated reasonably well as performed by well-trained research

team members. The rat was restrained by manual wrapping in a

towel if needed, and the duration of restraint was kept as short as

possible to minimize stress. The research team received prior

formal animal training from the DLAR (Department of Laboratory

Animal Research) on restraining a rat for the gavage feed. The

volume and total daily ethanol doses were well-tolerated by the

dams. The gavage was divided into two feedings that did not

exceed the IACUC recommended maximum safety limit of 10 ml/

kg per gavage feeding.

Each dam was monitored for labored breathing or any distress

signs for 15 min after gavage feeding, as per the standard procedure.
Saphaneous vein blood collection

This procedure was performed on GD 15 by holding the

pregnant rat with gloves, leaving one hind limb exposed.

The back of the leg was shaved off with an electric trimmer until

the saphenous vein was visible. We used a small amount of

water to keep the non-shaved hair away from the puncture site.

We made a compression point at the base of the leg to make the

saphenous vein bulge. We punctured the vein using a 20G needle

and scooped the blood as it flowed out using sterile microvette

tubes containing lithium heparin. After collecting 1 ml of blood,

we held a clean compress on the puncture site to stop the bleeding.
Euthanasia, blood and tissue harvesting

As the rat’s typical duration of gestation is 21 days, we delivered

the fetuses by gestational day 21 to prevent spontaneous delivery and

breastfeeding by the pups. On GD 20, the dams were euthanized by

rapid CO2 narcosis, followed by an assurance of death by cutting

through the chest wall with a small scissor to produce a

pneumothorax. Then the chest cavity was opened with the scissor,

and blood was collected for cytokine analysis directly from the

heart using a 21-gauge needle and 5 ml syringe, followed by

cutting the heart to assure death. We collected at least 1–1.5 ml of

blood in sterile microcuvette tubes containing lithium heparin. A

laparotomy was performed, the uterine horns exteriorized, and the

uterus opened. The immediate cessation of uterine blood flow and

oxygen delivery to the fetus resulted in their rapid death. If the

fetus began to breathe after its removal from the uterus, it was

immediately euthanized by decapitation. The placenta was

separated from the fetus, freed from the umbilical cord, deciduas,

and fetal membranes blotted and weighed. Four pups were

collected from each uterine horn and weighed.
Processing blood sample

Immediately after collecting blood in heparinized microcuvette

tubes, the blood samples were centrifuged for 10 min. The plasma
frontiersin.org
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was pipetted without disturbing the red and white blood cell layers.

Plasma was stored at −80°C until the time of cytokine

measurement by Luminex®-based analysis.
TABLE 2 Mean birth weight (± SD) of rat pups in control, alcohol/olive,
and alcohol/DHA categories (comparison by one-way ANOVA with
Duncan’s test).

Group N n Mean SD 95% confidence interval
Measurement of cytokines

Luminex® assays use antibody-conjugated bead sets to detect

analytes in a multiplexed sandwich immunoassay format. Each

bead in the set was identified by a unique content of two

addressing dyes. A third dye was used to read out the binding of

the analyte via a biotin-conjugated antibody and streptavidin-

conjugated second step detector. Data was acquired on a

dedicated flow cytometry-based Luminex platform (31).

wt (g)

Lower bound Upper bound
Control/Olive 6 48 3.06 0.25 2.80 3.32

LD Alc/Olive 5 38 3.08 0.29 2.72 3.44

HD Alc/Olive 5 40 4.10* 0.25 3.79 4.41

HD Alc/DHA 4 32 3.54** 0.17 3.27 3.82

N= total number of dams per group (final number of dams was less than planned

dams per group due to death of some dams during the study); n= total number of

pups per group (8 pups per dam, 1 dam in LD Alc/Olive only had 6 pups); LD Alc,

low dose alcohol (1.6 g/kg/day); HD Alc, high dose alcohol (2.4 g/kg/day); DHA,

docosahexaenoic acid; SD, standard deviation.

*p=0.05 when compared to control/olive group, LD Alc/Olive group, or HD Alc/

DHA group.

**p=0.05 when compared to control/olive group, LD Alc/Olive group, or HD Alc/

olive group.
Statistical analysis

The pups were weighed at birth, and the mean and placental

weights (g) between groups were compared by one-way analysis

of variance (ANOVA) with post hoc Duncan’s test. A test for

homogeneity was performed using Levene’s test for equality of

variances. The Levene’s test showed equal variances in the groups.

A p-value of ≤0.05 was considered a level of statistical

significance. Statistical analysis was performed using SPSS Version 28.
FIGURE 1

Box plot showing the average pup weight in different groups. LD Alc, low do
0.05 when compared to control/olive group, LD Alc/Olive group, or HD Alc
Olive group, or HD Alc/olive group.
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Results

Pup body weight

In Table 2 and Figure 1, the mean birth weight of pups was

significantly higher in pups prenatally exposed to HD alcohol/olive

oil when compared to the control/olive oil group (4.10 g vs. 3.06 g,

p = 0.05). Similarly, the mean birth weight of pups prenatally

exposed to HD alcohol/DHA was significantly higher (3.54 g vs.
se alcohol; HD Alc, high dose alcohol; DHA, docosahexaenoic acid. *p=
/DHA group. **p= 0.05 when compared to control/olive group, LD Alc/
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TABLE 3 Mean placental weight (± SD) in control, alcohol/olive, and
alcohol/DHA categories (comparison by one-way ANOVA with Duncan’s
test).

Group N n Mean placental
wt (g)

SD 95% confidence
interval

Lower
bound

Upper
bound

Control/Olive 6 48 0.49 0.08 0.46 0.51

LD Alc/Olive 5 38 0.59* 0.12 0.55 0.63

HD Alc/Olive 5 40 0.57* 0.07 0.55 0.59

HD Alc/DHA 4 32 0.58* 0.10 0.55 0.61

N= total number of dams per group (final number of dams was less than planned

dams per group due to death of some dams during the study); n= total number of

pups per group (8 pups per dam, 1 dam in LD Alc/Olive only had 6 pups); LD Alc,

low dose alcohol (1.6 g/kg/day); HD Alc, high dose alcohol (2.4 g/kg/day); DHA,

docosahexaenoic acid; SD, standard deviation.

*p < 0.05 when compared to control/olive group.
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3.06 g, p = 0.05) when compared to the control/olive oil group. The

mean birth weight of pups was also significantly higher in pups

prenatally exposed to HD alcohol/olive oil when compared to the

HD alcohol/DHA group (4.10 g vs. 3.54 g, p = 0.05). Similarly, the

mean birth weight of pups was also significantly different between

LD alcohol/olive oil group and HD alcohol/olive oil group (3.08 g

vs. 4.10 g, p = 0.05) or HD alcohol/DHA group (3.08 g vs. 3.54 g,

p = 0.05). However, there was no significant difference in the mean

birth weight of pups in the LD alcohol/olive oil group when

compared to the control/olive oil group (3.08 g vs. 3.06 g, p >

0.05). The pregnant rats’ mean weight was not significantly

different between groups at GD 20.

In Table 3, the mean placental weight was significantly higher

in all treatment (alcohol) groups. The mean placental weight was

significantly lower in the control/olive oil group when compared

to LD alcohol/olive oil group (0.49 g vs. 0.59 g, p < 0.05), to HD

alcohol/olive oil group (0.49 g vs. 0.57 g, p < 0.05) or to HD

alcohol/DHA group (0.49 g vs. 0.58 g, p < 0.05).
Cytokine analysis

Higher pro-inflammatory cytokines (principally Interleukin -1

beta and Interleukin -12p70) were found in the alcohol-exposed

pregnant rats (Table 4). However, the difference in the level of
TABLE 4 Mean cytokine values in different treatment categories.

Cytokines Control/Olive
Day 15 IL1 beta Mean (±SD) 61.0 (±78.6)

N 5

Day 15 IL12p70 Mean (±SD) 52.6 (±40.8)

N 5

Day 15 TNF-alpha Mean (±SD) 0

N 6

Day 20 IL1 beta Mean (±SD) 2.8 (±4.5)

N 5

Day 20 IL12p70 Mean (±SD) 42.4 (±14.2)

N 4

N= total number of dams per group (final number of dams was less than planned dam

(1.6 g/kg/day); HD Alc, high dose alcohol (2.4 g/kg/day); DHA, docosahexaenoic acid;
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cytokines was not statistically significant between different

treatment categories due to the large variance and small sample size.
Discussion

Globally, it has been estimated that about 10% of women in the

general population consume alcohol during pregnancy, and 1 in

67 women deliver a child with FAS (4). Another report estimates

the pooled prevalence of FAS and FASD in the United States is

about 2 per 1,000 and 15 per 1,000, respectively, among the

general population (3).

The overall objective of this work was to evaluate DHA

supplementation as a potentially novel therapy to ameliorate the

adverse effects of prenatal alcohol exposure in FASDs. However,

incidental to our principal objective was the observation that

supplementation of alcohol with both olive oil and DHA

significantly increased birth weight in alcohol-exposed pups. The

positive impact of DHA supplementation on birth weight in

prenatal alcohol exposure is consistent with one report of n-3

PUFA supplementation and improved body weight of pups (10);

however, the report utilized both prenatal and postnatal

supplementation strategies with n-3 PUFA.

Our previous study did not show any difference in placental

weight in the alcohol-exposed vs. control fetuses (27).

Additionally, a decrease in placental weight has been reported in

different animal models of prenatal alcohol exposure (32, 33).

However, the results of this report showed otherwise, i.e., an

increase, rather than decrease, in placental weight in alcohol-

exposed fetuses, which has been reported in other studies (34–36).

The increase in placental weight likely represents a compensatory

response to the alcohol-induced insult. Our study is unique as it

utilized dietary lipids to mitigate the potential adverse effects of

alcohol on fetal weight. Olive oil has been shown to reduce

placental stress in gestational diabetes (37). Similarly, dietary

supplementation with n-3 PUFA in pregnant women increases

DHA levels, reduces placental oxidative stress, and enhances

placental and fetal growth (38, 39). Thus, the variations in

placental weight outcome warrant further study.

In humans, high alcohol intake during pregnancy has been

associated with DHA deficiency in the maternal plasma (40).
LD Alc/Olive HD Alc/Olive HD Alc/DHA
22.9 (± 29.9) 109.9 (±60.5) 105.6 (±71.1)

5 4 3

344.9 (±549.8) 68.5 (±29.3) 87.4 (±16.6)

3 3 2

2.3 (±5.0) 1.7 (±3.8) 2.1 (±4.3)

5 5 4

0 1 (±1.4) 10.5 (±21.0)

5 5 4

138.2 (±195.5) 16 (±32.1) 41.7 (±10.6)

2 4 2

s per group due to death of some dams during the study); LD Alc, low dose alcohol

SD, standard deviation; IL, interleukin.
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One mechanism may be that DHA is esterified and excreted in

the urine as an ethyl ester (41). DHA has antioxidant, anti-

inflammatory, and pro-resolving properties (42) and is

preferentially transferred across the placenta from the mother

to the fetus (43). Thus, supplementing the alcoholic pregnant

woman with DHA may be a plausible intervention to reduce

inflammation-driven injury from alcohol in the fetus and

ameliorate the adverse effect of alcohol on the infant’s birth

weight. This report is part of a large study whose primary aim

was to determine the protective effect of DHA in the offspring

of pregnant rats prenatally exposed to alcohol. As a lipid

control for DHA, olive oil was used, which led to the

unexpected finding of the salutary effect of both DHA and

olive oil on the birth weight of the pups. However, the weight

gain with DHA was not as high as with olive oil

supplementation in the high-dose alcohol-exposed groups.

Although olive oil can have a positive effect on pups’ weight

because of its caloric content of 8.5 calories per gram, it should

be noted that in the study, olive oil’s potential positive effect

on pups’ birth weight was not evident in the low dose alcohol/

olive oil group when compared to the control/olive group and

was significantly lower when compared to the alcohol/DHA

group. Thus, olive oil likely did not interfere significantly with

the ameliorative property of DHA on birthweight.

Olive oil has been studied in varied clinical conditions to

mitigate the effects of oxidant stress, including aging (44, 45).

Olive oil benefits have been suggested in preventing

cardiovascular diseases, improving the gut microbiota, and

mitigating inflammation, including inflammatory bowel diseases

and psoriasis (46–48). Olive oil intake also has some beneficial

effects on colorectal cancer prevention (49). Hydroxytyrosol (HT)

is a primary polyphenol in olive oil with anti-inflammatory and

neuroprotective properties (50, 51). HT has both lipophilic and

hydrophilic properties, allowing it to be absorbed readily and

exhibit cytoprotective properties by scavenging free radicals and

limiting inflammation (51). Maternal HT supplementation has

been shown to enhance mean birth weight in animal studies

(52). However, current evidence from published literature is

insufficient to suggest any such beneficial potential of olive oil in

the setting of FASD.

Since this salutary effect of the dietary lipids on the pups’

birth weight was more prominent in high-dose (2.4 g/kg/day)

alcohol-exposed groups, we speculate that these findings could

have resulted from the caloric contribution from high-dose

alcohol exposure and dietary lipids. Furthermore, more calories

were delivered to the dams in the high-dose alcohol group

(2.4 g/kg/day) compared to the low-dose alcohol (1.6 g/kg/day)

group, which may account for the differential weights between

the 2 groups. Likewise, the DHA loss through alcohol

esterification may also reduce its caloric potential and explain

the lower weight gain with alcohol/DHA compared to alcohol/

olive oil (41).

It is also possible that this may be the effect of increased

visceral fat biosynthesis and accumulation in response to the

interaction of alcohol and high saturated fat content in olive oil

(53). It is also likely that DHA has a protective effect on
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different organs (42, 54–56), which may have contributed to the

positive impact of both olive oil and DHA on the birth weight of

alcohol-exposed pups.

Our study is significant since it provides evidence that DHA

and olive oil may have a therapeutic potential to mitigate the

adverse effects of low birth weight in offspring prenatally

exposed to alcohol. Additionally, these dietary lipids may have a

positive effect on the placental growth.

Cytokine analysis showed a trend toward increasing maternal

serum IL-1 and IL-12 with alcohol exposure. However, the

difference was not statistically significant, likely due to the large

variance in the sample mean concentrations and needs to be

studied further using a larger sample size.

We conclude that DHA and olive oil supplementation in

alcohol-exposed pregnant rats significantly increased the birth

weight of their pups and the placental weight of the fetus,

although the mechanism of this effect remains to be determined.

In translating the results of this animal study to humans,

supplementing alcohol-abusing pregnant women with dietary

lipids (DHA and olive oil) may improve the birth weight of their

newborn infants. However, prenatal alcohol exposure, per se, has

been linked to future risk of obesity and related cardiometabolic

consequences (diabetes, hypertension) in children with FASD

(57–59), and likely represents the fetal basis of adult diseases.

Thus, supplementing prenatal alcohol exposure with lipids to

improve birth weight may unknowingly contribute to this

potential long-term effect.

Finally, our study design did not include a pure alcohol group

as a control group since the negative effect of alcohol on

birthweight is already well known and has been reported not

only by us but by other investigators, as well, in both human and

animal studies (60–63). However, the absence of a pure alcohol-

supplemented group could be a limitation of this study.

The data supporting our study’s findings are available from the

corresponding author, [DY], upon reasonable request.
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