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Case Report: A novel RRM2B
variant in a Chinese infant with
mitochondrial DNA depletion
syndrome and collective analyses
of RRM2B variants for disease
etiology
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Background: There are few reports of infantile mitochondrial DNA depletion
syndrome (MDDS) caused by variants in RRM2B and the correlation between
genotype and phenotype has rarely been analyzed in detail. This study investigated
an infantile patient with MDDS, from clinical characteristics to genetic causes.
Methods: Routine physical examinations, laboratory assays, which included gas
chromatography–mass spectrometry of blood and urine, and MRI scans were
performed to obtain an exact diagnosis. Whole-exome sequencing was used to
pinpoint the abnormal gene and bioinformatic analyses were performed on the
identified variant.
Results: The case presented with progressive neurologic deterioration, failure to
thrive, respiratory distress and lactic acidosis. Sequencing revealed that the patient
had a homozygous novel missense variant, c.155T>C (p.Ile52Thr), in exon 2 of the
RRM2B gene. Multiple lines of bioinformatic evidence suggested that this was a
likely detrimental variant. In addition, reported RRM2B variants were compiled
from the relevant literature to analyze disease etiology. We found a distinctive
distribution of genotypes across disease manifestations of different severity.
Pathogenic alleles of RRM2B were significantly enriched in MDDS cases.
Conclusion: The novel variant is a likely genetic cause of MDDS. It expands our
understanding of the pathogenic variant spectrum and the contribution of the
RRM2B gene to the disease spectrum of MDDS.
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1 Introduction

Mitochondrial DNA (mtDNA) depletion syndrome (MDDS), which features a

maintenance defect of mtDNA, belongs to a group of disorders with complex phenotypic

subtypes due to disrupted nuclear genes (1, 2). Such nuclear genes responsible for MDDS

act through the key enzymes that affect the process of mtDNA synthesis and replication,
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causing a reduction in the amount of mtDNA. This damages the

synthesis of the respiratory chain complex and adenosine

triphosphate (ATP) in cells, which results in dysfunction in affected

tissues and organs. A growing number of studies have expanded

the number of pathogenic variants in different genes found in

different MDDS phenotypes. They have also established that

pathogenic variants in the RRM2B gene are an uncommon cause of

MDDS, specifically MDDS types 8A and 8B (MIM #612075) (3, 4).

The RRM2B gene is located on chromosome 8q22 and encodes

p53R2, which is a subunit of the ribonucleotide reductase (RNR)

complex (5). This complex is a heterotetrametric enzyme and is a

key protein in the de novo synthesis of mtDNA (Figure 1A).

RRM2B variants have been found to induce a broad spectrum of

clinical phenotypes, from birth to late adulthood, with different

inheritance models (6), such as infantile-onset MDDS by autosomal

recessive inheritance (7–12), progressive external ophthalmoplegia

(PEO) by either autosomal recessive inheritance or autosomal

dominant inheritance (7, 13–16) and acute liver failure (17).

To date, fewer than 40 cases of infantile-onset MDDS caused

by an RRM2B defect have been reported (9, 18–21). These cases

mainly presented with hypotonia, progressive neurologic

deterioration, failure to thrive, lactic acidosis, feeding difficulties,

respiratory distress and proximal tubulopathy. Other symptoms,

such as sensorineural hearing loss (SNHL), gastrointestinal (GI)

symptoms and seizures, also emerged in several infants. The

patients were usually hospitalized due to hypotonia, feeding

difficulties and failure to thrive in the first few months after

birth. Laboratory tests showed elevated lactate levels in multiple

body fluids, such as blood, cerebrospinal fluid (CSF) and urine,

deficiency in oxidative phosphorylation enzymes and loss of

residual mtDNA in skeletal muscle (8). The patients usually had

a low overall survival rate, which dropped to 29% and 16% at 6

months and 1 year after birth, respectively (18).

In this study, we characterized the clinical features of an infantile

patient with fatal MDDS from a Chinese Han trio family. The patient

was identified as being homozygous for a novel missense RRM2B

variant that has not previously been recorded in any of the databases.

We analyzed data from a systemic examination and metabolite screen,

plus the bioinformatic analyses and protein structure models of the

variant, to substantiate the genotype-phenotype correlation in this

MDDS case. In addition, we compiled data from the reported RRM2B

variants and detailed the history of the corresponding cases from the

relevant literature in an effort to explore the genetic pathogenicity of

these variants. This work will be helpful in extending our

understanding of the genetics that underpin MDDS.
2 Case report

2.1 Clinical features and laboratory assays

The patient was a boy who was 2 months and 12-days-old. He

was the first child of non-consanguineous Chinese Han parents,

neither of whom had any obvious relevant symptoms or family

history of similar diseases. The patient was born at term, after a

normal pregnancy, and the birth weight was 3,400 g. The boy was
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hospitalized in the maternity hospital for 9 days due to asphyxia

at birth. Two months later, he was transferred to our hospital due

to feeding difficulties and respiratory distress. He then underwent

a detailed clinical assessment and laboratory examination.

The patient showed progressive neurologic deterioration and

failure to thrive, such as poor suck, lack of head control, hypotonia

and lethargy. A progressive dyspnea also emerged during his

hospitalization. The hematological parameters (Table 1) showed

that the patient had aberrantly elevated lactate (Supplementary

Figure S1), high-sensitivity cardiac troponin I (hs-cTnI),

myohemoglobin, lactate dehydrogenase (LDH), creatine kinase

(CK), aspartic transaminase (AST), alanine aminotransaminase

(ALT), plus reduced uric acid and fibrinogen. The serum ammonia

level (16.5 umol/L, normal range: 10–50 umol/L) and blood glucose

level (4.8 mmol/L, normal range: 3.9–5.8 mmol/L) were normal,

whilst the total protein (CSF-TP) level was elevated in the CSF.

The results of the patient’s electroencephalogram were normal.

Multiple pathogens were detected in the patient, such as extended-

spectrum β-lactamase-producing Escherichia coli, Streptococcus

pneumoniae and Pneumocystis jiroveci. Cardiac ultrasonography

indicated pulmonary arterial hypertension, with a 50 mmHg

pulmonary arterial systolic pressure and patent foramen ovale. The

qualitative test for urinary protein was positive. The MRI showed a

high water content in the white matter of the bilateral frontal,

temporal, parietal and occipital lobes, and showed that the sulci of

the bilateral cerebral hemispheres were wider and deeper than

normal, which suggested abnormal brain development (Figure 2A).

Urine gas chromatography-mass spectrometry (GC-MS) showed

that a variety of urinary organic acids, such as lactate, pyruvic acid,

hydroxybutyrate and 5-oxyproline, were elevated by varying

degrees (Supplementary Figure S2). As the disease had an impact

on mitochondrial function and infection further decreased the

ability of the liver cells to metabolize amino acids, an increase in

amino acids was observed in the blood. As shown in Table 1,

tandem mass spectrometry of blood slides showed that the levels of

glutamic acid, glycine ornithine and serine were increased. The

levels of acylcarnitine were normal. These results suggested

disorders of mitochondrial energy metabolism.

Due to failure to cure the patient’s progressive dyspnea with 8

days of high-flow nasal cannula oxygen therapy, the patient was

treated with oral tracheal intubation and mechanical ventilation for

30 days. The patient’s condition was complicated by multiple

pathogenic infections, which may have resulted in liver and

myocardial damage. The patient received comprehensive treatments,

such as meropenem, vancomycin, caspofungin and sulfonamide for

infection, inflammation, immune regulation, myocardial nutrition,

correction of acidosis and maintenance of internal environment

stability. The patient could not be weaned-off the ventilator until

his condition improved. He died at 3 months of age.
2.2 Bioinformatic analyses of the novel
c. 155t>C variant in RRM2B

Hierarchical bioinformatic analyses were performed after

whole-exome sequencing (WES) of the patient’s family. WES
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FIGURE 1

(A) schematic presentation of mtDNA replication. RNR, ribonucleotide reductase; dNMP, deoxynucleoside monophosphate; dNDP, deoxynucleoside
diphosphate; dNTP, deoxynucleoside triphosphate; NDP, nucleoside diphosphate; dTMP, deoxythymidine monophosphate. (B) Graphical
representation of the RRM2B protein 3D structure and location of the altered amino acid. The identified c. 155T>C variant caused the p.Ile52Thr
amino acid change. The pink coil represents the loop structure, blue depicts an alpha-helix and the purple region is a β-strand. Each color
represents a different atom; yellow-C atom, gray-H atom, blue-N atom, red-O atom and orange-S atom. The red dotted line represents the
hydrogen bond. The red rectangles show areas of change.

Wang et al. 10.3389/fped.2024.1363728
Genomic DNA was extracted from peripheral blood samples. WES

kit (MyGenostics, Beijing) was used to capture the target, according

to the manufacturer’s instructions, and DNBSEQ-T7RS (MGI,

China) sequenced the DNA. The pathogenicity of the variation

was evaluated according to ACMG guidelines (22). The patient

was homozygous for the NM_015713.5 (RRM2B): c.155T>C

(chr8:103244426); NP_056528.2: p.Ile52Thr novel non-

synonymous variant. The substitution at c.155 in exon 2

(c.155T>C) led to an amino acid change from isoleucine to

threonine (p.Ile52Thr), which was confirmed by Sanger

sequencing. In accordance with the sequencing results from the

family, the patient’s two copies of the variant were inherited

from his parents, who were both heterozygous for this variant
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(Figures 2B,C). In contrast to their child, who had severe

symptoms, the parents appeared to be asymptomatic. We found

no record of this variant in the HGMD database or any

suggestion of its pathogenicity in the latest version of the

ClinVar database. In accordance with the ACMG standardized

variant classification (https://www.acmg.net/docs/Standards_

Guidelines_for_the_Interpretation_of_Sequence_Variants), the

classification of the RRM2B (NM_015713.5): c.155T>C variant was

“Unknown Significance”. This variant was preliminarily classified as

a PP3_Strong + PM2_Supporting + PM3_ Supporting(hom) criteria,

which means that its pathogenicity was supported by in silico

evidence and the variant was absent from controls. No information

about this site was found in the general population databases,
frontiersin.org
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TABLE 1 Hematological parameters of patient.

Items Reference range Results Trend
CSF-TP 0–0.4 g/L 1.94 ↑

hs-cTnI 12.7–24.9 pg/ml 137.6 ↑

Myohemoglobin 23–72 ng/ml 118.5 ↑

LDH 67–394.1 U/L 970 ↑

CK 16.5–211.5 U/L 499 ↑

AST 0–40 U/L 122 ↑

ALT 0–40 U/L 80 ↑

Uric acid 119–327 umol/L 60 ↓

Fibrinogen 2–4 g/L 0.87 ↓

Glutamic acid 45–200 umol/L 276.257 ↑

Glycine 90–350 umol/L 429.094 ↑

Ornithine 15–80 umol/L 101.846 ↑

Serine 20–100 umol/L 163.261 ↑

Arg/Orn 0.05–0.7 umol/L 0.024 ↓

Orn/Cit 0.8–4 umol/L 5.133 ↑

CSF-TP, cerebrospinal fluid total protein; hs-cTnI, high-sensitivity cardiac troponin

I; LDH, lactate dehydrogenase; CK, creatine kinase; AST, aspartic transaminase;

ALT, alanine aminotransaminase.

Wang et al. 10.3389/fped.2024.1363728
which included gnomAD. The REVEL integrative functional

prediction algorithm for non–synonymous variants was applied

and the result was indicative of a harmful consequence.

Orthodox ratings for functionality consistently gave a

biologically harmful result from SIFT, PolyPhen_2, Mutation

Taster and GERP++, based on the evolutionary conservation.

The analysis of conservation showed that the amino acids at this

site were highly conserved across multiple species, from fish to

mammals (Figure 2D).

As a change in the primary protein structure was caused by this

novel missense variant, AlphaFold2 and JPred4 were used to

predict a potential alteration for the higher-order structure. In

the protein structure model, a substitution of p.I52T in the small

p53 inducible subunit (p53R2) led to altered physical and

chemical characteristics, such as polarity, charge and isoelectric

point (PI). The nonpolar, hydrophobic amino acid at position 52

changed to a polar, hydrophilic amino acid and the PI declined

from 6.02 to 5.6. The potential role of the identified RRM2B

variant was assessed by analyzing the p53R2 protein (encoded by

RRM2B) structure generated by the AlphaFold artificial

intelligence algorithm (Figure 1B). AlphaFold2 produced a per-

residue confidence score >90, which indicated very high

confidence in the model for most regions of the protein

structure. The variant occurred in an alpha helix structure and

resulted in conformation distortions that affected protein

interactions. The protein secondary structure prediction by

JPred4 showed a change in the alpha–helix in the region between

amino acids 50 and 60, together with multiple other regions in

the variant protein, when compared with the wild type. This

implied that functionalization of the protein was affected during

polymerization (Supplementary Figure S3). These results all

suggested that c. 155T>C (p.I52T) had a high impact on protein

function. Because infantile-onset RRM2B-related MDDS is an

autosomal recessive disease, we proposed to change the original

classification of “Unknown Significance” variant to “Likely

Pathogenic” variant.
Frontiers in Pediatrics 04
3 Previously reported pathogenic
RRM2B variants

We collated data on 63 variants from affected individuals with

different clinical manifestations and of different ancestry to gain

more insightful knowledge about the contribution to disease

from variants in the RRM2B gene (Figure 3A, Supplementary

Table S1). The reported pathogenic variants mainly affected the

primary protein structure and included 41 missense variants

(65.08%), eight nonsense variants (12.70%), six splicing variants

(9.52%), seven frameshift variants (11.11%) and one large

deletion (1.59%) from exon 4 to exon 6. The frameshift variants

included a deletion (c.414_415delCA) and an insertion

(c.635_636insAAG) of one codon. An uneven distribution of

pathogenic variants was observed across each exon, with the

highest density in exons 4, 6 and 2. The novel variant detected

in this study was found in exon 2.

The genotype and the severity of the clinical manifestation was

tightly correlated. The affected individuals were mainly diagnosed

into two categories of diseases, MDDS and PEO, based on the

clinical data (Supplementary Table S2). The variants found in

patients with MDDS were mostly distributed in exons 2, 4 and 6,

which was consistent with the overall trend, while the variants

detected in patients with PEO were found in exons 4, 6 and 9

(Figure 3A, Supplementary Table S3). Single heterozygotes in PEO

and homozygote or compound heterozygotes in MDDS were

mostly found in exons 1, 3 and 9 (Figure 3A). The predominant

variant types that were responsible for such diseases were the

variants that altered the amino acids. These included 27 (64.29%)

missense and four (9.52%) frameshift variants in patients with

MDDS, and 19 (70.37%) missense and four (14.81%) frameshift

variants in patients with PEO or other diseases. Among the

reported variants, most were found separately in MDDS or PEO,

with just seven shared between both diseases. Notably, the

genotype distribution was significantly different across the two

disease categories, with a striking enrichment of pathogenic

variants in MDDS cases (Fisher’s exact test, OR = 50, p = 2′10−6,
Figure 3B). For MDDS, almost all variants were found in

homozygous or compound heterozygous genotypes, which may

indicate that both copies of the gene were damaged. In contrast,

the genotypes were mainly heterozygous or compound

heterozygous in patients with PEO, which suggested a partially

disrupted function of the gene (Figure 3A; Supplementary Table S1).
4 The natural history of disorders with
defects in RRM2B

We collated a detailed set of clinical data from the literature

from 84 patients with a defect in RRM2B (Supplementary

Table S2). The data was composed of 39 patients with MDDS, 36

patients with PEO, four individuals with renal dysfunction, rod-

cone dystrophy and SNHL, two family members with acute liver

failure and three patients without specific records of clinical

symptoms. The patients with MDDS mostly developed severe

symptoms that were lethal in infancy. However, the patients with
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FIGURE 2

(A) MRI images obtained during hospitalization. The MRI showed a high water content in the white matter of the bilateral frontal, temporal, parietal and
occipital lobes. Red arrows point to brain lesions. (B) Pedigree of the family. The father and mother were asymptomatic carriers of the pathogenic
variant, while the patient showed clinical symptoms. (C) Reverse complementary sequences of the RRM2B variants showed an A>G nucleotide
substitution at the 155th nucleotide, in exon 2. The patient carried a homozygous mutation, while both his father and mother had a heterozygous
mutation at the same site. (D) A multispecies analysis showed that this site was highly conserved.

Wang et al. 10.3389/fped.2024.1363728
PEO typically started to show symptoms on reaching maturity and

the disease was not lethal.

Detailed clinical, biochemical and imaging features of all 39

pediatric patients with MDDS are summarized in Supplementary
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Table S2. The median age of onset was two months, with a range

from 0 to 36 months, and 33 patients (84.62%) died. The most

frequent clinical symptoms, such as hypotonia (36/39, 92.31%),

developmental delay (23/39, 58.97%), renal disease (19/39,
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FIGURE 3

(A) previously reported pathogenic RRM2B variants and the novel variant in the patient. The location of each variant is shown in the nine exons of
RRM2B messenger RNA (mRNA). The P53R2 protein comprises 351 amino acid residues. Each exon is labeled with the segment of the amino acid
chain that it encodes. Codon variant refers to an insertion or deletion of one or several codons. The yellow, blue and green fonts represent
homozygous, heterozygous and compound heterozygous genotypes, respectively. The grey font indicates an unknown type of variant. Purple
represents both homozygous and compound heterozygous genotypes. Red represents both heterozygous and complex heterozygous genotypes.
& indicates that the variant was present in both MDDS and PEO. The red arrow represents the novel variant. (B) Distribution of genotypes in
patients with MDDS and PEO. M, missense variant; PTV, protein-truncating variant, e.g., splice-site, nonsense, frameshift and codon variants. (C)
The relationship between PTV and developmental delay in patients with MDDS. (D) Clinical features in patients with MDDS.
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48.72%), feeding difficulties (17/39, 43.59%), hearing loss (17/39,

43.59%), respiratory involvement (16/39, 41.03%), seizures

(12/39, 30.77%) and eye abnormalities (9/39, 23.08%)
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(Figure 3C), involved multiple systems. Muscle residual mtDNA

and plasma lactic acid were measured in 56.41% (22/39) and

66.67% (26/39) of patients, respectively, with 63.64% (14/22) of
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patients having significantly diminished mtDNA and all patients

having significantly elevated plasma lactic acid. We found CSF

protein or lactate in 35.9% (14/39) of patients and CK was found

in 30.77% (12/39) of patients, with elevated levels in 71.43% (10/

14) and 75% (9/12), respectively. An MRI scan was performed

on 25.64% (10/39) of patients and 70% (7/10) were abnormal.

We conducted additional analyses using the collected MDDS

data. A close relationship was found between both the age of

onset and time of death and the residual mtDNA levels in

skeletal muscle. A lower residual mtDNA level was associated

with an earlier onset (Spearman’s rank test, rho = 0.59, p = 0.034)

and an earlier death (Spearman’s rank test, rho = 0.676, p =

0.011). An earlier onset tended to result in an earlier death

(Spearman’s rank test, rs = 0.686, p = 0.01). Patients who

presented with eye abnormalities tended to develop the

syndrome later (Mann-Whitney U test, p = 0.049), while patients

who showed developmental delay tended to die later (Mann-

Whitney U test, p = 0.014). As shown in Figure 3C, the number

of PTVs (protein-truncating variants), such as splice-sites,

nonsense, frameshift and codon variants, was positively

associated with a higher risk of developmental delay (Chi

squared test, χ2 = 7.337, p = 0.026).
5 Discussion

The high mortality rate of infantile MDDS and the lack of

effective treatments lead to an extremely poor prognosis for

patients with the disease, despite its extremely low morbidity.

Progression of the disease is usually faster in patients with

infantile MDDS caused by RRM2B defects and death comes at

an earlier stage (1, 23). The common clinical manifestations are

feeding difficulties, failure to thrive, hypotonia in newborns,

respiratory distress and lactic acidosis, occasionally found with

proximal tubulopathy, seizures, SNHL and GI symptoms

(24, 25). Fewer than 40 cases of infantile-onset MDDS, caused by

an RRM2B defect, have been reported and most developed lethal

symptoms in infancy, with approximately 85% mortality (9, 18–21).

A lack of etiological and pathogenic understanding of the disease

remains a fundamental reason for the poor results from clinical

intervention. It is necessary to carefully investigate each clinical case

to raise the awareness of medical practitioners in discerning and

diagnosing the syndrome and to promote the development of

appropriate treatments for each affected patient.

In this study, we reported a patient whose RRM2B function was

most likely impaired by a homozygous nonsynonymous variant. The

patient was affected by the typical features of infantile MDDS, with

respiratory distress and failure as his major cause of death. His

parents refused permission for a muscle biopsy, which meant that

residual muscle mtDNA could not be investigated. The novel

variant in RRM2B was confirmed in the trio-family and was

evaluated to be deleterious, based on its biological pathogenicity,

through a set of functional predictions. It was considered to be a

plausible cause of MDDS in the patient. The novel variant was

found in a phylogenetically conserved site and may have a high

impact on gene function. This further added to the evidence that
Frontiers in Pediatrics 07
this novel mutation is Likely Pathogenic. A comprehensive

analysis of the clinical phenotype of the patient adds support for a

correlation between genotype and pathogenesis of the disease.

The p53R2 protein that is encoded by RRM2B is a homolog of

subunit R2 of RNR, which is a heterotetramer composed of two R1

subunits and two R2 subunits (8, 26). In the cytosol (3), RNR is

essential for keeping an intact mitochondrial deoxyribonucleotides

triphosphate (dNTP) pool and is required for the conversion of

ribonucleotide diphosphate to deoxyribonucleotide diphosphate.

Damage to p53R2 synthesis prevents the dNTP pool from being

maintained for mtDNA replication, which leads to mtDNA

depletion (Figure 1A). The RRM2B gene is widely expressed across

human tissues, with an exceptional level of p53R2 found in

skeletal muscle. The p53R2 protein takes over from R2 in tissues

with a low amount of R2 and it plays a role in dNTP synthesis

(27). Therefore, variants in RRM2B that reduce the levels or

activity of p53R2 create an imbalanced dNTP pool, create a

deficiency in mtDNA synthesis and ultimately cause MDDS. The

newly discovered p.Ile52Thr substitution is close to the N-terminal

of p53R2 and shows a high degree of conservation across species

(Figure 2D). This suggested that the altered amino acid may

impact the structure and function of p53R2 (Figure 1B).

Moreover, this variant, at the 52nd position in the polypeptide,

was very close to the p.M55I (c.165G>A) variant, which was

previously reported to be pathogenic (18). The proximity of these

two variants supported a common influence on the structure and

activity of the polypeptide.

Our compiled data (Figure 3C, Supplementary Table S2)

indicated notable phenotypic heterogeneity among the RRM2B-

related diseases. The clinical phenotypes of other child- and

adult-onset diseases caused by a defect in RRM2B (13), such as

common PEO, ptosis, proximal muscle weakness, uncommon

encephalopathy, GI and renal involvement, were distinct from

infantile MDDS. We found that hearing loss occurred at a

different frequency in infantile-onset MDDS (43.59%), when

compared to other child or adult disorders (30.95%). This

contrasts to the similar percentage of 36% observed in these two

groups by Keshavan et al. (18), using a smaller data set. Seizures

were observed in 30.77% of infantile MDDS cases in our data,

which was also different to the 39% observed by Keshavan et al.

(18). The phenotypic heterogeneity observed in our study

resulted from a disparity in the spectrum of RRM2B variants

between infantile-onset MDDS and other child or adult disorders.

The detailed analyses in this study showed a significant

correlation between genotypes and phenotypic severity. Autosomal

recessive inheritance was observed more often in the infantile-

onset disorders than in other disorders, which were caused by

recessive or dominant inheritance of pathogenic variants (13). The

patients with MDDS with recessively inherited homozygote or

compound heterozygote genotypes had a more severe multisystem

condition and an earlier disease onset. Most died in infancy. In

contrast, the symptoms of patients with single heterozygote

variants emerged at a later age and were not as life-threatening.

Notably, the biallelic RRM2B variants in more seriously affected

infantile patients exhibited a departure in their distribution along

the gene from those in other child or adult patients. The variable
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severity of the disease phenotypes may be attributable to the

different functional domains in which the variants are found.

Variants were mainly found in exons 2, 3, 4 and 6, in patients

with infantile MDDS, and in exons 4, 6 and 9, in patients with

PEO (Supplementary Table S3). Hence, it appeared that the

variant position and genotype may exert different effects on the

gene function implicated in the different diseases.

In addition to investigating the spectrum of infantile MDDS

due to defects in RRM2B, we also attempted to expand our

understanding of the correlation between different phenotypes. It

has been found that the residual mtDNA levels reflect the RNR

activity and seem to be related to certain clinical features, such as

early death and age of onset, with marginal significance (13).

Thus, the degree of mtDNA depletion can be used to predict the

age of onset or the severity of the disease, in that a lower

residual mtDNA level is associated with an earlier onset, an

earlier death and a worse prognosis.
6 Conclusions

In summary, the novel c.155T>C variant in RRM2B that was

identified in this study may be a genetic cause of MDDS and

expands the variant spectrum of the RRM2B gene. The clinical

characterization for the case should be used to raise the

awareness of medical practitioners in discerning and diagnosing

the syndrome and may promote the development of appropriate

treatments for affected patients. We investigated the history of

disorders found in combination with an RRM2B defect to

improve our understanding of the genetic contribution to the

disease spectrum. In previously reported cases of infantile MDDS

there was a lack of investigation into the underlying molecular

mechanisms of the disease. This study provided data to inspire

future work to explore the functionality and pathogenicity of

RRM2B variants in various disorders.
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