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Oxygen in the neonatal ICU: a
complicated history and where
are we now?
Rachna R. Mamidi* and Cindy T. McEvoy

Division of Neonatology, Oregon Health & Science University, Portland, OR, United States
Despite major advances in neonatal care, oxygen remains the most commonly
used medication in the neonatal intensive care unit (NICU). Supplemental
oxygen can be life-saving for term and preterm neonates in the resuscitation
period and beyond, however use of oxygen in the neonatal period must be
judicious as there can be toxic effects. Newborns experience substantial
hemodynamic changes at birth, rapid energy consumption, and decreased
antioxidant capacity, which requires a delicate balance of sufficient oxygen
while mitigating reactive oxygen species causing oxidative stress. In this
review, we will discuss the physiology of neonates in relation to hypoxia and
hyperoxic injury, the history of supplemental oxygen in the delivery room and
beyond, supporting clinical research guiding trends for oxygen therapy in
neonatal care, current practices, and future directions.
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1 Introduction

The transition from fetus to newborn is a complex adaptation that results in a low

oxygen tension fetal environment to rapidly increasing oxygen exposure postnatally.

One study in the 1950s found the oxygen tension of amniotic fluid in preterm infants

to be very low, mostly between 6 and 14 mmHg (1). The low resistance placenta is the

source of fetal gas exchange and nutrition; however at birth, with the removal of the

placenta, major changes in the cardiovascular system occur including decrease in

pulmonary vascular resistance and subsequent increase in oxygen tension (2, 3).

Furthermore, neonates have high-energy needs as rapid growth and development

demand high oxygen delivery and consumption (2, 4). The brain in particular is

undergoing rapid post-natal expansion and requires efficiently functioning

mitochondria with a steady supply of oxygen to meet energy demands. Mitochondria

coupled with oxygen are also responsible for immune response, calcium buffering, and

regulating reactive oxygen species (ROS) production, which can trigger programmed

cell death (5–8). A delicate balance exists between adequate oxygen for growth and

development yet avoiding excess oxygen that can lead to toxicity and cell death.

Hypoxia occurs when there is inadequate oxygen at the cellular level and often

presents as cyanosis (blue discoloration of skin and mucous membranes) in the

neonate. Insufficient oxygen disrupts cerebral oxidative metabolism and can lead to

depletion of energy reserves in tissues. Furthermore, hypoxia triggers neurotoxic

biochemical pathways including: changes in membrane potentials and ion

distribution, production of nitric-oxide, accumulation of excitatory amino acids in

extracellular space, inflammation, and necrosis (9–11). During the hypoxic state, cells
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shift to anaerobic metabolism leading to buildup of lactate as a

byproduct causing metabolic acidosis that further harms cellular

processes. Chronic hypoxia ultimately leads to apoptosis and

cell death, particularly in the brain resulting in a decreased

number of neurons (9, 12). Hypoxia of the fetus or newborn is

one of the main causes of brain injury that can lead to long-

term neurodevelopmental impairment, especially in preterm

infants (13, 14).

Although preterm and term neonates require high oxygen

demand they are particularly susceptible to oxidative stress and

injury. Oxygen is a key component in energy metabolism in the

mitochondrial respiratory chain by being reduced to water. This

process generates ROS and reactive nitrogen species (RNS), some

of which are free radicals and highly toxic. They damage the

structure of nucleic acids, lipids, and proteins leading to

oxidative injury (15–19). Other ROS, such as hydrogen peroxide,

is not a free radical but important for physiologic cell signaling

that regulates pulmonary circulation and blood flow within the

ductus arteriosus (19). During normal fetal-to-neonatal transition

the increased exposure to oxygen causes a mild physiologic

oxidative stress that is crucial for postnatal adaptation. However,

oxidative injury results when there is severe oxidative stress due

to an imbalance between generated free radicals and inadequate

neutralization by antioxidant systems, especially with a burst of

free radical generation. Pulmonary capillary endothelial and

alveolar epithelial cells are targets for ROS injury causing

hypoplasia, lung edema, hemorrhage, and deposits of collagen,

elastin, and hyaline membrane (20–24). The developing

gastrointestinal tract is also affected by hyperoxia which causes

thickened ileal mucosa, fewer Paneth, goblet cells and vili,

decreased secretory components, increased inflammation and

fibrosis, and cell apoptosis (25–31). All of these changes are

detrimental to the gastrointestinal tract’s vital function in

mucosal immunity. Hyperoxia exposure is also associated with

development of retinopathy of prematurity (ROP), which is an

eye disease due to abnormal blood vessel growth that can lead to

blindness. Oxidative stress has been linked to dysregulated

signaling pathways that cause ROP (32, 33).

Preterm neonates are at a further disadvantage for combating

oxidative stress due to decrease antioxidant capacity from

insufficient accretion of important minerals and vitamins during

gestation (34). Additionally, preterm infants are often born at a

developmental stage with inadequate expression of antioxidant

defense in the lung (35). Plasma vitamin C concentrations are

initially higher in pre-term neonates than term neonates but

follow a rapid and sharp decline over the first few days of life

(36, 37). Biochemical vitamin D deficiency is seen in both term

and preterm neonates but is more profound in preterm neonates

(38–41). A systematic review and meta-analysis demonstrated

preterm and term neonates have vitamin E concentrations below

the recommended levels at birth (42). Preterm and term

neonates are also known to have vitamin A deficiency with

multiple clinical trials evaluating the benefit of supplementation

by measuring outcomes such as mortality, oxygen use, and

growth, but have shown mixed results (43). The largest

randomized controlled trial evaluating vitamin A
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supplementation (NeoVitA) for preventing bronchopulmonary

dysplasia (BPD) or death in extremely low birth weight neonates

has yet to publish results (44). There are also clinical trials

evaluating supplementation of antioxidant enzymes in preterm

and term neonates. Superoxide dismutase (SOD) was a

promising enzyme for supplementation however there is

conflicting evidence regarding long-term follow up (45–48).

A Cochrane meta-analysis demonstrated that there is insufficient

data to conclude SOD is efficacious in preventing chronic lung

disease of prematurity (46).

Oxygen toxicity is not limited to molecular injury but may also

cause reprogramming of normal lung development. Alveolar

simplification and aberrant, disorganized lung vasculature has

been demonstrated in preterm baboons (49, 50) and in term

rodents exposed to hyperoxia at birth (51, 52). Early exposure to

hyperoxia inhibits normal cell proliferation and angiogenesis,

leading to altered lung development. The degree of altered lung

development may explain the variation in severity of respiratory

outcomes in surviving preterm infants.

Pulse oximetry is the most common noninvasive method of

measuring saturation of oxygen in the blood and guides the

clinical application of supplemental oxygen based on specific

thresholds. When air is breathed into the lungs, oxygen is

transported into capillaries that in turn send oxygen rich blood

to the heart, which subsequently gets pumped to the rest of the

body. It is important to remember that the pulse oximeter

detects oxygen saturation of the blood and not the lung itself as

the lung likely requires increased oxygen to maintain normal

oxygen tension in the blood and delivery to other organs.
2 Use of oxygen in the delivery room

2.1 Historical background

The discovery of oxygen is accredited to Joseph Priestly in

1774, however a Polish alchemist named Michal Sedziwój

acknowledged its full significance as early as 1604 (53). Oxygen

was used in neonatal resuscitation as early as 1780 with the first

publication of oxygen use in newborn resuscitation occurring in

1928 (54–56). By the 20th century it became the standard of care

for asphyxiated newborns due to an unfounded belief in

perinatal brain damage resulting from birth asphyxia (54, 55).

The potential toxicity of oxygen was first noted in the late 1940s

by the first published description of retrolental fibroplasia (RLF),

an eye disease affecting preterm neonates, now known as ROP

(57). A husband and wife ophthalmologist team at Johns

Hopkins University further confirmed the progressive nature of

RLF in 1948 (58). It wasn’t until the 1950s that oxygen was

identified as the offending agent causing RLF, leading to

blindness in children (59, 60). This discovery led to a paradigm

shift in limiting oxygen in the delivery room that likely led to

increased morbidity and mortality of preterm and sick neonates

(61). With the development of oxygen saturation monitoring in

the 1980s, there was renewed interest in targeted oxygen therapy.

Multiple studies have described normal increases in oxygen
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saturation that occurs in healthy term neonates and thus current

neonatal resuscitation guidelines supports increasing oxygen

saturation targets in the first 10 min of life (62–66).
2.2 Term neonates

Asphyxiated term neonates were treated with 100% oxygen in

the delivery room as the standard of care by the 1960s (67). The

International Liaison Committee on Resuscitation (ILCOR) formed

the first international guidelines for newborn resuscitation in 1992

in which use of 100% oxygen was recommended (68). Since those

initial guidelines it has become clear that many practices at that

time were not evidence based (69). By the 1990s, studies in human

neonates demonstrated adequate resuscitation of asphyxiated term

neonates with use of 21% FiO2 and harm in neonates exposed to

100% FiO2 (70, 71). Ramji et al. demonstrated in a randomized

controlled trial (RCT) of 84 asphyxiated neonates that room air is

as effective as 100% oxygen. Furthermore, neonates in the room

air group had higher Apgar scores and less time to first cry with

no neurologic sequela at 28 days follow up (70). Saugstad et al.

lead an international, multicenter RCT including 703 asphyxiated

neonates that demonstrated they could be adequately resuscitated

with room air and recovered quicker than neonates resuscitated

with 100% FiO2, assessed by Apgar scores and time to first breath

and cry (71). At further follow up, conducted by a pediatrician

using a standardized examination at 18–24 months, there was no

significant difference in neurodevelopmental outcomes between the

two groups (72). Studies in the 2000s further illustrated the

harmful effects of resuscitation with 100% FiO2. Vento et al.

demonstrated in a RCT of 40 asphyxiated term neonates that

neonates resuscitated with 100% FiO2 compared to room air

exhibited biochemical findings associated with prolonged oxidative

stress that persisted even after 4 weeks of life (73). Vento et al.

also published similar findings of 830 neonates treated over 6

years at their institution that further supported their conclusions

(74). The most complete systematic review and meta-analysis

published in 2008 demonstrated that asphyxiated neonates

resuscitated with room air compared to 100% FiO2 had lower

mortality with a trend toward decrease risk of hypoxic

ischemic encephalopathy (HIE), a type of brain damage caused

by lack of oxygen to the brain during or shortly after birth in

which diagnosis is made by a combination of physical exam, blood

work, and details of labor and delivery (75). Furthermore,

long-term follow up did not show significant difference in

neurodevelopmental outcome (76). These studies demonstrated a

reduction in mortality with resuscitation using room air without

evidence of harm. Term infants who are under normal hypoxic

state during the fetal-to-neonatal transition and are then exposed

to high concentration of oxygen (reoxygenation) during

resuscitation likely generate oxygen free radicals that may explain

this poorer outcome (77). Additionally, animal and human studies

have demonstrated a decrease in cerebral blood flow with

hyperoxia, increasing the risk for ischemic injury (78, 79).

Major changes occurred in ILCOR guidelines for newborn

resuscitation from 2005 to 2010 including recommendation to
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start resuscitation with room air rather than 100% FiO2 (80).

More recently, a systematic review and meta-analysis in 2019

further supported room air being superior to 100% FiO2 during

the initial resuscitation of the term neonates by reducing

neonatal mortality (risk ratio [RR] = 0.73; 95% confidence

interval [CI]: 0.57–0.94) (81). This growth in evidence solidified

the current neonatal resuscitation guidelines that strongly

recommend starting with 21% FiO2 and caution against 100%

FiO2 in neonates ≥35 weeks’ gestation (82, 83).
2.3 Preterm neonates

At birth, fluid in the alveoli is reabsorbed and replaced with

air. A combination of mechanical, vasoactive, and neural factors

along with increased oxygenation result in an increase in

pulmonary blood flow. This allows the lungs to participate in

gas exchange and supply oxygenated blood to the heart. Preterm

infants are at a high risk of inadequate pulmonary blood flow

due to immature architecture of the lung and surfactant

deficiency thus they likely require a higher oxygen concentration

during resuscitation than term infants. However, evidence for

the optimal level of oxygen used in the resuscitation of preterm

neonates is much less conclusive than in term neonates. By the

1990s there was evidence that use of high levels of oxygen may

be unnecessary and harmful to preterm neonates (79). However

multiple studies demonstrate 21% FiO2 is not sufficient for the

preterm population (84–86). Therefore the optimal oxygen

concentration in the initial resuscitation of preterm neonates is

somewhere between 21% and 100% which is a broad range and

tremendous knowledge gap in the field. The 2010 ILCOR

consensus guidelines recommended against use of 100% FiO2

but initiating some supplemental oxygen in the initial

resuscitation of preterm neonates and titrating based on oxygen

saturation (87). A systematic review and meta-analysis in 2018

demonstrated no difference in mortality with use of lower

(<40%) vs. higher (≥40%) FiO2 in the resuscitation of preterm

neonates. Only 1 of the 10 included studies reported increased

mortality in the lower (21%) vs. higher (100%) oxygen group

(88). A RCT of 52 preterm neonates (<30 weeks’ gestational

age) demonstrated the higher (100%) oxygen group led to

improved breathing effort, improved oxygenation, and shorter

duration of mask ventilation as compared to the lower (30%)

oxygen group without increased oxidative stress markers and no

difference in mortality (89). There are plans for a prospective

meta-analysis of current ongoing RCTs of neonates <29 weeks’

gestation randomized to high (60%) vs. low (30%) oxygen for

initial resuscitation at birth. Results projected to be complete by

2025 and neurodevelopmental outcomes by 2027 (90). The largest

clinical trial to date of oxygen concentration for the resuscitation

of preterm neonates in the delivery room demonstrated higher

incidence of bradycardia in the room air group vs. 100% FiO2

(91). Studies further demonstrated oxygen saturation <80% at

5 min after birth was associated with increased mortality (92–94).

The current consensus for the initial resuscitation of preterm

neonates is to target an oxygen saturation of >80% by the
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first 5 min of life and avoid bradycardia with goal heart rate >100

beats per min.
3 Use of oxygen in the neonatal ICU
beyond the initial resuscitation

3.1 Historical background

Hyperoxia (state of excess supply of oxygen in tissues and

organs) beyond the initial resuscitation is associated with

multisystem morbidity and mortality including lung injury

(BPD), ROP, brain injury (intraventricular hemorrhage and

periventricular malacia), and intestinal injury. Yet, the optimal

concentration of oxygen is still unknown, especially in preterm

neonates. When hyperoxia was identified as the cause of RLF

and blindness in children in the 1950s, the use of supplemental

oxygen was intensely curtailed by the 1960s despite estimate of

16 additional deaths for every case of blindness prevented

(59, 95, 96). In 1977, a large prospective observational study

could not identify a relation between high partial pressure of

arterial oxygen (PaO2≥ 100 and 150) and RLF however

demonstrated a strong association of RLF with cumulative

supplemental oxygen exposure (97). With the advent of

transcutaneous PO2 electrodes, oxygen monitoring became more

accessible and precise allowing for tighter control by the 1980s

and 1990s (98–100). In 2007, the American Academy of

Pediatrics recommended an oxygen saturation range of 85%–95%

in neonates in the first two weeks of life (101).
3.2 Oxygen saturation targets for preterm
neonates

There were only a few, small, randomized trials evaluating

oxygen saturation targets in preterm neonates until the early

2000s. The Supplemental Therapeutic Oxygen for Prethreshold

Retinopathy of Prematurity (STOP-ROP) trial randomized 649

preterm neonates with prethreshold ROP at 35 weeks’

postmenstrual age to either 89%–94% or 96%–99% oxygen

saturation (SpO2) by pulse oximetry. This study demonstrated no

difference in incidence of ROP, however the higher threshold

group had more adverse pulmonary events (pneumonia and/or

exacerbations of chronic lung disease and need for oxygen,

diuretics, and hospitalization at 3 months corrected age) (102).

The Benefits of Oxygen Saturation Targeting (BOOST) trial

randomized neonates born <30 weeks’ gestation who needed

supplemental oxygen at 32 weeks’ postmenstrual age to either

91%–94% or 95%–98% SpO2. This study demonstrated no

difference in ROP, growth, or development; however the higher

threshold group required more home oxygen (103). However,

both these studies tested oxygen saturation targets that would be

considered very high by today’s standard.

Following these studies, the Neonatal Oxygenation Prospective

Meta-Analysis (NeOProM) collaborative was formed in 2003 to

investigate optimal oxygen targets in extremely preterm neonates
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multicenter study that included five clinical studies with similar

protocols to provide individual participant data at trial

completion for inclusion in an independent patient meta-analysis.

This study randomized 4,965 preterm neonates <28 weeks’

gestational age to either 85%–89% or 91%–95% SpO2 within the

first 24 h of birth (104). The studies found no difference in

combined outcome of death and/or major neurodevelopmental

impairment at 18–24 months however the lower oxygen

saturation target group had a significantly increased mortality

(105–109). The lower target threshold group had reduced risk of

ROP requiring treatment however there was significant

heterogeneity with only one trial within NeOProM that found

significant reduction in ROP treatment. Furthermore, this did not

translate to increased severe visual impairment at 18–24 months

(105–110). The lower oxygen target group also had higher

incidence of necrotizing enterocolitis (NEC), a disease of the

intestinal tract in which tissue lining becomes inflamed, dies, and

sloughs off. However, the study demonstrated no difference

between the groups for BPD, intraventricular hemorrhage (IVH),

periventricular leukomalacia (PVL), and neurodevelopmental

outcomes (108, 110). However, a major limitation to consider is

the significant overlap in the actual exposed oxygen saturation

between the groups resulting in poor separation of the

intervention and comparison groups (110).
4 Methods of oxygen measurement
and titration

Improved measurement of blood oxygen levels and more

precise titration of supplemental oxygen may decrease the time

spent in hypoxia and hyperoxia, thus reducing oxygen toxicity.

In this section we will discuss current methods of oxygen

measurement and titration and ongoing investigations in this area.
4.1 Pulse oximetry

4.1.1 Principles
Measurement of arterial oxygen saturation by pulse oximetry is

based on the attenuation of light to the materials through which the

light travels and photoplethysmography, an optical technique used

to detect blood volume changes in the microvascular bed (111).

Red and infrared lights are used based on the differential

absorption of oxyhemoglobin and deoxyhemoglobin. During

systole, the transmitted light intensity decreases as light is

absorbed by the hemoglobin in the arteries. During diastole,

transmitted light intensity increases due to decrease absorption.

The ratios of the absorbance of the two wavelengths of light

during systole and diastole are compared by the pulse oximeter

and a built in algorithm converts the ratios to pulse oximetry

oxygen saturation (112). This is measured on the neonate by

transmitting the light through a distal extremity with a detector

placed on the opposite side of the same extremity. The major

advantage of pulse oximetery is the non-invasive ease of
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application and ability for continuous monitoring, however many

limitations exist.

4.1.2 Limitations
Due to the shape of the oxygen-hemoglobin dissociation curve,

pulse oximetry has difficulty detecting hyperoxia >90% SpO2.

Therefore small increase in SpO2 may indicate large increases in

partial pressure of oxygen in arterial blood (PaO2) (113, 114).

This is a physiologic limitation that has major implications for

oxygen toxicity and stress in preterm neonates. Additionally, data

used to calibrate pulse oximetry come from healthy Caucasian

adults with adult hemoglobin ranges that are correlated to

arterial blood samples. This poses a major limitation for

calibration for different skin types, ethnicities, and ages. When

calibrating for SpO2 < 80%, manufacturers rely on extrapolation

and thus are not as accurate. Most manufacturers claim an

accuracy of ±2% (115). Signal averaging time also places a

limitation on pulse oximetry by causing response delays. Most

conventional pulse oximeters have a default time of 8 s to display

average values of SpO2 measured over this time period. Signal

averaging time can be adjusted to a lower time however this may

increase the frequency of alarms causing “alarm fatigue” to

bedside providers. Averaging times can also be increased,

however this may prevent detection of important hypoxemic

episodes (116, 117). Motion artifacts are a common disturbance

with pulse oximetry. This can lead to false alarms by movements

of the probes or poor peripheral perfusion. However modern

algorithms have decreased this issue. Despite these limitations,

pulse oximetry remains the most widely used monitoring system

in neonates. However, it is critical to recognize that pulse

oximetry is a surrogate marker for tissue oxygenation and only

measures peripheral arterial oxygen saturation.

4.1.3 Automatic oxygen control
A major clinical variable affecting oxygen saturation targeting

using pulse oximetry is the labor-intensive process of manually

titrating FiO2 by bedside staff. Studies have shown despite

multiple adjustments per hour, target ranges were achieved only

50% of the time (118). Based on this concern and need for

tighter control of oxygen in neonates, automatic oxygen control

(AOC) systems held high promise. AOC systems consist of an

oxygenation monitoring device, (pulse oximeter), gas delivery

system (ventilator or cannula), and an algorithm to determine

timing and degree of FiO2 adjustments (119). Multiple studies,

spanning the last 40 years, in term and very low birth weight

preterm neonates have demonstrated AOC systems were more

effective than manual titration in achieving oxygenation targets

(120–133). There have been some studies that investigated long

term effects and found no difference in neurodevelopmental

outcome at 2 years of age between the automated oxygen control

group and standard of care manual control groups (134).

Despite these findings there are many reasons AOC systems are

not in widespread use. As the optimal target saturation for preterm

neonates is still unknown a more consistent maintenance of target

oxygen saturation may uncover adverse or beneficial effects.

Furthermore, the reliability of pulse oximetry is key to a
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system is necessary to ensure accurate reading by pulse oximetry.

Additionally, this automated system is not a replacement for

provider response in investigating mechanism of oxygen

saturation changes and appropriate intervention needed. Despite

the known physiological benefits, there is insufficient data

regarding improved clinical benefits to confidently introduce

these systems into routine clinical care. There are currently

ongoing trials to investigate effect of AOC on clinical outcomes

including prolonged ventilation, death, severe ROP, BPD, NEC,

and neurodevelopmental impairment (135, 136).
4.2 Near-infrared spectroscopy

Another technology that allows continuous non-invasive

monitoring of oxygenation is near-infrared spectroscopy (NIRS).

Unlike pulse oximetry, NIRS does not detect pulse waveform. It

measures transparency of biological tissue of near-infrared

spectrum of light affected by oxygen consumption and oxygen

delivery by measuring ratio of oxygenation and deoxygenated

hemoglobin (137). Originally developed to assess cerebral

oxygenation perioperatively during cardiac surgery and

neurosurgery, it has expanded to other clinical settings and ages

including neonates. The most frequently measured sites in neonates

include cerebral, renal, and splanchnic (intestinal) oxygenation.

4.2.1 Cerebral NIRS
The brain is especially vulnerable to hypoxia during the fetal to

neonatal transition and thus cerebral NIRS was considered a

potential tool in resuscitation of newborns in the late 1970s

(138). However given lack of established standards it has been

difficult to include cerebral NIRS in the routine resuscitation of

newborns. A systematic review in 2022 investigated whether early

NIRS monitoring (<6 h of age) can predict neurodevelopmental

outcome at 1–2 years in infants with HIE and demonstrated no

significant difference in values of cerebral oxygenation. They

further concluded very little data exists and further studies are

required with standardized approach for adequate comparison

(139). A recent multinational, randomized controlled trial of over

600 preterm neonates demonstrated no difference in survival or

cerebral injury when cerebral NIRS was measured in

combination with defined treatment guidelines in the immediate

resuscitation after birth (140).

4.2.2 Renal NIRS
Acute kidney injury (AKI) can result from low renal blood flow

especially in the setting of a patent ductus arteriosus (PDA) in very

low birth weight neonates. Renal NIRS has been used to help

identify early markers of AKI. A prospective observational study

in France demonstrated low renal NIRS values during the first

24 h of life is associated with development of AKI in preterm

neonates (141). However conflicting evidence exists as well. High

renal NIRS in neonates with HIE was demonstrated to be

associated with AKI, whereas lower renal NIRS in neonates

undergoing cardiac surgery was associated with AKI (142, 143).
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4.2.3 Splanchnic (intestinal) NIRS
There has been robust interest in the use of splanchnic or

intestinal NIRS in newborns to detect early markers for

development of necrotizing enterocolitis (NEC). A prospective

cohort study of 100 preterm neonates demonstrated decreased

intestinal NIRS values and increased variability in neonates who

developed NEC (144). Another prospective observational study of

10 preterm neonates and 20 matched controls demonstrated

intestinal oxygenation is impaired before the onset of clinical

NEC (145).

4.2.4 Limitations
NIRS is an indirect measure of oxygenation and therefore has

several limitations of its application when there is movement, low

arterial oxygen levels, darker skin pigmentation, or changes in

weight and/or edema (146). Perhaps the biggest limitation is that

there are no established standards and specific guidelines for use

and interpretation of NIRS in neonates are lacking. Currently,

there is not enough evidence to support the routine use of NIRS

in neonates to justify additional monitoring on fragile neonates

with limited body surface area.
5 Future directions

Currently, there are no available therapies to combat oxidative

injury in neonates. Further research in antioxidant therapy

including target specificity, bioavailability, and genetic variability

may reveal novel approaches to mitigate oxygen toxicity. Stem

cells hold therapeutic potential for hypoxia induced cellular

injury and apoptosis by promoting neuronal cellular repair and

regeneration. However more clinical studies are needed to

determine the stem cell type, patient selection, route and time of

administration to achieve standardized products and a refined

protocol (147). Additionally the optimal level of positive end-

expiratory pressure (PEEP) to minimize hyperoxic lung injury

but provide adequate lung recruitment during invasive

ventilation is unknown. Future research in ventilatory strategies

that can be individualized through oxygenation guided lung

recruitment methods may provide a personalized approach to

mitigate effects of hypoxia and hyperoxia. Furthermore,

noninvasive ventilation in preterm infants is also not

standardized. Continuous positive airway pressure (CPAP) is the

standard of care for preterm infants with respiratory distress

syndrome, however the level and duration of CPAP is highly

variable. Future research in this area may minimize lung injury

by investigating the optimal CPAP strategies to reduce hypoxia

and hyperoxia in preterm infants.
6 Conclusions

Term and preterm neonates face the unique dilemma of

potentially needing life-saving oxygen supplementation while also
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at risk for oxygen toxicity. The rapidly changing physiology at

birth, the extensive energy needs for growth and development,

and decreased antioxidant capacity put them at this unique risk.

Neonatology has had a complicated history with the application

of oxygen from using it ubiquitously to fierce restriction due to

retinopathy of prematurity, which left our sickest and most

preterm neonates at risk of morbidity and mortality. With the

advent of pulse oximetry there has been more refined approach

to oxygen supplementation and titration however the exact

thresholds still remain unknown. Furthermore, it is likely that

optimal oxygenation saturation is not binary but varies throughout

NICU hospitalization. There are ongoing investigations into

automatic oxygen control and near-infrared spectroscopy to shed

light on the optimal strategies for oxygen thresholds while

avoiding oxygen toxicity and stress. Further research in

antioxidant systems, stem cell therapy, optimal PEEP, and optimal

CPAP level and duration may also reveal other strategies to

improve oxygen therapy in preterm infants.
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