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Recent advancements in biomarker identification and machine learning have
significantly enhanced the prediction and diagnosis of Bronchopulmonary
Dysplasia (BPD) and neonatal respiratory distress syndrome (nRDS) in preterm
infants. Key predictors of BPD severity include elevated cytokines like
Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α), as well as
inflammatory markers such as the Neutrophil-to-Lymphocyte Ratio (NLR) and
soluble gp130. Research into endoplasmic reticulum stress-related genes,
differentially expressed genes, and ferroptosis-related genes provides valuable
insights into BPD’s pathophysiology. Machine learning models like XGBoost
and Random Forest have identified important biomarkers, including CYYR1,
GALNT14, and OLAH, improving diagnostic accuracy. Additionally, a five-gene
transcriptomic signature shows promise for early identification of at-risk
neonates, underscoring the significance of immune response factors in BPD.
For nRDS, biomarkers such as the lecithin/sphingomyelin (L/S) ratio and
oxidative stress indicators have been effectively used in innovative diagnostic
methods, including attenuated total reflectance Fourier transform infrared
spectroscopy (ATR-FTIR) and high-content screening for ABCA3 modulation.
Machine learning algorithms like Partial Least Squares Regression (PLSR) and
C5.0 have shown potential in accurately identifying critical health indicators.
Furthermore, advanced feature extraction methods for analyzing neonatal cry
signals offer a non-invasive means to differentiate between conditions like
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sepsis and nRDS. Overall, these findings emphasize the importance of combining
biomarker analysis with advanced computational techniques to improve clinical
decision-making and intervention strategies for managing BPD and nRDS in
vulnerable preterm infants.
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1 Introduction

Bronchopulmonary dysplasia (BPD) and neonatal respiratory

distress syndrome (nRDS) are major complications in preterm

infants, often resulting in long-term health issues (1, 2).

Identifying reliable biomarkers for these conditions is crucial for

improving clinical outcomes. Studies have highlighted potential

biomarkers and mechanisms involved in their pathogenesis.

Endothelin-1 (ET-1) is a promising biomarker for predicting

BPD, as it is associated with bronchoconstriction and pulmonary

hypertension, with elevated levels indicating early risk in preterm

infants with nRDS (3–5). Interleukin-6 (IL-6) is another

significant biomarker, with higher serum levels correlating with

BPD development, underscoring the role of inflammation in lung

injury (6). Oxidative stress is also critical, as preterm infants have

immature antioxidant defenses, leading to increased lung tissue

damage (7, 8). Clara cell protein expression has been investigated

as a potential biomarker for lung injury and BPD risk (9).

Furthermore, microbial colonization, particularly by

Pneumocystis jirovecii, may exacerbate respiratory distress in

preterm infants through mechanisms like surfactant disruption

and mucus overproduction (10, 11). This underscores the need

for biomarkers that reflect both inflammatory responses and

microbial presence to effectively assess BPD risk.

Recent advancements in predicting BPD and nRDS in preterm

infants utilize biomarkers and machine learning techniques to

enhance early diagnosis and clinical outcomes (12, 13). Machine

learning algorithms have significantly improved predictive

capabilities for these conditions. Studies employing weighted

gene co-expression network analysis (WGCNA) and machine

learning have identified novel serum biomarkers linked to BPD,

such as TMCC2, GYPA, and BPGM (14). This approach

enhances prediction accuracy and integrates complex datasets,

deepening understanding of factors influencing BPD and nRDS

(12, 15, 16). Combining clinical data with machine learning

models has shown promise in predicting outcomes for neonates

with respiratory distress. Analyzing clinical signs and laboratory

results through machine learning can inform predictive models,

assisting clinicians in managing preterm infants and leading to

personalized treatment plans that improve survival rates and

reduce long-term complications associated with BPD and

nRDS (17–19).

This review aims to systematically explore and synthesize

existing literature on advancements in biomarkers and machine

learning algorithms that improve the prediction and early

identification of BPD and nRDS in preterm infants. By
02
examining the interplay between biological markers and machine

learning techniques, this review seeks to highlight innovative

approaches that may enhance clinical outcomes, inform

diagnostic strategies, and facilitate timely management of these

prevalent neonatal conditions. Additionally, the review will

identify research gaps, outline future investigation directions, and

propose recommendations for integrating these technological

advancements into clinical practice.
2 Bronchopulmonary dysplasia

2.1 Cytokines and inflammatory biomarkers

BPD is a significant complication in preterm infants, marked

by chronic lung inflammation and injury, with cytokines and

inflammatory biomarkers playing crucial roles in its development

(20, 21). IL-6 is notably elevated in infants who develop BPD,

with levels above 46.125 pg·ml−1 correlating with increased risk,

supported by a high area under the curve (AUC) of 0.849 (22).

Tumor Necrosis Factor-alpha (TNF-α) is also commonly

elevated, disrupting lung development through inflammatory

pathways. Acute inflammation is linked to Interleukin-1 (IL-1)

and Interleukin-8 (IL-8), while reduced levels of the anti-

inflammatory cytokine Interleukin-10 (IL-10) may predispose

newborns to BPD by failing to regulate inflammation effectively

(23–25). Inflammatory biomarkers such as the Neutrophil-to-

Lymphocyte Ratio (NLR), soluble gp130, and 8-Hydroxy-2′-
deoxyguanosine (8-OHdG) are emerging as predictors of BPD

severity, with elevated NLR indicating systemic inflammation and

high soluble gp130 levels reflecting inflammatory response

involvement (26, 27). The inflammatory response in BPD

includes immune cell infiltration, especially monocytes and

neutrophils, which can further damage tissue. Additionally, the

combination of hyperoxia from supplemental oxygen and

inflammation exacerbates oxidative stress, contributing

significantly to lung injury and BPD pathogenesis. A study by

Gao et al. explored the predictive value of umbilical cord blood

Interleukin-6 (UCB IL-6) in 414 preterm infants born before 32

weeks. The study found a significant correlation between UCB

IL-6 levels and BPD severity, achieving an area under the

receiver operating characteristic curve (AUROC) of 0.815,

particularly differentiating Grade 2–3 BPD patients. Four

machine learning models—XGBoost, CatBoost, LightGBM, and

Random Forest—produced micro-average AUROC values of

0.841, 0.870, 0.851, and 0.878, respectively, with UCB IL-6
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consistently identified as the most important feature across all

models. This indicates that UCB IL-6 is a valuable biomarker for

assessing the risk of severe BPD in preterm infants, aiding

clinical decision-making (7).
2.2 Gene expression and stress-related
biomarkers

2.2.1 Endoplasmic reticulum stress-related
genes (ERSGs)

Recent studies highlight the involvement of endoplasmic

reticulum (ER) stress-related genes (ERSGs) in BPD

pathogenesis. ER stress, caused by the accumulation of misfolded

proteins in the ER, disrupts cellular function, which is

particularly relevant for lung development in premature infants

(28–30). Research shows a strong correlation between ERSG

expression and various immune cells, like neutrophils and

macrophages, suggesting that ER stress significantly affects

immune responses in BPD patients. ERSGs are crucial for

essential processes supporting alveolar development, including

mitochondrial function maintenance, oxidative stress regulation,

and inflammation control. Infants with BPD exhibit significant

dysregulation of ERSGs compared to those without, indicating a

broader role for ER stress in the disease’s progression and

severity (31, 32). Understanding ERSG implications may lead to

novel therapeutic strategies to mitigate lung damage in infants at

risk for or affected by BPD. Ziyu Tao et al. examined the

relationship between ERSGs and BPD using interpretable

machine learning on the GSE32472 dataset. They identified two

molecular clusters linked to ER stress in BPD patients, with

notable immune cell infiltration and altered ERSG expression

compared to controls. Among the models tested, the support

vector machine (SVM) showed superior discriminative ability,

particularly when combined with five specific genes, indicating

its potential for clinical risk assessment and therapeutic

interventions in BPD (32). These findings enhance our

understanding of BPD mechanisms and highlight biomarkers

that may assist in its management, underscoring ERSGs’ role in

the disease’s pathophysiology and their potential as

predictive markers.

2.2.2 Differentially expressed genes (DEGs)
Recent studies have identified differentially expressed genes

(DEGs) associated with BPD, improving our understanding of its

pathophysiology and potential therapeutic targets. One study

found 49 cluster-specific DEGs by integrating genes related to ER

stress with those linked to BPD, highlighting the complex

relationship between ER stress and immune responses in the

disease. Additionally, RNA sequencing of cord blood revealed

1,685 genes involved in pathways that inhibit lymphopoiesis and

adaptive immune responses, with 471 DEGs significant at

p < 0.01 and a total of 1,685 at p < 0.05. These DEGs were

enriched in crucial biological pathways, particularly T cell

receptor signaling and inflammatory responses such as IL-6/JAK/

STAT3 signaling. Key genes associated with lung alveolarization
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and BPD development included SPARC and AGER (33).

Moreover, elevated neutrophil activation and altered T cell

homeostasis were observed in BPD infants, indicating a

heightened inflammatory response that may contribute to disease

progression. The correlation between DEGs and immune cell

types, such as neutrophils and macrophages, suggests these genes

could influence immune infiltration patterns in the lungs of

affected infants (32, 34). The study by Luo et al. explores

potential biomarkers in the peripheral blood of neonates with

BPD. Utilizing the Gene Expression Omnibus dataset GSE32472,

the researchers identified 470 DEGs and conducted WGCNA,

revealing 1,351 significant genes. The intersection of DEGs and

WGCNA modules yielded 273 common genes, which were

subjected to functional enrichment analysis. To identify hub

genes, the researchers applied three machine learning algorithms

—SVM-RFE, LASSO, and Random Forest—resulting in the

identification of CYYR1, GALNT14, and OLAH as potential

BPD biomarkers. Additionally, flunisolide, budesonide, and

beclomethasone were predicted as therapeutic drugs linked to

these biomarkers (14). The findings indicate that CYYR1,

GALNT14, and OLAH may serve as diagnostic indicators for

BPD, thereby enhancing clinical diagnosis and preventive

strategies while highlighting the relevance of gene expression

profiles in understanding the condition.

2.2.3 Ferroptosis-related genes
Ferroptosis, an iron-dependent form of cell death characterized

by lipid peroxidation, has emerged as a significant factor in various

respiratory diseases, such as acute respiratory distress syndrome

(ARDS), asthma, and acute lung injury (35). Recent findings

indicate its involvement in the pathogenesis of BPD, particularly

in premature infants. Studies have shown elevated free iron levels

in the umbilical cord blood of these infants, with cumulative

enteral iron increasing BPD risk. Additionally, abnormal iron

accumulation has been detected in the lungs of BPD models, and

therapies targeting ferroptosis demonstrate potential in mitigating

hyperoxia-induced lung damage, suggesting a critical role for this

regulated cell death pathway in respiratory health and disease

(36, 37). Recent research by Fang et al. has highlighted the

potential of ferroptosis-related genes as diagnostic biomarkers for

BPD. Utilizing datasets from the GEO and FerrDb databases, the

study identified 23 ferroptosis-related differentially expressed

mRNAs (FRDE-mRNAs) primarily involved in biological

processes such as autophagy, fatty acid metabolism, and

ferroptosis itself. Four hub genes—LPIN1, ACADSB, WIPI1, and

SLC7A11—were selected through machine learning algorithms

including LASSO, SVM-RFE, and Random Forest to construct a

diagnostic nomogram, which demonstrated strong predictive

performance as evidenced by satisfactory receiver operating

characteristic (ROC) and calibration curves. Furthermore, the

study assessed immune cell infiltration in BPD, revealing

significant differences in eight immune cell markers between

BPD patients and controls. This research not only elucidates the

role of ferroptosis in BPD but also identifies key biomarkers that

could facilitate timely diagnosis and intervention, providing a

foundation for future investigations into the underlying
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mechanisms of the disease. Their research led to the development

of a diagnostic nomogram, pinpointing the relevance of ferroptosis

in BPD (38).

2.2.4 Cuproptosis-related genes (CRGs)
Cuproptosis is a recently discovered mechanism of cell death

distinct from traditional apoptosis, triggered by the accumulation

of copper ions within cells, resulting in toxic effects. This

mechanism interacts uniquely with lipid-acylated TCA cycle

proteins, and the disruption of these proteins due to elevated

copper levels sets off a chain of molecular events leading to cell

death (39, 40). Research into Cuproptosis has opened new

avenues for understanding cell death mechanisms and developing

therapeutic strategies to regulate copper levels in various diseases.

In the context of bronchopulmonary BPD, especially among

preterm infants, Cuproptosis-Related Genes (CRGs) such as

NFE2L2 and GLS have been identified as differentially expressed

between affected individuals and healthy controls, with these

genes located on chromosome 2 showing a positive correlation

and ties to immune responses (41, 42). Through bioinformatics

analyses, including the GSE108754 dataset, researchers, notably

Mingxuan Jia et al., uncovered differential expression patterns of

CRGs. In particular, NFE2L2 was more expressed in control

samples, while GLS was prominent in treatment groups, and

immune infiltration studies revealed significant differences in

monocyte cell populations. Applying weighted correlation

network analysis (WGCNA) identified the top 25% of gene

expressions, leading to the identification of five key marker genes

—NFATC3, ERMN, PLA2G4A, MTMR9LP, and LOC440700—

using various machine learning algorithms like Generalized

Linear Models, Random Forest, SVM, and Extreme Gradient

Boosting. The GLM model showed superior accuracy across

validation datasets, suggesting these genes could be promising

targets for early diagnosis and targeted therapies for BPD,

highlighting the significant role of novel cell death mechanisms

in the disease (41).
2.3 Genetic biomarkers and signatures

2.3.1 Genetic risk factors
Studies on heritability, including twin analyses, indicate that

genetic factors contribute to 53%–79% of BPD susceptibility

(43, 44), underscoring the role of familial influences. Investigations

into candidate genes have revealed critical genetic variants, such as

mutations in SPOCK2, which is vital for alveolarization, and

surfactant-associated genes like ABCA3, linked to both nRDS and

BPD development due to their impact on surfactant metabolism

and lung development (45, 46). Although genome-wide

association studies have struggled to consistently identify common

genetic variations related to BPD, the complex genetic landscape

appears to be influenced primarily by multiple rare variants (45).

Understanding these genetic predispositions is crucial for

identifying at-risk infants and developing prevention strategies.

A study by Dai et al. sought to enhance the early prediction of

BPD in premature infants by integrating genetic factors with
Frontiers in Pediatrics 04
clinical data. Analyzing a cohort of 245 infants born before 32

weeks gestation through exome sequencing, they identified 30

genes associated with BPD and 21 linked to severe BPD. Their

predictive models, incorporating these genetic risk gene sets with

clinical factors, achieved an AUROC of 0.915 for BPD,

outperforming the clinical-only model (AUROC 0.814, P = 0.013),

and a similar improvement was seen in the severe BPD model

(AUROC 0.907 vs. 0.826, P = 0.016). These findings underscore

the significant role of genetic factors in BPD susceptibility and

indicate that the proposed predictive model may facilitate better

risk stratification in premature infants (47).

2.3.2 Transcriptomic gene signature
Gene expression profiling provides deep insights into cellular

functionality across various tissues, particularly through whole

genome microarray analysis, which is the leading method for

evaluating transcriptomic variations in specific populations.

Although transcriptome-based risk and prediction scores show

promise for various adult diseases, their application in BPD has

not been extensively explored (48). A recent study by Alvaro

Moreira et al. aimed to develop a peripheral blood transcriptomic

gene signature using artificial intelligence to identify preterm

neonates at risk for BPD. By analyzing whole blood microarray

data from 97 very low birth weight neonates on day five of life,

the research defined BPD based on the necessity of positive

pressure ventilation or supplemental oxygen by 28 days of age.

The study found significant differences in gestational age and

birth weight between neonates diagnosed with and without BPD.

Out of 33,252 genes assessed, 4,523 showed a false discovery rate

of less than 1%. Machine learning models that combined five

genes achieved AUROC scores between 85.8% and 96.1%,

demonstrating strong predictive accuracy. The identified

pathways related to T cell development underscore the role of

immune factors in BPD’s pathogenesis. This study successfully

creates a five-gene blood signature for early BPD prediction,

emphasizing improved early identification and intervention

strategies (49). The research utilized a rigorous methodology with

careful participant assignment for model training and validation,

ensuring reliability when compared to established predictors like

gestational age and birth weight. Additionally, post hoc analyses

suggest that these transcriptomic signatures retain predictive

accuracy among high-risk neonates, and adherence to the

TRIPOD reporting guidelines underscores the study’s

commitment to methodological transparency, enhancing its

significance in the field.
2.4 Biomarkers and severities of BPD

To understand how biomarkers predict the severities of BPD it

is essential to categorize the disease manifestations and examine

the biomarkers linked to each. BPD can be classified into three

main phenotypes based on clinical presentation: (1) Lung

parenchymal disease, (2) Pulmonary vascular disease, and (3)

Airway disease. While most patients exhibit significant overlap

among these phenotypes, biomarkers can effectively identify the
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primary severities of the condition, each reflecting unique

underlying mechanisms and inflammatory profiles.

1. Lung Parenchymal Disease: This phenotype is characterized by

impaired alveolar development and dysregulated inflammation.

Biomarkers like IL-6 are elevated in infants with lung

parenchymal disease and correlate with lung injury severity.

Levels of IL-6 above 46.125 pg·ml−1 indicate an increased risk

of lung parenchymal disease, supported by an AUC of 0.849.

The NLR predicts systemic inflammation, while soluble gp130

indicates inflammatory response involvement. Dysregulation

of ERSGs also signifies broader roles in disease progression.

Understanding these biomarkers can help identify at-risk

infants and guide targeted interventions.

2. Pulmonary Vascular Disease: This phenotype features

abnormal pulmonary vascular development and increased

resistance. Inflammatory cytokines like TNF-α disrupt

normal lung development, affecting vascular remodeling.

Biomarkers linked to the vascular endothelium, such as

angiopoietins and VEGF, provide insights into this

phenotype, with elevated levels correlating with altered

vascular development and increased risk of pulmonary

hypertension in preterm infants. Additionally, ferroptosis-

related genes indicate that rising iron levels contribute to

oxidative stress and vascular injury. Recognizing these

biomarkers can enhance our understanding and therapeutic

strategies for pulmonary vascular disease in BPD.

3. Airway Disease: This phenotype involves airway inflammation,

hyperreactivity, and obstructive pathology and is often

associated with altered immune responses and infiltration of

specific immune cells, such as neutrophils and macrophages.

DEGs related to inflammatory pathways, particularly those in

T cell receptor signaling and IL-6/JAK/STAT3 signaling, are

vital for predicting airway disease. Elevated IL-8 and reduced

IL-10 levels may predispose infants to inflammation and

hyperreactivity. Recent studies have identified biomarkers like

CYYR1, GALNT14, and OLAH as potential diagnostic

indicators for airway disease, linked to inflammatory

processes and immune cell infiltration. Understanding these

biomarkers can facilitate early identification and intervention,

ultimately improving clinical outcomes for affected infants.

3 Neonatal respiratory distress
syndrome

3.1 Lecithin/sphingomyelin ratio (L/S ratio)
biomarkers

nRDS is closely associated with fetal lung maturity, which can

be evaluated through the lecithin/sphingomyelin (L/S) ratio in

amniotic fluid (50, 51). This ratio is a key indicator of surfactant

production, vital for lung function after birth, as lecithin is a

primary component of pulmonary surfactant produced by type II

pneumocytes (52). A higher L/S ratio indicates more surfactant

and a reduced risk of RDS, with a ratio of 2.4 or higher

suggesting mature lungs and low RDS risk. Conversely, a ratio
Frontiers in Pediatrics 05
below 1.5 indicates immature lungs and significantly increases

RDS risk, while transitional lung maturity is reflected by ratios

between 1.5 and 1.9, where some infants may still develop RDS

but often recover. The L/S ratio is determined via amniocentesis

and thin-layer chromatography, and for at-risk pregnancies,

corticosteroids like betamethasone may be given to enhance

surfactant production (53, 54). A study by Ahmed et al.

introduced a novel diagnostic method that combines attenuated

total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) with machine learning to address the lack of an effective

point-of-care (POC) diagnostic tool for nRDS. The diagnosis

relies on the L/S ratio, with a critical threshold below 2.2

indicating nRDS. Researchers recorded ATR-FTIR spectra for L/S

ratios from 1.0–3.4 using purified reagents, and employed

principal component regression (PCR) and partial least squares

regression (PLSR) to calibrate predictive models based on 155

raw baselined and second derivative spectra. They validated the

models using an additional 104 spectra. The best-performing

model was a three-factor PLSR model using second derivative

spectra, achieving an R² of 0.967 and a mean square error (MSE)

of 0.014. Predicted L/S ratios ranged from 1.0–3.4, with a

prediction interval of +0.29 to −0.37 and a mean interval around

the critical ratio of 2.2. The study also examined the effectiveness

of mid-infrared (IR) spectroscopy for diagnosing nRDS in

preterm infants by measuring key biomarkers, lecithin (L) and

sphingomyelin (S). A lung lipid model containing five surfactant

lipids was used to train machine learning models for predicting

lipid concentrations and the L/S ratio. Advanced statistical

techniques, including jackknife and bootstrap methods,

quantified prediction uncertainty, indicating the L/S ratio can be

determined with approximately ±0.3 mol/mol uncertainty. The

study identified five significant wavenumbers related to the

machine learning models, improving nRDS diagnostics. These

findings highlight the potential of integrating ATR-FTIR with

machine learning to develop a reliable POC device for detecting

and quantifying various biomarkers using distinct mid-infrared

spectral signatures, advancing real-time monitoring and

outcomes in neonatal care (55).
3.2 Oxidative stress biomarkers genetic
polymorphisms

Research into the relationship between single-nucleotide

polymorphisms (SNPs) in antioxidant enzymes and oxidative

stress markers in neonates is crucial, particularly related to

nRDS. Oxidative stress, resulting from an imbalance between

reactive oxygen species (ROS) and antioxidant defenses, is

notably heightened in preterm infants, making them more

vulnerable to RDS. Key antioxidant enzymes like superoxide

dismutase (SOD) and catalase (CAT) play essential roles in

reducing oxidative damage. Recent studies have shown that

preterm neonates with RDS often exhibit increased levels of

oxidative stress markers, such as malondialdehyde (MDA) and

hydrogen peroxide (H2O2), alongside decreased SOD and CAT

activity. Elevated advanced oxidation protein products (AOPPs)
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and signals of oxidative DNA damage have been correlated with

more severe RDS cases, indicating a strong link between

oxidative stress and disease severity (56, 57). SNPs within genes

encoding these antioxidant enzymes may affect their activity and

expression, influencing a neonate’s ability to manage oxidative

stress, with specific genetic variations potentially leading to

higher stress levels and worse outcomes. Understanding these

genetic factors could aid in identifying at-risk neonates and guide

targeted interventions, such as antioxidant therapy, while also

serving as a prognostic tool for predicting complications related

to oxidative stress in this population (58). A study by Sridharan

et al. explored the use of machine learning algorithms to predict

oxidative stress biomarkers and SNPs associated with RDS and

significant alterations in liver functions. The study found that the

C5.0 algorithm had the best predictive capability for liver

function alterations, achieving an AUC of 0.63, with catalase

being a critical predictor. Conversely, the Bayesian network was

most effective for predicting RDS, with an AUC of 0.6 and

ENOS1 identified as the key predictor (59).
3.3 ABCA3 protein modulation

The modulation of the ABCA3 protein is crucial in the

development of nRDS, particularly in preterm infants (60). As a

member of the ATP-binding cassette transporter family, ABCA3

plays an essential role in pulmonary surfactant metabolism,

which helps to reduce alveolar surface tension and prevent lung

collapse. Mutations in the ABCA3 gene can lead to surfactant

deficiencies, significantly influencing the risk of RDS; studies

indicate that 14.3% of RDS infants have these mutations

compared to only 3.7% of non-RDS infants. While severe forms

of neonatal RDS are more commonly associated with

homozygous or compound heterozygous mutations, single

mutations are more frequent and account for approximately

10.9% of the attributable risk for RDS in term and late preterm

infants. Identifying ABCA3 mutations may serve as a critical

marker for recognizing neonates at risk for serious respiratory

complications, emphasizing the need for genetic testing to

inform clinical management, including considerations for

extracorporeal membrane oxygenation (ECMO) interventions

(61). Moreover, ABCA3 mutations have been linked to chronic

interstitial lung disease later in life, suggesting that early genetic

screening could have significant long-term benefits for pediatric

health by differentiating genetic causes of neonatal respiratory

failure from other etiologies, thereby guiding tailored therapeutic

approaches (62). In a recent study by Maria Forstner et al.,

researchers explored high-content screening to discover

pharmacologic modulators for ABCA3 deficiency, a condition

linked to respiratory distress syndrome in newborns and

interstitial lung disease in children. Given the lack of curative

options apart from lung transplantation, the study aimed to

develop a cell-based assay powered by machine learning to

identify morphological differences between ABCA3 wild-type and

mutant cells. Screening 1,280 FDA-approved small molecules led

to the discovery of cyclosporin A as a novel and effective
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corrector for several ABCA3 variants, although not all.

Functional assays further supported these findings, indicating

that cyclosporin A could be a promising candidate for orphan

drug evaluation and may facilitate controlled repurposing trials

for patients with ABCA3-related diseases, addressing a significant

gap in therapeutic strategies (63).
3.4 Crying as a biomarker

Crying in neonates, particularly preterm infants, has emerged

as a valuable biomarker for assessing conditions like nRDS (64).

Research has shown a strong correlation between the acoustic

characteristics of an infant’s cry, particularly the fundamental

frequency (F0), and their physiological state, with higher F0

levels indicating greater distress affected by the autonomic

nervous system’s reaction to stress. Recent studies using

multimodal data collection techniques—including cry analysis,

electroencephalography (EEG), and near-infrared spectroscopy

(NIRS)—have demonstrated that crying can accurately reflect an

infant’s emotional and physical condition, achieving up to 93%

accuracy in distress classification. Machine learning methods

have also been leveraged to differentiate between cries related to

RDS and those linked to other conditions, such as sepsis, with

impressive accuracy rates of 95.3%. This emphasizes the potential

for developing automated diagnostic tools that rely on cry

analysis (65). Understanding the nuances of cry acoustics could

transform clinical practice by providing a non-invasive method

to monitor preterm infant health and enable earlier interventions

for RDS symptoms. Moreover, the Newborn Cry Diagnostic

System (NCDS) utilizes machine learning to assess newborn cries

for various health conditions, and recent advancements by Zahra

Khalilzad et al. have focused on distinguishing between sepsis

and RDS. Their research employed advanced machine learning

techniques, particularly Multilayer Perceptron (MLP) and SVM,

to analyze cry signals through musical features like the Harmonic

Ratio (HR) and speech processing via Gammatone Frequency

Cepstral Coefficients (GFCCs). By integrating features from both

approaches and refining hyperparameters, they improved

diagnostic performance, with SVM achieving a 95.3% accuracy,

surpassing the MLP’s accuracy of 92.49%, and underscoring the

system’s capability for effective class separation. This work

illustrates the promise of combining diverse feature extraction

methods and neural network classifiers to advance cry signal

analysis and lays the groundwork for future research involving

larger datasets and a wider range of pathologies (66).
3.5 Biomarkers and phenotypes of nRDS

To better understand nRDS and its diverse phenotypes, it is

essential to explore how specific biomarkers can predict the

condition’s various manifestations. nRDS is not a uniform

diagnosis; it represents a spectrum of clinical presentations

influenced by factors such as gestational age, genetic

predispositions, and environmental conditions.
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1. L/S Ratio and Phenotype Correlation: The L/S ratio is a

key biomarker for assessing fetal lung maturity, with

predictive capabilities beyond risk classification for nRDS.

Different nRDS phenotypes—mild, moderate, or severe—

may correlate with varying L/S ratios. Infants with ratios near

the critical threshold of 2.2 often exhibit milder symptoms

and a higher chance of spontaneous recovery, while those

with ratios below 1.5 are at greater risk for severe

manifestations requiring intensive support. Future studies

should stratify nRDS phenotypes based on L/S ratios and

correlate them with clinical outcomes to enable tailored

management strategies.

2. Oxidative Stress Biomarkers and Clinical Severity: Further

exploration of oxidative stress biomarkers, such as MDA and

H2O2, is needed to predict nRDS severity. Elevated levels of

these markers may indicate increased oxidative stress and

serve as predictors of severe respiratory distress. Establishing

thresholds for these biomarkers alongside genetic

polymorphisms related to antioxidant enzyme activity could

help clinicians identify infants at risk for severe nRDS,

allowing for proactive interventions. Additionally, examining

the interplay between oxidative stress and inflammatory

responses could shed light on their roles in different

nRDS presentations.

3. ABCA3 Mutations and Long-term Outcomes: Identifying

ABCA3 mutations as a risk marker for nRDS underscores the

importance of genetic screening in predicting both immediate

respiratory issues and long-term pulmonary health. Different

mutations can result in varying degrees of surfactant

dysfunction, leading to distinct nRDS phenotypes. For

instance, severe mutations may cause early respiratory failure,

while milder mutations could result in a gradual onset of

symptoms. Understanding the specific ABCA3 mutations

linked to various nRDS phenotypes can inform therapeutic

approaches and help families anticipate potential long-term

outcomes, including chronic lung disease risks.

4. Crying as a Multifaceted Biomarker: Analyzing the acoustic

characteristics of crying may provide insights into the

physiological and emotional states of neonates, potentially

offering predictive value for different nRDS phenotypes.

Research could differentiate cry characteristics associated with

mild vs. severe nRDS and how these differ from cries linked

to other neonatal conditions, like sepsis. Utilizing machine

learning algorithms to analyze cry features in larger, diverse

populations could lead to a robust framework for using

crying as a diagnostic tool, accounting for the nuances of

different nRDS manifestations.

5. Integrative Approaches to Biomarker Prediction:

A comprehensive approach that integrates multiple biomarkers

—such as the L/S ratio, oxidative stress markers, ABCA3

genetic variations, and acoustic cry analysis—could

significantly enhance predictive accuracy for various nRDS

phenotypes. Machine learning models incorporating data from

these sources may uncover complex interactions and improve

risk stratification. Future research should validate these

integrative models in clinical settings, potentially leading to a
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multi-faceted diagnostic tool for real-time risk assessment and

individualized treatment plans for neonates at risk of nRDS.

4 Discussion

Our review of biomarkers and machine learning approaches for

predicting BPD and nRDS revealed a range of promising

methodologies and results. Table 1 summarizes key findings in

BPD prediction, highlighting the strong predictive capabilities of

cytokines and inflammatory biomarkers. Machine learning

models such as XGBoost and Random Forest achieved micro-

average AUROC values between 0.841 and 0.878, with UCB IL-6

recognized as a critical feature. ERSGs genes demonstrated

superior discriminative abilities when analyzed with SVM and

specific genes. DEGs analysis identified hub genes via SVM-RFE

and LASSO techniques, showcasing how advanced computational

methods can reveal significant biological markers. A diagnostic

nomogram based on ferroptosis-related genes showed strong

ROC and calibration curves, while a genetic biomarker signature

achieved AUROC values of 0.915 for general BPD and 0.907 for

severe cases, surpassing traditional clinical models. In Table 2,

focused on nRDS, the (L/S ratio, modeled with PLSR, produced

excellent results (R² of 0.967). The analysis of oxidative stress

biomarkers demonstrated the effectiveness of the C5.0 algorithm

for liver function changes and highlighted the Bayesian network’s

role in RDS prediction. Innovations like high-content screening

for cyclosporin A targeting ABCA3 variants show the potential

of machine learning in drug discovery. The differentiation of

cries associated with RDS through SVM and MLP methods

underscores the diverse applications of these technologies in

clinical settings.

Recent research has improved our understanding of

biomarkers and risk factors for BPD in preterm infants,

especially those born before 32 weeks gestation. UCB IL-6 stands

out as a promising biomarker with an AUROC of 0.815, strongly

correlating with BPD severity. Machine learning models,

including XGBoost, CatBoost, LightGBM, and Random Forest,

further refined assessments, yielding AUROC values of 0.841–

0.878 while consistently identifying UCB IL-6 as the most

significant feature. Investigations into ERSGs revealed distinct

molecular clusters with notable immune cell infiltration and

dysregulated ER stress gene expression. Machine learning

algorithms identified potential biomarkers like hub genes CYYR1,

GALNT14, and OLAH, as well as therapeutic options such as

flunisolide and budesonide (14). An evaluation of ferroptosis

identified 23 differentially expressed mRNAs related to fatty acid

metabolism, with hub genes LPIN1, ACADSB, WIPI1, and

SLC7A11 contributing to a diagnostic nomogram (38). Whole

exome sequencing provided insights into genetic risk gene sets

tied to BPD and severe BPD (sBPD), achieving AUROC values

of 0.915 and 0.907, respectively (47). Additionally, analysis of

cuproptosis-related genes revealed differential expression patterns,

particularly increased GLS levels in affected groups (41).

Through WGCNA and various machine learning algorithms,

promising predictive markers like NFATC3, ERMN, PLA2G4A,
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TABLE 1 Comprehensive overview of biomarkers and machine learning approaches in predicting BPD.

Biomarker Details Machine learning results
Cytokines and
Inflammatory Biomarkers

BPD is characterized by chronic lung inflammation with elevated IL-6
levels correlating with increased risk (AUC: 0.849). TNF-α also elevated;
acute inflammation linked to IL-1 and IL-8; reduced IL-10 may
predispose infants to BPD.

4 models (XGBoost, CatBoost, LightGBM, Random Forest) with micro-
average AUROC values: 0.841, 0.870, 0.851, 0.878 respectively. UCB
IL-6 identified as most important feature across models.

Endoplasmic Reticulum
Stress-Related Genes

ER stress contributes to BPD pathogenesis by disrupting cellular
function. Dysregulation of ERSGs noted in BPD infants compared to
controls. Understanding these genes might lead to novel therapeutic
strategies.

SVM showed superior discriminative ability when combined with five
specific genes in assessing clinical risks.

Differentially Expressed
Genes (DEGs)

49 cluster-specific DEGs identified; RNA sequencing revealed 471 DEGs
(p < 0.01), enriched in pathways like IL-6/JAK/STAT3 signaling. Genes
SPARC and AGER are linked to lung alveolarization and BPD
development.

Identified hub genes (CYYR1, GALNT14, OLAH) using SVM-RFE,
LASSO, and Random Forest from WGCNA analysis.

Ferroptosis-Related Genes Ferroptosis implicated in BPD; elevated free iron and abnormal iron
accumulation observed. Key biomarkers identified could facilitate
diagnosis and intervention.

Constructed a diagnostic nomogram with four hub genes (LPIN1,
ACADSB, WIPI1, SLC7A11) showing strong predictive performance
(ROC and calibration curves).

Cuproptosis-Related
Genes (CRGs)

Differential expression patterns of CRGs observed; genes associated
with immune responses. Identified five key marker genes (NFATC3,
ERMN, PLA2G4A, MTMR9LP, LOC440700) through WGCNA and
various machine learning algorithms.

GLM model showed superior accuracy across validation datasets for
early diagnosis and targeted therapies in BPD.

Genetic Biomarkers and
Signatures

Genetic factors contribute to 53%–79% of BPD susceptibility; mutations
in SPOCK2 and genes like ABCA3 identified. A study integrated genetic
factors with clinical data to enhance prediction of BPD in preterm
infants.

AUROC of 0.915 for BPD; AUROC of 0.907 for severe BPD,
outperforming clinical-only models (P = 0.013 for BPD; P = 0.016 for
severe BPD).

Transcriptomic Gene
Signature

Developed a five-gene blood signature for early prediction of BPD;
significant differences found in gestational age and birth weight.

AUC scores between 85.8% and 96.1% for predictive accuracy.

TABLE 2 Comprehensive overview of biomarkers and machine learning approaches in predicting nRDS.

Biomarker Details Machine learning results
Lecithin/Sphingomyelin
Ratio (L/S Ratio)

- Key indicator of fetal lung maturity and surfactant production.
- Higher ratios (≥2.4) indicate lower RDS risk; lower ratios (<1.5)

indicate a higher risk. Transitional maturity is reflected in ratios of
1.5–1.9.

- Determined by amniocentesis and thin-layer chromatography.
- Corticosteroids (e.g., betamethasone) may be administered in

at-risk pregnancies.

ATR-FTIR spectra predicted L/S ratios with a three-factor PLSR
model, R² of 0.967, MSE of 0.014.

Oxidative Stress
Biomarkers (OSBs)

- SNPs in antioxidant enzymes (e.g., SOD, CAT) are linked to oxidative
stress, heightened in preterm infants vulnerable to RDS.

- Preterm neonates with RDS exhibit increased oxidative stress markers
(e.g., MDA, H2O2) and decreased antioxidant activity.

- Elevated AOPPs and oxidative DNA damage correlate with severe
RDS.

C5.0 algorithm had the best predictive capability for liver function
alterations (AUC 0.63). Bayesian network most effective for RDS
(AUC 0.6).

ABCA3 Protein
Modulation

- ABCA3 protein is essential for pulmonary surfactant metabolism.
- Mutations in the ABCA3 gene lead to an increased risk of RDS;

∼14.3% of RDS infants carry mutations.
- Genetic testing for ABCA3 mutations can identify at-risk neonates and

inform clinical decisions.

High-content screening identified cyclosporin A as a potential
corrector for ABCA3 variants.

Crying - Neonatal crying correlates with physiological states and distress; higher
fundamental frequency (F0) levels indicate greater distress.

- Multimodal data, including cry analysis and EEG/NIRS, improved
distress classification accuracy (up to 93%).

SVM achieved 95.3% accuracy in differentiating cries related to RDS
and other conditions; MLP achieved 92.49% accuracy.

Talebi et al. 10.3389/fped.2025.1521668
MTMR9LP, and LOC440700 were identified. These studies

highlight the complex pathophysiology of BPD and the essential

role of immunological, genetic, and cellular mechanisms in

improving early diagnosis and therapy for this vulnerable

population (41).

Recent advancements in diagnosing nRDS have emphasized

integrating technologies like attenuated total reflectance ATR-

FTIR and machine learning, along with innovative cry-based

diagnostics and genetic screening. The combination of
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ATR-FTIR and machine learning has shown exceptional

effectiveness in predicting the L/S ratio—a key biomarker for

nRDS—achieving high correlation metrics with an R² of 0.967,

positioning it as a promising point-of-care tool for timely

interventions (55). Furthermore, research into oxidative stress

biomarkers and single-nucleotide polymorphisms through

various machine learning approaches highlights the complexities

of neonatal conditions, revealing predictive capabilities linked to

genetic factors affecting respiratory and liver health (59). The
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innovative analysis of cry signals with advanced classifiers suggests

vocalizations may serve as potential biomarkers, reflecting the

multifaceted nature of neonatal diagnostics and the need for

comprehensive screening strategies (66).
5 Clinical implications

The advancements in machine learning applications and

biomarker identification for BPD and nRDS have profound

clinical implications for improving outcomes in at-risk preterm

infants. The detection of umbilical cord blood IL-6 as a

significant biomarker, with an AUROC of 0.815, equips clinicians

with a reliable tool for early diagnosis and risk stratification,

especially for infants born before 32 weeks gestation. Utilizing

machine learning models such as XGBoost, CatBoost, LightGBM,

and Random Forest enhances predictive accuracy, paving the way

for personalized interventions and better monitoring of high-risk

patients. Furthermore, insights into ERSGs and potential

therapeutic targets pave the way for tailored treatment strategies.

In nRDS, the integration of attenuated total reflectance ATR-

FTIR spectroscopy with machine learning to predict the L/S ratio

represents a significant leap in point-of-care diagnostics, enabling

timely interventions that can enhance respiratory outcomes. The

exploration of oxidative stress biomarkers alongside genetic

variations emphasizes the importance of personalized medicine

in managing neonatal respiratory conditions. Additionally,

investigating cry signals as potential biomarkers introduces an

innovative perspective to neonatal assessments, showing that

auditory cues may enhance diagnostic practices. These

developments underscore the need for ongoing research to

seamlessly integrate advanced methodologies into routine clinical

practice, ultimately improving screening, early diagnosis, and

intervention strategies for vulnerable neonatal populations and

enhancing long-term health outcomes.
6 Limitations of current research

Despite the promising advancements in identifying biomarkers

and employing machine learning techniques for diagnosing BPD

and nRDS, several limitations persist. Bronchopulmonary

dysplasia (BPD) is a multifaceted condition influenced by various

antenatal and postnatal factors in preterm infants, which

complicates the establishment of clear causal relationships in

studies. The complexity of biological pathways involved in BPD

and nRDS raises concerns about the robustness of identified

biomarkers, as variations in gene expression and external factors

like maternal health, environmental conditions, and neonatal care

can confound results. While the integration of machine learning

with biomarkers has enhanced the precise prediction of risk for

BPD, these models likely did not establish causal inference,

which must be acknowledged as a limitation of the study.

Machine learning models, while demonstrating strong predictive

capabilities, face challenges related to interpretability and the

risk of overfitting, particularly when trained on small or
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homogeneous datasets. The use of umbilical cord blood levels of

biomarkers such as IL-6 may also be influenced by intra- and

inter-individual variability, further questioning the

generalizability of findings. Additionally, the incorporation of

molecular data from ERSGs and cuproptosis-related analyses

presents challenges in standardizing protocols and interpreting

the clinical relevance of hub genes. Ethical and logistical

concerns regarding data privacy and access arise with the

integration of genetic information from whole exome sequencing,

potentially hindering widespread application in clinical settings.

Finally, while innovative diagnostic methods like ATR-FTIR and

cry-based diagnostics hold promise for early detection, their

implementation may be constrained by resource availability,

training requirements for healthcare personnel, and the need for

validation in broader, heterogeneous clinical cohorts. These

factors highlight the necessity for ongoing research and

validation to address current limitations and ensure the effective

translation of these advanced techniques into clinical practice for

improved outcomes in vulnerable neonatal populations.
7 Conclusion

The review underscores the transformative potential of machine

learning and advanced diagnostic techniques in predicting and

understanding BPD and nRDS in preterm infants. The

identification of robust biomarkers, including umbilical cord blood

levels of IL-6 and various genetic markers, supports a multifaceted

approach that integrates immunological, genetic, and cellular

mechanisms. Machine learning models, such as XGBoost,

CatBoost, LightGBM, and Random Forest, have shown substantial

improvements in predictive accuracy, as indicated by their

AUROC values, highlighting their clinical applicability. The

investigation of ER stress-related genes and promising results from

analyses of ferroptosis and cuproptosis-related genes further reveal

the complexity of BPD pathophysiology, suggesting new

therapeutic interventions. The use of advanced technologies like

ATR-FTIR for L/S ratio prediction, along with cry-based

diagnostics and high-content screening, represents a shift toward

precision medicine in neonatal care. These advancements enhance

understanding, early diagnosis, and treatment strategies for

neonatal conditions, leading to improved clinical outcomes. The

collective research indicates a significant move towards innovative

methodologies, emphasizing the importance of interdisciplinary

approaches that leverage machine learning and biomarker discovery.
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