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A gut feeling about GABA: focus on GABAB receptors
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γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence 
GABA-mediated neurotransmission regulates many physiological functions, including those 
in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric 
nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an 
endocrine mediator influencing GI function. GABA mediates its effects via GABA receptors which 
are either ionotropic GABAA or metabotropic GABAB. The latter which respond to the agonist 
baclofen have been least characterized, however accumulating data suggest that they play a 
key role in GI function in health and disease. Like GABA, GABAB receptors have been detected 
throughout the gut of several species in the enteric nervous system, muscle, epithelial layers as 
well as on endocrine-like cells. Such widespread distribution of this metabotropic GABA receptor 
is consistent with its significant modulatory role over intestinal motility, gastric emptying, gastric 
acid secretion, transient lower esophageal sphincter relaxation and visceral sensation of painful 
colonic stimuli. More intriguing findings, the mechanisms underlying which have yet to be 
determined, suggest GABAB receptors inhibit GI carcinogenesis and tumor growth. Therefore, 
the diversity of GI functions regulated by GABAB receptors makes it a potentially useful target 
in the treatment of several GI disorders. In light of the development of novel compounds such 
as peripherally acting GABAB receptor agonists, positive allosteric modulators of the GABAB 
receptor and GABA producing enteric bacteria, we review and summarize current knowledge 
on the function of GABAB receptors within the GI tract.
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transcribed from the Gabbr1
 
gene, GABA

B1a
 and GABA

B1b
, which 

are conserved in different species including humans (Kaupmann 
et al., 1997; Bischoff et al., 1999; Fritschy et al., 1999). The human 
GABA

B1
 gene encodes a third isoform, GABA

B1c
, a functional role for 

which has yet to be determined, although it may play a role in the 
developing human brain (Calver et al., 2002). In the human GI tract 
there appears to be a similar expression pattern for both GABA

B1a
 

and GABA
B1b

 splice variants, with little or no expression of GABA
B1c

 
(Calver et al., 2000). The GABA

B1a
 and GABA

B1b
 isoforms differ by 

the insertion of a pair of tandem “Sushi” domains, which are poten-
tially involved in protein–protein interactions, in the N-terminus 
of GABA

B1a
, and differentiate this isoform from GABA

B1b
 (Calver 

et al., 2002). In the GABA
B1b

 subtype, the N-terminal extracellular 
domain is the ligand binding domain and differs from the GABA

B1a
 

splice variant at the N-terminus by the presence of a tandem pair 
of CP modules, while the GABA

B1c
 splice variant differs in the fifth 

transmembrane region and the second extracellular loop by an 
additional 31 amino acids (Blein et al., 2000). Human GABA

B1c
 is 

similar to GABA
B1a

 yet lacks one “Sushi” repeat because the splice 
machinery skips exon 4 and its expression pattern parallels that 
of GABA

B1a
 (Bettler et al., 2003). It appears at least in some brain 

regions that GABA
B1a

 and GABA
B1b

 can participate, through het-
erodimerization with GABA

B2
, in the formation of both pre- and 

post-synaptic receptors. Similar heterodimerization has also been 
postulated to occur in the GI tract between GABA

B1
 and GABA

B2 

(Kawakami et al., 2004) and is further supported by recent immu-
nohistochemical data obtained for both subunits in the upper GI 
tract (Torashima et al., 2009).

IntroductIon
γ-Aminobutyric acid (GABA) is the main inhibitory neurotrans-
mitter in the body and hence GABA-mediated neurotransmission 
regulates many physiological functions, including those in the 
gastrointestinal (GI) tract. There are two major classes of GABA 
receptors and these are classified as either ionotropic GABA

A
 

(including GABA
C
) receptors or metabotropic GABA

B
 receptors 

(Barnard et al., 1998; Bormann, 2000; Bowery et al., 2002; Cryan 
and Kaupmann, 2005). It is now over 30 years since these latter 
receptors were first pharmacologically characterized, and baclofen 
was identified as a selective GABA

B
 receptor agonist. GABA

B
 recep-

tors modulate neurotransmitter release presynaptically by depress-
ing Ca2+ influx via voltage-activated Ca2+ channels (Bowery et al., 
2002; Figure 1) while postsynaptic GABA

B
 receptors couple mainly 

to inwardly rectifying K+ channels (Luscher et al., 1997) and medi-
ate slow inhibitory postsynaptic potentials (Bowery et al., 2002; 
Figure 1). As well as expression in the brain, GABA

B
 receptors are 

also abundantly expressed in the GI tract, therefore in this review 
we will summarize current knowledge on the function of GABA

B
 

receptors in the GI tract.

GABAB receptor proteIns
The first GABA

B
 receptor cDNAs were isolated only in 1997 

(Kaupmann et al., 1997). The identification of a second GABA
B
 

receptor protein soon after led to the discovery that native GABA
B
 

receptors are heterodimers composed of two subunits, GABA
B1

 and 
GABA

B2
 (reviewed in Calver et al., 2002; Bettler et al., 2004). In the 

brain two predominant, differentially expressed splice variants are 
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these receptor isoforms in physiological processes (Jacobson et al., 
2006, 2007; Vigot et al., 2006), however, such studies have yet to be 
extended into the GI tract.

LocALIzAtIon of GABA And GABAB receptors In the 
GAstroIntestInAL trAct
γ-Aminobutyric acid is located throughout the GI tract and has 
been localized in enteric nerves as well as in endocrine-like cells 
implicating GABA as both a neurotransmitter and an endocrine 
mediator in the GI tract. The primary synthesis pathway for enteric 
GABA is catalyzed by l-glutamate decarboxylase (GAD; Figure 1) 
using the substrate glutamate, and has been localized in both 
Dogiel type I and Dogiel type II enteric neurons (for a review see 
Krantis, 2000). High affinity plasma membrane GABA transporters 
(GAT) are also present in the rat GI tract and have been localized 
to both enteric glia (GAT2) and myenteric neurons (GAT3) of the 
duodenum, ileum, and colon (Fletcher et al., 2002). In the enteric 
nervous system (ENS) approximately 5–8% of myenteric neurons, 
which largely regulate GI motility, contain GABA, and in the colon 
it predominantly co-localizes with the inhibitory neurotransmit-
ter somatostatin, but also to a lesser extent with enkephalins and 
nitric oxide (Krantis, 2000). GABA has also been implicated in the 
regulation of intestinal fluid and electrolyte transport by virtue of its 
presence in submucosal nerve cell bodies and mucosal nerve fibers 
(Krantis, 2000). Therefore, it is not surprising that GABA plays a 
multifunctional role in the regulation of GI activity. In addition to 
the ENS and endocrine-like sources of GABA, newer endeavors have 
adapted Bifidobacteria, found in the intestines of breast-fed children 
and healthy adults, to increase GABA production by genetically 
increasing GAD activity (Park et al., 2005), and GABA-producing 
bacteria have been exploited in the production of GABA-containing 
functional foods such as fermented goats milk (Minervini et al., 
2009). Genetically exploiting commensal bacteria to elevate intes-
tinal GABA production allows for local delivery of GABA to the GI 
tract and may therefore be of some therapeutic use in regulating 
epithelial proliferation (see  GABA

B
 Receptors and Gastrointestinal 

Carcinogenesis) or may directly alter intestinal secretory activity. 
Although the current literature would suggest that GABA would 
need to access the enteric plexi to exert an effect on the later (see 
GABA

B
 Receptor Modulation of Intestinal Electrolyte Transport).

Nakajima et al. (1996) demonstrated using an antibody generated 
against amino-terminal blocked baclofen, GABA

B
 receptor immu-

noreactivity in the rat ENS, muscle and epithelial layers. The 80-kDa 
antigen against which the antibody was raised was subsequently 
demonstrated to bind GABA and baclofen, but not the GABA

A
 

antagonist, bicuculline (Nakayasu et al., 1993). Our own studies 
in mouse intestine, using a different GABA

B1
 receptor antibody 

(Ab25; Engle et al., 2006) corroborated the findings of Nakajima 
et al. (1996) with respect to localization of GABA

B
 receptors on both 

submucosal and myenteric neurons in the ENS, however we did not 
detect any mucosal staining in this species (Casanova et al., 2009). 
In the rat mucosal epithelium, GABA

B
 receptor positive cells were 

observed along the length of the GI tract from the gastric body to 
the colon, decreasing in number in the oral to anal direction, on cells 
that were morphologically similar to enteroendocrine cells. Both 
gastric and intestinal regions displayed mucosal GABA

B
 immuno-

reacticity, however gastric GABA
B
-positive cells tended to contain 

Partial cDNAs corresponding to putative GABA
B2

 splice variants 
have also been isolated (Clark et al., 2000). However, investigation 
of the Gpr51 (Gabbr2) gene structure did not provide evidence 
that these cDNAs correspond to additional GABA

B2
 splice variants 

(Martin et al., 2001). Furthermore, the absence of an expression 
profile for GABA

B2a
, GABA

B2b
, and GABA

B2c
 in the human GI tract 

would suggest such splice variants do not play a significant role 
in GI function (Calver et al., 2000). Therefore, it seems likely that 
in the brain two major populations of heteromeric GABA

B
 recep-

tors exist, GABA
B1a,2 

and GABA
B1b,2

. The behavioral phenotypes of 
mice with targeted deletions of either the GABA

B1
 (Prosser et al., 

2001; Schuler et al., 2001; Mombereau et al., 2004) or the GABA
B2

 
subunits (Gassmann et al., 2004; Mombereau et al., 2005) are 
similar and corroborate the in vitro experiments demonstrating 
that functional GABA

B
 receptor responses are dependent on the 

heterodimerization of GABA
B1

 and GABA
B2

 subunits. Additionally, 
GABA-mediated inhibition of GI motility appears to be dependant 
on the GABA

B1
 receptor subunit (Sanger et al., 2002). The more 

recent development of mice lacking both the GABA
B1a

 and GABA
B1b

 
receptor splice variants have been generated (Vigot et al., 2006) 
and are proving to be very useful in understanding the role of 

FiGure 1 | (1) Synthesis of γ-aminobutyric acid (GABA) from glutamine/
glutamate (catalyzed by l-glutamate decarboxylase (GAD); (2) transport 
and storage of GABA; (3) release of GABA by exocytosis; (4) binding to 
GABAB receptors and subsequent downstream effects mediated via a G 
protein and/or cAMP to K+ and Ca2+ channels; (5) binding to presynaptic 
receptors; (6) reuptake in presynaptic terminal and uptake by glia; (7) 
transamination of GABA to α-ketoglutarate (catalyzed by GABA 
transaminase, GABA-T), thereby regenerating glutamate and glutamine; 
glial glutamine then re-enters the neuron.
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either region of the human GI tract (Calver et al., 2000). Despite 
the initial findings of Calver et al. (2000) subsequent studies have 
identified GABA

B2
 message in the human lower esophageal sphinc-

ter (LES), cardia and corpus (Torashima et al., 2009) as well as in 
dog intestine (Kawakami et al., 2004). Furthermore, immunohisto-
chemical analysis identified GABA

B2
 protein on myenteric neurons 

in human LES and gastric corpus (Torashima et al., 2009).

GABAB receptors And GAstroIntestInAL functIon
GABAB-Induced synthesIs And reLeAse of enterIc 
neurotrAnsmItters And entorocromAffIn ceLL-derIved 
serotonIn
Microdialysis sampling of myenteric plexus neurotransmitter release 
demonstrated a significant inhibitory effect of the GABA

B
 receptor 

agonist, baclofen on canine intestinal acetylcholine (ACh) release 
and this was sensitive to GABA

B
 receptor antagonism (Kawakami 

et al., 2004). Of particular note, in this species at least, was the 
sensitivity of ACh release (and motility) to the GABA

B
 receptor 

antagonist alone (Kawakami et al., 2004). Therefore, in the canine 
ileum it would appear that GABA

B
 receptor activation is inhibitory 

and that GABA via GABA
B
 receptors tonically inhibits excitatory 

ACh release. In contrast, release of the inhibitory neurotransmitter, 
vasoactive intestinal polypeptide from rat colon was insensitive to 
inhibition by the GABA

B
 receptor antagonist, phaclofen (Grider 

and Makhlouf, 1992). Similarly, in guinea-pig ileum the produc-
tion of electrically induced citrulline, as a marker for nitric oxide 
synthase activity, was insensitive to GABA

B
 receptor modulation 

with baclofen, but was reduced by the GABA
A
 agonist, muscimol 

(Hebeiss and Kilbinger, 1999). Therefore, with the caveat of spe-
cies differences, it would appear that GABA

B
 receptors exert an 

inhibitory effect on release of ACh, without any significant effect 
on inhibitory neurotransmitter release or synthesis.

Both GABA
A
 and GABA

B
 receptors have also been shown to reg-

ulate the release of enterochromaffin cell-derived serotonin from 
guinea-pig small intestine, although they appear to have opposing 
effects (Schworer et al., 1989). Baclofen-induced, GABA

B
-driven, 

inhibition of serotonin release occurs via a tetrodotoxin (TTX) insen-
sitive, non-neural pathway while GABA

A
 receptor activation causes 

a predominant TTX-sensitive, muscarinic receptor-driven release 
of serotonin (Schworer et al., 1989). Therefore, the potential exists 
for GABA

B
 receptors to indirectly regulate ENS activity via release 

of enteroendocrine-cell derived mediators such as serotonin.

GABAB receptor moduLAtIon of IntestInAL motILIty
γ-Aminobutyric acid, and as such GABA receptor-mediated effects 
on GI motility are dependant on an intact ENS as isolated rat smooth 
muscle cells are unresponsive to addition of GABA (Grider and 
Makhlouf, 1992). Both electrically induced ileal twitch responses 
and spontaneous colonic smooth muscle contraction (cholinergic 
in nature) are sensitive to inhibition by baclofen in the guinea-pig 
(Ong and Kerr, 1982; Allan and Dickenson, 1986; Minocha and 
Galligan, 1993; Table 1). In vitro data suggest that this GABA

B
-

mediated inhibitory effect is countered by GABA
A
 receptors, as 

GABA
A
 receptor activation caused a right-ward shift in the ED

50
 for 

baclofen on the ileal twitch response, and this was recovered to some 
extent in the presence of the GABA

A
 receptor antagonist, bicuculline 

(Allan and Dickenson, 1986). In addition to which complex GABA
B
 

somatostatin, in contrast to duodenal GABA
B
 positive cells which 

stained positively for serotonin (Nakajima et al., 1996). Therefore, 
the functional effects of GABA

B
 receptors are likely to differ along 

the GI tract, and are likely to be dependant on its colocalization with 
prominent enteroendocrine cell mediators such as somatostatin and 
serotonin. Neural GABA

B
-positive fibers were observed in the mus-

cle layers of the rat GI tract, and both plexi of the ENS (Nakajima 
et al., 1996). In the myenteric plexus at least 50% of GABA

B
 positive 

neurons display NADPH-diaphorase activity (Nakajima et al., 1996) 
suggesting that GABA

B
 receptors may directly modulate inhibitory, 

nitric oxide-driven neurotransmission. By taking advantage of newly 
developed transgenic mice expressing GABA

B1a
 and GABA

B1b
 subu-

nits fused to the enhanced green fluorescence protein (eGFP) we also 
immunohistochemically localized the GABA

B1
 receptor subunit to 

both myenteric and submucosal neurons in mouse colon and ileum 
(Figure 2). Similar to our studies with an anti-GABA

B1
 antibody, 

we did not detect any enteroendocrine-like staining for the GABA
B
 

receptor subtype in this species (Casanova et al., 2009).
Analysis of GABA

B
 receptor subunit expression has been exam-

ined in human small intestine and stomach (Calver et al., 2000), 
rat small and large intestine (Castelli et al., 1999) as well as dog 
intestine (Kawakami et al., 2004). In the human GI tract GABA

B1
 

and GABA
B2

 subunits are differentially expressed (Calver et al., 
2000) with the GABA

B1
 receptor subunit, and its splice variants 

GABA
B1a

 and GABA
B1b

 predominating. GABA
B2

 on the other hand, 
irrespective of the splice variant examined, was undetectable in 

FiGure 2 | Fluorescence immunohistochemistry using anti-eGFP 
antibodies revealed GABAB1-eGFP localization in the submucosal 
(arrowheads) and myenteric plexus (arrows) of GB1−/− mice modified to 
express GABAB1a and GABAB1b subunits fused to the enhanced green 
fluorescence protein (eGFP) using a modified bacterial artificial 
chromosome containing the GABAB1 gene (BAC+/+; Casanova et al., 2009) 
in mouse ileum (A) and colon (B), GABAB1-eGFP was not detected in either 
the epithelial layer or enteroendocrine cells of GB1−/−, BAC+/+ ileum and colon 
(A,B). Whole mount preparations of ileum (C) and colon (D) revealed a 
cytoplasmic, non-nuclear, distribution of GABAB1-eGFP in enteric neurons of 
GB1−/−, BAC+/+ mice. Scale bars = 100 μm. LM, longitudinal muscle; CM, 
circular muscle; Mu, mucosa. Adapted from Casanova et al. (2009).
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of a distended balloon along rabbit colonic preparations was sig-
nificantly reduced by GABA

B
 receptor activation with baclofen, 

consistent with an inhibitory effect of this receptor on excitatory 
neurotransmission (Tonini et al., 1989; Table 1). In the same spe-
cies, baclofen had a minor inhibitory effect on colonic longitudinal 
muscle tone but a more significant inhibitory effect on TTX- and 
hyoscine-sensitive electrically stimulated responses, suggesting that 
the inhibitory effects of the GABA

B
 agonist on colonic activity in the 

rabbit is dependant on cholinergic neurotransmission (Tonini et al., 
1989; Table 1). Consistent with modulation of cholinergic enteric 
nerves, baclofen decreases both GABA

B  
receptor-induced relaxation 

of guinea-pig ileal (Giotti et al., 1983) and colonic (Giotti et al., 1985) 
longitudinal muscle via a TTX-sensitive, cholinergic pathway and 
in vivo inhibited physostigmine-induced colonic tone (Giotti et al., 
1985; Table 1). GABA receptor-induced relaxation appears to be 
mediated predominantly via GABA

B
 receptors in guinea-pig colon, 

as less than 10% of the GABA-induced relaxant effect is sensitive 

receptor-dependant signaling pathways, in the guinea-pig ileum at 
least, have been identified and involve GABA

B
 receptor-mediated 

inhibition of somatostatin-sensitive cholecystokinin-induced con-
traction (Roberts et al., 1993; Table 1).

In the human GI tract spontaneous activity of jejunal lon-
gitudinal muscle is sensitive to inhibition by both GABA and 
baclofen. However, spontaneous colonic activity was insensitive 
to GABAergic modulation (Gentilini et al., 1992) suggesting that 
GABA

B
  receptor-mediated inhibition predominates in the small 

intestine of humans. However, in other species GABA
B
 receptors 

have been demonstrated to alter colonic motor activity. For example, 
desensitization of GABA

B
 receptors with baclofen, thereby relieving 

GABA
B
-induced effects on motility, resulted in decreased colonic 

fecal pellet output in the guinea pig (Ong and Kerr, 1982; Table 1), 
potentially due to dysregulation of cholinergic activity and peri-
stalsis as suggested by the authors, or a disinhibition of inhibitory 
activity. In contrast to the guinea-pig colon, the propulsive  velocity 

Table 1 | Summary of GABAB receptor-induced effects on gastrointestinal motility.

region Species Baclofen induced-effect reference

Duodenum/jejunum Human TTX sensitive inhibition of spontaneous Gentilini et al. (1992) 

  and DMPP-induced contraction

 Rat Reduction in electrically evoked Krantis and Harding (1987) 

  cholinergic contraction

  Disruption of migrating motor Fargeas et al. (1988)

  complex activity (i.v. administration)

  Atropine-sensitive increase in  

  migrating motor complex activity (i.c.v. administration)

Ileum Guinea-pig Decrease in electrically evoked Ong and Kerr (1982) and 

  (cholinergic) twitch response Marcoli et al. (2000)

  Relaxation (all levels of the intestine) Ong and Kerr (1987)

  Inhibition of somatostatin inhibitory activity Roberts et al. (1993) 

  on cholocystokinin-induced contraction (cholinergic)

  TTX- and hyoscine-sensitive relaxation (basal) and Giotti et al. (1983) 

  hyoscine-sensitive relaxation following histamine 

  and prostaglandin F2α stimulation

  Inhibition of electrically stimulated NO-mediated relaxation Kilbinger et al. (1999)

 Mouse Inhibition of electrically evoked contraction (GABAB1+/+) Sanger et al. (2002)

  Loss of baclofen-induced relaxation (GABAB1−/−) 

 Cat Contraction of longitudinal muscle (distal and terminal ileum;  Pencheva et al. (1999) 

  modest if any sensitivity to atropine and TTX) and 

  no effect on circular muscle activity

  No effect (proximal ileum) on longitudinal or circular muscle activity 

Intestine Dog Reduction of circular muscle motor activity Kawakami et al. (2004) 

  coupled with a decrease in ACh release (intra arterial administration)

Colon Human No effect Gentilini et al. (1992)

 Guinea-pig Decrease in fecal pellet expulsion and TTX-sensitive relaxation Ong and Kerr (1982)

  Decrease in basal and physostigmine-induced tone (i.v. administration) Giotti et al. (1985)

  TTX and scopolamine-sensitive relaxation Giotti et al. (1985) and 

   Minocha and Galligan (1993)

 Rat Increase in electrically evoked cholinergic and non-cholinergic Bayer et al. (2003) 

  circular muscle contraction that is sensitive to nicotinic receptor blockade

 Rabbit Modest decrease in resting tone and inhibition of electrically-induced Tonini et al. (1989) 

  (cholinergic) contraction. Inhibition of NANC neurotransmission and decreased transit

ACh, acetylcholine; DMPP, dimethylphenylpiperazinium; i.v. intravenous; i.c.v. intracerbroventricular; NANC, non-adrenergic non-cholinergic; NO, nitric oxide; TTX, 
tetrodotoxin. Unless otherwise noted in italicize, all drug additions were to in vitro preparations.
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the inhibitory effect of GABA on afferent activity, although this 
inhibitory effect varied dependent on the sensitivity of the fibers 
to mucosal, tension or tension-mucosal stimulation, in addition 
to which Ca2+- and K+-independent pathways were also identified 
(Page et al., 2006). In addition to vagal afferents, GABA

B
 recep-

tors also regulate spinal afferent signaling (Hara et al., 1990, 
1999; Sengupta et al., 2002). Intrathecal injection of baclofen 
significantly reduced the threshold response to colorectal dis-
tension (CRD) in a dose-dependant manner (Hara et al., 1999). 
Furthermore, when co-administered with morphine, the anti-
nociceptive effect of the later was potentiated, indicative of a 
GABA

B
/μ-opiod receptor interaction, which the authors suggest 

may involve synergistic activation of cAMP and potentiation of 
the anti-nociceptive effects of both GABA and morphine (Hara 
et al., 1999). A similar potentiation of the baclofen-induced effect 
on visceral pain was also observed with the Ca2+ channel blocker, 
diltiazem (Hara et al., 2004). In addition to acting synergistically 
with morphine and diltiazem, both studies also demonstrated 
that intrathecal administration of baclofen alone was sufficient 
to reduce the visceral pain response to CRD (Hara et al., 1999, 
2004). These functional data are consistent with subsequent find-
ings describing baclofen-sensitive electrical activity of S

1
 dorsal 

roots following pelvic nerve stimulation during CRD (Sengupta 
et al., 2002).

Moreover, systemic intravenous (i.v.) administration of baclofen 
to rats also significantly reduced the visceral pain response, sug-
gesting the GABA

B
 agonist can potentially exert its anti-nociceptive 

effects at sites outside the central nervous system, including in the 
GI tract (Brusberg et al., 2009). The same authors also demon-
strated that the positive allosteric modulator of the GABA

B
 recep-

tor, CGP7930 also displayed efficacy in reducing CRD-induced 
effects on the visceromotor response, blood pressure, and heart 
rate following i.v. administration (Brusberg et al., 2009). However, 
the efficacy of CGP7930 was less than that of baclofen (Brusberg 
et al., 2009), potentially as its mechanism of action as an allos-
teric modulator is dependant on the levels of endogenous GABA 
or GABA tone. In a similar manner to baclofen, CGP7930 does 
not appear to alter colonic compliance (Brusberg et al., 2009), 
suggesting the anti-nociceptive effect of CGP7930 is not due to 
increased accommodation, as a result of muscle relaxation, of the 
distension stimulus.

In addition to decreasing CRD-induced pain responses, 
baclofen also alters gut to brain signaling following periph-
eral colonic inflammation (Lu and Westlund, 2001). Mustard 
 oil- induced colonic inflammation significantly enhanced spinal 
cord expression of the early gene product Fos, and this response 
was sensitive to inhibition by baclofen (Lu and Westlund, 2001), 
suggesting a dampening of afferent signaling from the periphery 
to the central nervous system. Additionally, baclofen pretreatment 
per se, as well as in the presence of mustard oil, concomitantly 
increased activity in the rostral nucleus tractus solitarius sug-
gesting that activation of descending anti-nociceptive autonomic 
pathways or an inhibition of inhibitory activity may also occur, 
resulting in an enhancement of Fos activity (Lu and Westlund, 
2001). Therefore, GABA

B
 receptor agonists have the potential to 

exert a dual effect in the GI tract in response to noxious physical 
or chemical stimuli by decreasing afferent signaling and enhanc-
ing anti-nociceptive outflow.

to GABA
A
 receptor blockade (Giotti et al., 1985). However, there is 

also evidence for GABA
A
 receptor-mediated activation of inhibi-

tory pathways in guinea-pig colon (Minocha and Galligan, 1993) 
which one would expect to potentiate GABA

B
-mediated relaxation. 

 Non-adrenergic non-cholinergic inhibitory responses also display 
sensitivity to GABA

B
 receptor activation in the rabbit (Tonini et al., 

1989; Table 1), indicative of a co-ordinated regulatory role for 
GABA

B
 receptors in the modulation of peristalsis in this species.

The availability of GABA
B 

subunit receptor deficient mice has 
led to further characterization of GABA

B
 receptor-mediated effects 

in the GI tract (Sanger et al., 2002). Baclofen-induced inhibitory 
responses were observed in wildtype mouse intestine following 
electrical stimulation, but were absent in GABA

B1
 subunit deficient 

animals (Sanger et al., 2002). This unresponsiveness to baclofen does 
not appear to be due to an overt dysregulation of ileal function in 
GABA

B1 
mutant mice as these animals respond in a similar manner 

as wildtype animals to both electrical and cholinergic stimulation 
(Sanger et al., 2002; Table 1). Therefore, the functional dependence 
of GABA

B
 receptors in the mouse is dependant on the GABA

B1
 subu-

nit, and this finding is consistent with the preferential expression 
of this subunit in the GI tract of several species, including humans 
(Castelli et al., 1999; Calver et al., 2000; Kawakami et al., 2004).

As well as having a peripheral site of action, GABA can exert 
effects on GI motility via central mechanisms (Fargeas et al., 1988). 
In unanesthetized rats intracerebroventricular administration of 
baclofen had a stimulatory effect on GABA

B
 receptor- and atropine-

sensitive migrating myoelectric complexes (MMC) (Fargeas et al., 
1988; Table 1). While seemingly in disagreement with in vitro data, 
or data from anesthetized animals, which point toward a peripheral 
inhibitory effect for GABA

B
 receptors in the GI tract, the authors 

suggest that this enhancement of MMC activity may represent 
baclofen-induced adaptation of vagal efferent activity.

GABAB receptor moduLAtIon of IntestInAL eLectroLyte 
trAnsport
Despite localization of GABA

B
 receptors in the submucosal plexus 

of rat (Nakajima et al., 1996) and mouse (GABA
B1

; Casanova et al., 
2009) intestine, they do not appear to be involved in the regula-
tion of electrolyte transport. In guinea-pig intestine, only GABA

A
 

receptor activation, but not baclofen, mimicked GABA-induced 
elevations in short-circuit current (MacNaughton et al., 1996). A 
similar bias toward GABA

A
 receptor-mediated modulation of chlo-

ride ion-dependant secretion was also observed in rat small intestine 
(Hardcastle et al., 1991). However, in this species the GABA-induced 
effect was dependent on the presence of intact myenteric neurons, 
suggesting a myenteric reflex is involved in initiating the GABA-
induced secretory response (Hardcastle et al., 1991). However, given 
the paucity of data in this area it is difficult to draw a firm conclusion 
on the role of GABA

B
 receptor modulation of intestinal ion transport 

which may vary among intestinal regions and across species.

GABAB receptors And GAstroIntestInAL Afferent sIGnALInG 
And nocIceptIon
Vagal afferent fibers display sensitivity to baclofen and this 
response is, as expected, sensitive to GABA

B
 receptor antago-

nism (Page and Blackshaw, 1999). Further investigation of this 
vagal afferent pathway elucidated GABA

B
 receptor-mediated 

opening of K+, and closing of Ca2+ channels as contributing to 
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 translational relevance, being the only case of the use of GABA
B
 

receptors as a clinical target (as recently reviewed by Lehmann, 
2009; Lehmann et al., 2010). In pre-clinical studies, intravenous 
and intragastric administration of baclofen displayed almost equal 
potencies with respect to inhibition of TLESRs in the dog, despite a 
concomitant increase in gastric pressure, and these effects were sen-
sitive (to some extent) to GABA

B
 receptor antagonism and absent 

when the S enantiomer of baclofen was used (Lehmann et al., 1999). 
Similar inhibition of TLESRs by baclofen was observed in ferrets 
(Blackshaw et al., 1999), and the site of action for the GABA

B
-

mediated effect on TLESR in this species was later demonstrated 
to involve inhibition of vagal motor output, via GABA

B
 (GBAB

B1
)

 

receptors (McDermott et al., 2001), and thought to involve sub-
sequent inhibition of non-adrenergic non-cholinergic activity. 
However, inhibition of mechano-sensitive gastric vagal afferents 
and their central synaptic connections with brain stem neurons 
must also be considered as a site of action for GABA

B
 receptor 

agonists in the treatment of GERD. In parallel clinical trials, con-
ducted in and around the same period as pre-clinical studies, data 
demonstrated that baclofen increased lower esophageal pressure 
and decreased TLESRs and the number of reflux episodes in healthy 
human subjects (Lidums et al., 2000). A later study conducted in 
patients suffering from GERD, similarly demonstrated a signifi-
cant effect of orally administered baclofen on esophageal pH and 
on the incidence of reflux episodes and TLESRs, however in this 
particular study patients did not report any improvement in reflux 
symptoms (van Herwaarden et al., 2002). Nonetheless, a subsequent 
study indicated that 4 week treatment with baclofen significantly 
decreased the intensity of a number of symptoms associated with 
reflux, including fasting and post prandial epigastric pain, day- and 
night-time heartburn and regurgitation (Ciccaglione and Marzio, 
2003). Despite its efficacy in relieving GERD symptoms, one of the 
common features associated with baclofen administration in GERD 
patients is the development of centrally mediated side-effects, with 
over 80% of baclofen-treated patients reporting neurological events 
such as dizziness (van Herwaarden et al., 2002). In order to over-
come such central side-effects a number of GABA

B
 receptor agonists 

have been developed and tested for efficacy in reducing TLESRs, 
these include the GABA

B
 agonists AZD9343 (Beaumont et al., 

2009), AZD3355 (lesogaberan; Boeckxstaens et al., 2010a,b) and 
a prodrug of the R enantiomer of baclofen, XP19986 (arbaclofen 
placarbil; Gerson et al., 2010). The pre-clinical data for AZD9343 
favored a decreased side-effect profile as its pharmacology suggested 
the GABA

B
 agonist did not readily cross the blood brain barrier 

and was sequestered intracellularly via a GABA-carrier independent 
mechanism (Lehmann et al., 2008). Although AZD9343 reduced 
the number of TLESRs in healthy volunteers, significant side-effects 
unfortunately remained and included drowsiness and paresthesia 
(Beaumont et al., 2009). However, other side effects such as the 
incidence of dizziness in AZD9343-treated subjects were less than 
those reported in the baclofen-treated group (Beaumont et al., 
2009). Of most promise currently in terms of efficacy in treating 
the symptoms of GERD and having a reduced side-effect profile is 
lesogaberan. Its pharmacology differs from that of AZD9343 in that 
lesogaberan displays affinity for GABA carriers, thereby reducing 
GABA

B
-mediated central side effects (Lehmann et al., 2009). Initial 

trials with lesogaberan in healthy male subjects were positive, with 

GABAB receptor-medIAted reGuLAtIon of GAstrIc motILIty, 
emptyInG, And AcId secretIon
Baclofen exerts a vagus nerve-dependant dual effect on gastric 
motility that involves an increase in gastric pressure as a result of 
an inhibition of non-adrenergic non-cholinergic inhibitory neu-
rons in the gastric corpus, as well as an atropine-sensitive stimu-
lation of rhythmic contractions in both the corpus and antrum 
(Andrews et al., 1987). Moreover, independent of innervation by 
the central nervous system, peripheral GABA

B
 receptor activation 

induces TTX- and atropine-sensitive gastric contractility in vitro 
(Rotondo et al., 2010), suggesting that baclofen locally increases 
gastric tone through activation of intrinsic cholinergic neurons. Not 
unexpectedly then, GABA

B
 receptors have been shown to regulate 

gastric emptying (in mouse; Symonds et al., 2003). However, this 
was dependant on the consistency of the diet consumed and on 
the dose of baclofen administered (Symonds et al., 2003). Lower 
doses significantly increased gastric emptying of a solid meal, but 
decreased emptying of a liquid meal at a higher dose (Symonds 
et al., 2003). This divergent effect of baclofen reflects the differ-
ent mechanisms that underlie gastric emptying of solid and liquid 
meals. In a model of delayed gastric emptying, induced by central 
and peripheral administration of dipyrone, intracerebroventricu-
lar baclofen dose-dependently reversed dipyrone-induced gastric 
retention (Collares and Vinagre, 2005).

Given the evidence for central and peripheral regulation of 
gastric cholinergic neurons by GABA

B
 receptors, it is perhaps not 

surprising that GABA and GABA
B
 receptors might also influence 

cholinergic-induced gastric acid secretion. In keeping with such 
a hypothesis baclofen, or the GABA mimetic PCP-GABA, induce 
an increase in gastric acid secretion beyond that induced by hista-
mine and cholinergic agonism alone (Goto and Debas, 1983). This 
effect occurs independently of GABA

A
 receptors (Hara et al., 1990; 

Yamasaki et al., 1991) and is accompanied by an increase in vagal 
cholinergic outflow (Yamasaki et al., 1991). Consistent with such a 
vagal-cholinergic pathway, systemic baclofen-induced acid secretion 
(and gastric motility) was inhibited by both atropine and vagotomy 
(Andrews and Wood, 1986). Similar effects have also been observed 
in mice, and are mimicked by the GABA

B 
receptor agonist, SKF-

97541 (Piqueras and Martinez, 2004). As predicted by earlier studies 
Piqueras and Martinez (2004), demonstrated a vagally mediated 
atropine-sensitive regulation of acid secretion in mouse stomach, 
however they also demonstrated that GABA

B
 receptor-induced acid 

secretion was sensitive to neutralization of gastrin and enhanced in 
the presence of a somatostatin neutralizing antibody; the former 
suggesting that GABAergic induced gastric acid secretion occurs via 
a neurohumoral route which is sensitive to feedback inhibition by 
the later. Other studies have identified baclofen-induced acid secre-
tion as also been partially dependant on histamine H

2
 receptors, and 

identified extravagal effects of baclofen on gastric acid secretion in 
vagotomized rats (Blandizzi et al., 1992).

GABAB receptors As A therApeutIc tArGet In the 
GAstroIntestInAL trAct
GABAB receptors And trAnsIent Lower esophAGeAL reLAxAtIon
Modulation of transient lower esophageal sphincter relaxation 
(TLESR) and the application of GABA

B
 agonists in the treat-

ment of gastroesophageal reflux disease (GERD) is of particular 
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effects at central GABA
B
 receptors, may well overcome the disadvan-

tages associated with traditional GABA
B
 agonists. Lesogaberan, like 

baclofen, displays efficacy in the treatment of GERD (Boeckxstaens 
et al., 2010a,b), but has yet to be tested in other GI disorders where 
targeting peripheral GABA

B
 receptors could also be therapeutically 

useful, i.e., in motility disorders. Furthermore, over the last several 
years a number of positive allosteric modulators of the GABA

B
 

receptor have been developed (Urwyler et al., 2001, 2003; Malherbe 
et al., 2008). One of which, CGP7930, reduces the visceral pain 
response induced by CRD (Brusberg et al., 2009) and may there-
fore be therapeutically useful in the treatment of functional bowel 
disorders such as irritable bowel syndrome where visceral pain is 
a predominant and debilitating symptom. These modulators offer 
advantages over traditional GABA

B
 agonists, such as baclofen, as 

their actions occur following enhancement of endogenous GABA 
release or transmission, thereby limiting the side-effects that are 
normally associated with traditional agonist treatment. More novel 
strategies for delivering GABA to the GI tract in the form of engi-
neered bacteria, such as GAD transfected Bifidobacterium longum 
(Park et al., 2005), or the development of GABA containing func-
tional foods (Minervini et al., 2009) are in their infancy, but may 
offer potential in treating GI conditions that are GABA or GABA

B
 

receptor-sensitive.
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lesogaberan and baclofen decreasing the number of TLESRs and 
reflux episodes to a similar extent (Boeckxstaens et al., 2010a). As 
predicted by pre-clinical studies, subjects treated with lesogaberan 
had a similar side-effect profile to that observed in those treated with 
placebo (Boeckxstaens et al., 2010a). Lesogaberan similarly reduced 
TLESRs in patients with GERD and no significant differences in the 
side-effect profile between placebo and lesogaberan were observed 
(Boeckxstaens et al., 2010b). Therefore therapeutically exploiting 
affinity for GABA-carriers may prove to be beneficial in reducing 
the central side effects associated with baclofen.

GABAB receptors And GAstroIntestInAL cArcInoGenesIs
The GABA

B
-induced effects on gastric pH may potentially inhibit 

chemically-induced gastric carcinogenesis observed as a decrease 
in the incidence and number of gastric tumors (Tatsuta et al., 
1990). However, this remains unproven, and the exact mechanism 
underlying the baclofen-induced decrease in proliferation of antral 
mucosa has yet to be determined (Tatsuta et al., 1992). In the rat 
lower GI tract, the same group also observed a GABA

B
-induced 

inhibitory effect on colon tumor growth, but not incidence (Tatsuta 
et al., 1992).

summAry And concLusIons
The diversity of GI functions regulated by GABA

B
 receptors make 

it a potentially useful target in the treatment of several GI disor-
ders, but may also limit its therapeutic application due to off target 
side effects, both in the GI tract and centrally. For example GERD 
patients and healthy volunteers treated with baclofen reported 
adverse effects of a neurological nature that included drowsiness 
and dizziness (Lidums et al., 2000; van Herwaarden et al., 2002; 
Ciccaglione and Marzio, 2003). However, the development of 
peripherally acting compounds such as lesogaberan, which by vir-
tue of its affinity for GABA carriers (Lehmann et al., 2009) limits its 
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