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drug might be interacting with sodium channels. Further studies 
demonstrated that racemic propranolol and d-propranolol can sup-
press ventricular arrhythmias in dogs and humans (Woosley et al., 
1979; Dawson et al., 1984; Murray et al., 1990) and exert significant 
effects on cardiac conduction at doses exceeding that needed for 
β-adrenergic blockade (Duff et al., 1983). We recently correlated 
control of life-threatening perinatal ventricular arrhythmias caused 
by de novo mutation of the cardiac sodium channel gene (SCN5A 
encoding Na

V
1.5) with combination propranolol and mexiletine 

therapy, and demonstrated that propranolol blocks heterologously 
expressed wild-type and mutant Na

V
1.5 channels (Wang et al., 

2008). A more recent report confirmed that propranolol can sup-
press the increased persistent current evoked by Na

V
1.5 mutations 

associated with congenital long-QT syndrome (LQTS) (Bankston 
and Kass, 2010). Previously, propranolol was also demonstrated 
to block heterologously expressed human skeletal muscle Na

V
1.4 

channels (Desaphy et al., 2003). These various experimental find-
ings provided direct evidence that propranolol could block cardiac 
and skeletal muscle sodium channels. By contrast, there have been 
no investigations into effects of propranolol on recombinant brain 
sodium channels.

We examined the effects of propranolol on heterologously 
expressed cardiac and brain sodium channels with goals of elu-
cidating the biophysical consequences of block, and testing the 
hypothesis that amino acid residues required for local anesthetic 

IntroductIon
Propranolol is a widely used, non-selective β-adrenergic receptor 
antagonist with proven efficacy in the treatment of hypertension, 
in reducing mortality after myocardial infarction, in treatment 
of other cardiovascular disorders, and in migraine prophylaxis. 
Clinically, propranolol is administered as a racemic mixture with 
equal concentrations of R-(+)- and S-(−)-enantiomers. Although 
the two stereoisomers possess similar physical properties, the 
R-(+)-enantiomer (previously designated d-propranolol) is prac-
tically devoid of β-blocking activity (Mehvar and Brocks, 2001). 
The pharmacological effects of the drug in treating cardiovascular 
diseases can be largely explained by β-adrenergic receptor block, 
but other recognized effects such as anti-arrhythmic “membrane 
stabilizing” cardiac effects may be due to other molecular targets. 
By contrast, the effects of propranolol in brain that are responsible 
for preventing migraine attacks are not clear.

Voltage-gated sodium channels are established pharmacologi-
cal targets for local anesthetics and many other drugs with shared 
mechanisms of action including certain anti-arrhythmic and anti-
epilepsy agents. Earlier in vitro electrophysiological studies of the 
effects of propranolol on heart rate and conduction performed in 
frog atria, rat and canine ventricular myocytes suggested that the 
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20 CsCl, 2 EGTA, and 10 HEPES, pH 7.35 (adjusted with CsOH). 
Osmolarity was adjusted to 310 mOsm with sucrose. Data acquisi-
tion was carried out with an Axopatch 200B patch-clamp amplifier 
and pCLAMP 8.0 software. Electrode resistance ranged from 0.8 to 
1.5 MΩ. Pipette capacitance was corrected, and whole-cell capaci-
tance and series resistance were compensated 85–95% (voltage 
error <3 mV). Cells were allowed to stabilize for precisely 10 min 
after establishment of the whole-cell configuration before current 
was measured. Whole-cell currents were acquired at 20–50 kHz 
and filtered at 5 kHz. Recordings from cells exhibiting peak current 
amplitudes smaller than 0.8 nA were excluded from analysis to 
avoid potential endogenous channel contamination. Unless oth-
erwise stated, holding potential was −120 mV. Cells exhibiting 
very large whole-cell currents (>6 nA) were excluded if voltage 
control was compromised. Leak current was subtracted using a 
P/4 procedure. Whole-cell capacitance was assessed by integrating 
the capacitive transient elicited by a 10-mV voltage step from −120 
to −110 mV with 10-kHz filtering.

AutomAted plAnAr pAtch-clAmp recordIng
Whole-cell planar patch-clamp recording was used to examine 
drug block of stably expressed neuronal sodium channels using an 
automated electrophysiology platform (NPC-16 Patchliner system, 
Nanion Technologies GmbH, Germany) as described previously 
(Kahlig et al., 2010). Cells were detached with 0.25% trypsin–EDTA 
(Invitrogen, Carlsbad, CA, USA) for 1 min at room temperature, 
then triturated in growth media, centrifuged (100×g, 2 min) and 
resuspended at 1 × 106 cells/ml in fresh growth media. Following 
a recovery period (30 min, 37°C) the cells were resuspended and 
placed in the Patchliner “cell hotel.” Patchcontrol HT software 
(HEKA Elektronik, Germany) was used to control application of 
solutions and pressures necessary to establish the whole-cell con-
figuration. Sodium currents were recorded at room temperature 
(22–23°C) using external and internal solutions identical to those 
used for conventional patch-clamp experiments. Following cell 
contact with the 2 MΩ planar electrode, seal enhancer solution 
(in mM: 80 NaCl, 3 KCl, 35 CaCl

2
, 10 HEPES/NaOH pH7.4) was 

added to the external solution to promote giga-ohm seal formation. 
After establishing the whole-cell configuration, the seal enhancer 
solution was replaced with two washes of fresh external solution 
and the series resistance was compensated (50%, 10 μs). Cells were 
allowed to stabilize for precisely 10 min after establishment of the 
whole-cell configuration before current was measured. Patchmaster 
software (HEKA) was used to automatically compensate for whole-
cell capacitance and series resistance, and perform voltage-clamp 
protocols. Leak currents were subtracted by using an online P/4 
procedure. Cells exhibiting peak whole-cell current amplitudes 
<0.6 nA or leak currents >0.5 nA were excluded from analysis. 
Whole-cell currents were low-pass filtered at 5 kHz and digitized 
at 50 kHz.

phArmAcology
All drugs (propranolol, R-(+)-propranolol, S-(−)-propranolol, 
metoprolol, and nadolol; obtained from Sigma Chemical Co, St. 
Louis, MO, USA) were freshly prepared before experiments from 
10 or 100 mM stock solutions stored at −20°C then applied by 
rapid exchange of extracellular solution. For Na

V
1.5, tonic block 

effects are also critical for propranolol effects on sodium chan-
nels. We established that cardiac sodium channels have greater 
affinity for propranolol than brain sodium channels, that block 
is not stereoselective and that the drug evokes biophysical effects 
that resemble but are not identical to those of the prototypic local 
anesthetic agent lidocaine.

mAterIAls And methods
heterologous expressIon of sodIum chAnnels
A recombinant human Na

V
1.5 sodium channel cDNA in a mam-

malian expression plasmid (pRc/CMV-hH1) (Gellens et al., 1992) 
was co-expressed with the human β

1
 subunit (hβ

1
) in tsA201 cells 

by transient transfection using FuGene 6 (Roche Diagnostics, 
Indianapolis, Inc.) and 0.5 μg of each plasmid. A specific Na

V
1.5 

mutation resulting in substitution of phenylalanine-1760 (based 
on amino acid numbering in Swiss-Prot: Q14524) with alanine 
was engineered by polymerase chain reaction (PCR) mediated site-
directed mutagenesis and the final construct was sequenced in its 
entirety to confirm the nucleotide change and exclude inadvertent 
polymerase errors. Transiently transfected cells were transferred 
to a chamber (Warner Instrument Corp, Hamden, CT, USA) 
48–72 h after transfection for electrophysiological measurements. 
Expression of hβ

1
 was coupled to expression of enhanced green 

fluorescent protein in the plasmid pEGFP-IRES-hβ
1
, and only 

cells exhibiting green fluorescence were selected for patch-clamp 
recording.

Three human neuronal sodium channels (Na
V
1.1, Na

V
1.2, 

Na
V
1.3) were stably co-expressed with human β

1
 and β

2
 subunits 

in HEK-293 cells using a recently described transposon strategy 
(Kahlig et al., 2010). Plasmids encoding human Na

V
1.1 and Na

V
1.2 

were previously described (Lossin et al., 2002; Misra et al., 2008; 
Kahlig et al., 2010) except that two missense variants in Na

V
1.2 

(V1325A and V1768L) were corrected to match the reference 
sequence (GenBank accession number NP_066287.2). Both Na

V
1.1 

and Na
V
1.2 were cloned into a transposon vector (Kahlig et al., 2010). 

A full-length human Na
V
1.3 cDNA was obtained from Origene 

Technologies Inc. (product code SC316037, Rockville, MD, USA). 
The open reading frame (5856 bp) corresponding to the major 
splice isoform (GenBank accession number NM_001081676.1) was 
introduced into a mammalian expression vector with the CMV 
promoter and an HSV-TK polyadenylation signal followed by a 
neomycin resistance gene. Inverted repeat elements from the pig-
gyBac transposon were introduced flanking the CMV promoter 
and neomycin selection cassette. For all neuronal sodium chan-
nel constructs, full-length cDNAs were propagated in Stbl2 cells 
(Invitrogen, Carlsbad, CA, USA) at 30°C. The open reading frame 
of each sodium channel plasmid was fully sequenced before use.

conventIonAl pAtch-clAmp recordIng
Sodium currents were recorded at room temperature (22–23°C) 
using the whole-cell patch-clamp technique as described previ-
ously (Lossin et al., 2002; Wang et al., 2002, 2007; Benson et al., 
2003). Specific voltage-clamp protocols are depicted in each fig-
ure. The bath solution contained the following (in mmol/l): 145 
NaCl, 4 KCl, 1.8 CaCl

2
, 1 MgCl

2
, 10 HEPES, and 10 glucose, pH 

7.35 (adjusted with NaOH). The pipette solution (intracellular 
solution) contained the following (in mmol/l): 10 NaF, 110 CsF, 
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results
stereoselectIvIty And specIfIcIty of proprAnolol block of 
nav1.5
Propranolol is marketed as a racemic mixture of two enantiom-
ers denoted R-(+) and S-(−), but only the S-(−) form mediates 
clinically relevant β-blocker effects (Mehvar and Brocks, 2001). 
We previously demonstrated that racemic propranolol and R-(+)-
propranolol block Na

V
1.5 channels (Wang et al., 2008) but did 

not investigate the stereoselectivity of this effect. Therefore, we 
tested tonic and use-dependent block of heterologously expressed 
human Na

V
1.5 channels co-expressed with the human sodium 

channel β
1
 subunit to compare effects of the two propranolol 

enantiomers. Figure 1 illustrates representative levels of block and 
 concentration–response relationships for tonic and use-dependent 
block by R-(+) and S-(−) propranolol. Similar IC

50
 values were 

observed for both enantiomers under conditions promoting tonic 
(R: 21.4 μM vs S: 23.6 μM) and use-dependent (R: 2.7 μM vs S: 
2.6 μM) block. These data indicate that both enantiomers exhibit 
equivalent blocking potency for Na

V
1.5 channels. Further experi-

ments were performed using only R-(+)-propranolol.
To test whether propranolol is unique among β-adrenergic 

receptor blockers in having sodium channel blocking activity, we 
tested two other commonly prescribed drugs of this class, nadolol 
(non-selective β-blocker) and metoprolol (selective β

1
-blocker). 

Figure 2 illustrates that neither 10 μM nadolol nor 10 μM meto-
prolol exhibits any appreciable tonic or use-dependent blocking 
effects on Na

V
1.5. In experiments testing use-dependent block 

(Figure 2B), the fraction of residual peak sodium current after 
100 successive depolarizing pulses delivered at 1 Hz was 0.93 ± 0.02 
and 0.97 ± 0.01 for metoprolol and nadolol, respectively, compared 
with 0.49 ± 0.03 for 3 μM R-(+)-propranolol. The chemical basis 
for this selectivity is not entirely obvious but differences in the 
aromatic ring structures are the most distinctive features of these 
compounds (Figure 2C). Our findings indicate that propranolol 
block of Na

V
1.5 is not stereoselective and not a universal property 

of all β-blockers.

bIophysIcAl effects of proprAnolol on nav1.5
Additional experiments were performed to determine effects of 
R-(+)-propranolol on the biophysical properties of Na

V
1.5 channels 

and to make comparisons with effects exerted by the prototypic 
local anesthetic agent lidocaine. Figure 3 illustrates the effects of 
3 μM R-(+)-propranolol under conditions favoring tonic block on 
current–voltage relationship, voltage-dependence of activation and 
inactivation, and on the time course of recovery from inactivation. 
The drug caused significant hyperpolarizing shifts in the peak of 
the I–V relationship (Figure 3A), in midpoint of the conductance–
voltage relationship (Figure 3B) and in the voltage-dependence of 
channel inactivation (Figure 3C; Table 1). The effects on steady-
state inactivation were similar for 3 μM R-(+)-propranolol and 
100 μM lidocaine, but the magnitude of shift in the activation 
curve with R-(+)-propranolol was significantly greater than with 
lidocaine (Table 1). Recovery from inactivation was also slowed by 
R-(+)-propranolol, but this effect was much less dramatic than that 
observed for lidocaine (Figure 3D; Table 1). Both drugs induced a 
slow component of recovery from inactivation and increased the 
magnitude of the time constant corresponding to the dominant, 

was measured using conventional whole-cell recording at 0.2 Hz 
after steady-state was achieved in the presence of drug (6–8 min) 
and then normalized to the current amplitude recorded in the 
absence of drug. Steady-state use-dependent block was achieved 
in response to trains of 150 pulses (to –10 mV, 100 ms) at fre-
quencies indicated in the figure legends. Use-dependent block 
was calculated as the degree of block during the last pulse in 
a pulse train normalized to the current amplitude recorded 
 without drug.

Pharmacology of brain sodium channels was assessed using 
the Patchliner system. Tonic block was assessed with a sequence 
of 20 ms depolarizing steps from −80 to 60 mV in increments of 
10 mV. The peak current generated at 0 mV under varying con-
centrations of R-(+)-propranolol was normalized to the peak cur-
rent at 0 mV under control conditions without R-(+)-propranolol. 
Use-dependent block was assessed with a train of 100 depolarizing 
pulses (to 0 mV, 5 ms, 5 Hz) from a holding potential of −120 mV. 
Peak current of the last pulse was normalized to the peak current 
of the first pulse in the same condition.

dAtA AnAlysIs
All data were analyzed with pCLAMP 8.0 (Axon Instruments, Inc., 
Sunnyvale, CA, USA) and plotted using SigmaPlot 2002 (SPSS, 
Inc., Chicago, IL, USA). Steady-state availability was fit with the 
Boltzmann equation (1),

I I V V k/ /{ exp([ ]/ )},max /= + −1 1 1 2  
(1)

to determine the membrane potential for half-maximal inactiva-
tion (V

1/2
) and slope factor (k). Recovery from inactivation was 

analyzed by fitting data with either a single (Eq. 2) or double (Eq. 3) 
exponential function as appropriate:

I I A tt / ( exp[ / ])max = − × − −1 1 τ  
(2)

I I A t A t Ct / ( exp[ / ]) ( exp[ / ])max = − × − − − × − − +1 1 11 1 2 2τ τ  (3)

where A, τ, and C refer to amplitudes, time constant, and residual 
current, respectively. Voltage-dependence of channel activation was 
estimated by measuring peak sodium current during a variable test 
potential from a holding potential of −120 mV. Current at each 
membrane potential was divided by the electrochemical driving 
force for sodium ions and normalized to the maximum sodium 
conductance. Data were fit by a Boltzmann function using a non-
linear least-squares minimization method (Marquardt–Levenberg 
algorithm).
To estimate drug blocking effect on sodium channels, the Hill equa-
tion (4) was used:

F L Ln n n= +[ ] /([ ] [ ] )IC 50  
(4)

where F is fraction of drug block, L is drug concentration, n is 
Hill coefficient, and IC

50
 is the drug concentration producing half-

maximal inhibition. Results are presented as mean ± SEM, and 
statistical comparisons were made between the drug-free (control) 
condition and during drug application using an unpaired Student’s 
t-test or one-way ANOVA followed by a Tukey post-test. Statistical 
significance was assumed for P < 0.05. In some figures, error bars 
are smaller than data symbols.
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Figure 2 | Chemical selectivity of propranolol block of NaV1.5 sodium 
channels. (A) Representative whole-cell recordings made from NaV1.5 
expressing cells before and after application of 3 μM R-(+)-propranolol, 10 μM 
nadolol, or 10 μM metoprolol during depolarizing pulse trains to −10 mV at 1 Hz. 
Pulse protocol was the same as depicted in Figure 1A. Current traces were 
obtained in drug-free control solution, after steady-state tonic block (first trace) 
and use-dependent block at 1 Hz (100th trace) measured 4–5 min after drugs 

were applied to the bath solution. (B) Comparison of use-dependent inhibition of 
NaV1.5 by 3 μM R-(+)-propranolol, 10 μM nadolol, or 10 μM metoprolol during 
1 Hz pulse trains. Peak currents of each subsequent trace were normalized to 
the peak of the first current trace, and plotted as a function of pulse number 
(n = 7–12). For clarity, not all data points are plotted. There was no use-
dependent reduction of peak sodium current at 1 Hz in the control condition. 
(C) Chemical structures of propranolol, metoprolol, nadolol, and lidocaine.

Figure 1 | Stereoselectivity of propranolol block of NaV1.5 sodium 
channels. (A) Representative whole-cell voltage-clamp recordings made from 
tsA201 cells expressing NaV1.5 with the human β1 subunit before and after 
application of 30 μM R-(+)-propranolol or S-(−)-propranolol. Tonic block was 
elicited by 100 ms depolarizations to −10 mV from a holding potential of 
−120 mV delivered at a frequency of 0.2 Hz. Recordings made in the presence 

of drug illustrate the steady-state level of block achieved after 5–7 min. (B) 
Concentration–response relationships for tonic block (n = 7–14 cells per data 
point). (C) Representative traces illustrating use-dependent block by 3 μM 
R-(+)-propranolol or S-(−)-propranolol. Use-dependent block was elicited at a 
pulsing frequency of 1 Hz. (D) Concentration–response relationships for 
use-dependent block (n = 7–14 cells per data point).
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Figure 3 | Biophysical effects of r-(+)-propranolol on NaV1.5. 
(A) Current–voltage relationships in the absence and presence of 3 μM 
R-(+)-propranolol. Peak current amplitudes were elicited from a holding 
potential of −120 mV to various test potentials then normalized to cell 
capacitance. (B) Conductance–voltage relationship in the absence and 
presence of 3 μM R-(+)-propranolol. (C) Voltage-dependence of sodium 

channel availability (“steady-state inactivation”) in the absence and presence 
of drug measured using a two-pulse protocol illustrated in the inset. (D) 
Effect of (R)-(+)-propranolol on recovery from inactivation (holding potential 
−120 mV). Fit parameters for data in (B–D) are provided in Table 1, and lines 
in (B,C) represent Boltzmann fits. Each point represents mean ± SEM from 
12 cells.

Table 1 | effects of r-(+)-propranolol and lidocaine on NaV1.5 biophysical properties.

 Voltage-dependence of activation Steady-state availability recovery from inactivation

 V1/2 (mV) k (mV) n V1/2 (mV) k (mV) n τ1 (ms) (%) τ2 (ms) (%) n

Control −39.2 ± 0.6 −6.1 ± 0.2 12 −79.6 ± 0.4 −6.4 ± 0.1 12 3.9 ± 0.3 N/A 12

3 μM R-(+)-propranolol −55.4 ± 1.0† −5.1 ± 0.2* 12 −89.5 ± 1.5† −7.0 ± 0.1 12 9.9 ± 1.1 95.7 ± 11.4  12 

       (94.4 ± 1.4%) (5.6 ± 1.4%)

∆ 16.3 ± 0.8  12 9.9 ± 0.7  12   

Control −42.6 ± 2.6 −6.2 ± 0.3 11 −81.3 ± 1.1 −7.3 ± 0.1 11 4.6 ± 0.9 N/A 8

100 μM lidocaine −51.7 ± 1.5** −5.4 ± 0.2* 11 −90.0 ± 1.1† −7.7 ± 0.2 11 10.0 ± 1.6 785.7 ± 60.7 8 

       (50.8 ± 1.4%) (49.2 ± 1.4%)

∆ 9.1 ± 0.9**  11 8.7 ± 0.6

*P < 0.05; **P < 0.01; †P < 0.001 (paired t-test, or Student’s t-test for ∆).

faster component (Table 1). These results demonstrate that R-(+)-
propranolol exhibits biophysical effects on Na

V
1.5 that are similar 

but not identical to lidocaine.

We compared the use-dependent effects of lidocaine and 
R-(+)-propranolol on channels subjected to repetitive depolari-
zations at different frequencies. The data in Figure 4 illustrate 
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Figure 4 | use-dependent block of NaV1.5 by propranolol and lidocaine. 
Steady-state use-dependent inhibition of NaV1.5 by 100 μM lidocaine, 3 and 
40 μM R-(+)-propranolol at 1, 2, 5, and 10 Hz pulsing frequencies. The data are 
averaged peak currents following the 100th pulse in the presence of drug 
normalized to peak current measured in the absence of drug. Each point 
represents mean ± SEM from 7 to 14 cells.

Figure 5 | Phenylalanine-1760 is required for NaV1.5 block by propranolol. Steady-state use-dependent inhibition of WT-NaV1.5 and F1760A channels by 100 μM 
lidocaine (A) and 3 μM R-(+)-propranolol (B) during 1 Hz pulsing to −10 mV from a holding potential of −120 mV. Each point represents mean ± SEM from 7 to 14 cells.

similar levels of use-dependent inhibition of peak current for 
100 μM lidocaine and 3 μM R-(+)-propranolol across a range 
of pulsing frequencies, whereas 40 μM R-(+)-propranolol pro-
duced near complete block at 5–10 Hz. These observations 
indicate that despite some biophysical differences, the two 
drugs exhibited similar use-dependent blocking effects on 
Na

V
1.5 channels.

proprAnolol And lIdocAIne block shAre dependence upon A 
crItIcAl d4/s6 resIdue
Specific residues in the D4/S6 segment including phenylalanine-
1760 in human Na

V
1.5 have been identified as critical for sodium 

channel block by local anesthetic drugs (Ragsdale et al., 1994). 
We examined whether mutation of this residue alters block by 
R-(+)-propranolol. Figure 5 illustrates results from experiments 
that tested use-dependent block of WT or Na

V
1.5-F1760A mutant 

channels. Whereas the WT channel was blocked ∼50% by 100 μM 
lidocaine or 3 μM R-(+)-propranolol, Na

V
1.5-F1760A exhib-

ited near complete insensitivity to both compounds. The effects 
of both drugs on recovery from inactivation were also greatly 
attenuated (Figure 6), but the other biophysical effects previously 
noted for WT channels were still evident for both drugs (Table 2; 
Figures 7 and 8). Our results suggest that use-dependent block by 
R-(+)-propranolol requires a structural motif in Na

V
1.5 that is also 

required by lidocaine.

proprAnolol block of neuronAl sodIum chAnnels
We investigated the effects of R-(+)-propranolol on three human 
brain sodium channels (Na

V
1.1, Na

V
1.2, Na

V
1.3) stably expressed 

with human β
1
 and β

2
 accessory subunits in HEK-293 cells to test 

the hypothesis that sodium channels other than Na
V
1.5 are sensitive to 

this drug. We focused initially on Na
V
1.1 as mutations in this channel 

have been associated with a spectrum of human epilepsies and one 
familial migraine disorder. Initial studies demonstrated that R-(+)-
propranolol exerts tonic block of Na

V
1.1 with an approximate IC

50
 of 

50 μM (Figure 9A), slightly higher than that observed for Na
V
1.5 chan-

nels. At this concentration, R-(+)-propranolol caused hyperpolarizing 
shifts in the conductance–voltage relationship (Figure 9B) and steady-
state inactivation curve (Figure 9C). The drug also induced a pro-
found slowing of recovery from inactivation (Figure 9D) explained 
best by an approximate 50-fold increase in magnitude of the time 
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Figure 6 | effects of propranolol and lidocaine on recovery from 
inactivation for WT-NaV1.5 and F1760A channels. Recovery from inactivation 
was determined using a two-pulse protocol illustrated by the inset in 
(A). Current amplitude recorded after each time interval was normalized to peak 
current measured during the first pulse. The effects of 3 μM R-(+)-propranolol 

and 100 μM lidocaine on recovery from inactivation for WT-NaV1.5 channels are 
illustrated in (A,B), respectively. The effects of 3 μM R-(+)-propranolol and 
100 μM lidocaine on recovery from inactivation for F1760A channels are 
illustrated in (C,D), respectively. Each point represents mean ± SEM from 
7 to 14 cells.

Table 2 | effects of r-(+)-propranolol and lidocaine on NaV1.5-F1760A biophysical properties.

 Voltage-dependence Steady-state availability recovery from inactivation 

 of activation

 V1/2 (mV) k (mV) n V1/2 (mV) k (mV) n τ1 (ms) (%) τ2 (ms) (%) n

Control −42.5 ± 1.4 −6.5 ± 0.3 10 −73.5 ± 1.3 −5.4 ± 0.1 10 4.7 ± 0.4 (90.5 ± 1.5%) 30.4 ± 3.9 (9.5 ± 1.5%) 10

3 μM R-(+)-propranolol −58.0 ± 1.3† −6.1 ± 0.3 10 −80.1 ± 1.8* −5.6 ± 0.1 10 5.7 ± 0.4* (86.1 ± 1.8%*) 42.4 ± 6.8 (13.9 ± 1.8%*) 10

∆ 15.5 ± 1.3  10 6.6 ± 1.2  10   

Control −42.7 ± 1.5 −6.4 ± 0.2 8 −74.5 ± 1.2 −6.1 ± 0.2 8 3.9 ± 0.4 (91.4 ± 0.9%) 29.7 ± 2.5 (8.6 ± 0.9%) 8

100 μM lidocaine −50.3 ± 1.9† −6.9 ± 0.4 8 −87.8 ± 3.4* −6.4 ± 0.2 8 14.0 ± 2.1* (87.7 ± 2.8%) 108.5 ± 30.2 (12.3 ± 2.8%) 8

∆ 7.6 ± 1.4**  8 13.2 ± 1.4**  8

*P < 0.05; **P < 0.01; †P < 0.001 (paired t-test, or Student’s t-test for ∆).

constant representing the slower component of recovery (Table 3). 
The effects of R-(+)-propranolol on Na

V
1.1 were qualitatively similar 

to those observed for Na
V
1.5. The same concentration of metoprolol 

(50 μM) exerted only 8 ± 0.01% (n = 4) tonic block on Na
V
1.1 con-

sistent with our previous conclusion that sodium channel block by 
propranolol is not a class effect of β-blockers.
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Figure 7 | Biophysical effects of propranolol on NaV1.5-F1760A channels. 
(A) Current–voltage relationships in the absence and presence of 3 μM 
R-(+)-propranolol. Peak current amplitudes were elicited from a holding 
potential of −120 mV to various test potentials then normalized to cell 
capacitance. (B) Conductance–voltage relationship in the absence and 
presence of 3 μM R-(+)-propranolol. (C) Voltage-dependence of sodium 

channel availability (“steady-state inactivation”) in the absence and presence 
of drug measured using a two-pulse protocol illustrated in the inset. (D) Effect 
of (R)-(+)-propranolol on recovery from inactivation (holding potential 
−120 mV). Fit parameters for data in (B–D) are provided in Table 2, and lines 
in (B,C) represent Boltzmann fits. Each point represents mean ± SEM from 
7 to 14 cells.

To determine the relative sensitivity of brain sodium  channels 
to tonic and use-dependent block by R-(+)-propranolol, we 
employed an automated planar patch-clamp recording system 
(Nanion Patchliner) to construct concentration–response curves 
for Na

V
1.1, Na

V
1.2, and Na

V
1.3. Use of the automated electro-

physiology platform enabled the performance of these experi-
ments with greater efficiency than with manual patch-clamp 
recording. Table 4 presents the IC

50
 values calculated from these 

experiments. Using data obtained from cells expressing Na
V
1.3, 

we could not reliably fit the concentration–response relation-
ship for use-dependent block, but empirically we observed 
53.5% block at 100 μM suggesting that the IC

50
 was similar for 

tonic (103 μM) and use-dependent block. These data indicate 
that brain sodium channels exhibit less sensitivity to R-(+)-
propranolol than Na

V
1.5 channels. Based upon our study and 

previously published work (Desaphy et al., 2003), the rank-
ing of IC

50
 values representing sodium channel tonic block by 

propranolol is (from most to least sensitive): Na
V
1.5 < Na

V
1.1  

< Na
V
1.4 < Na

V
1.2 < Na

V
1.3.

dIscussIon
Propranolol has many clinical uses especially in the treatment of cardi-
ovascular diseases as well as in migraine prophylaxis. Most clinical ben-
efits are readily explainable by the intended drug action of β-adrenergic 
receptor antagonism. However, off-target effects may contribute to 
clinical efficacy in some circumstances and could also explain cer-
tain adverse effects involving the central nervous system (Gleiter and 
Deckert, 1996). In this study, we determined the biophysical effects of 
propranolol on recombinant heart and brain sodium channels. We 
found that the ability of propranolol to block voltage-gated sodium 
channels is not stereospecific, nor a class effect of β-blockers. We 
also demonstrated that block depends upon a critical D4/S6 residue 
involved with local anesthetic effects, and that propranolol exhibits 
greater potency against cardiac than brain sodium channels. These 
findings firmly establish sodium channels as targets for propranolol 
and may help explain some beneficial effects of the drug.

The mechanism of propranolol block of sodium channels 
resembles that of local anesthetics. In particular, propranolol exhib-
its both tonic and use-dependent block probably by  stabilizing the 
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evoked by various SCN5A mutations when expressed heterolo-
gously (Bankston and Kass, 2010), and there is anecdotal evidence 
that propranolol in combination with mexiletine may be effective 
therapy for severe neonatal presentations of LQT3 (Schulze-Bahr 
et al., 2004; Wang et al., 2008). However, a recent study dem-
onstrated that propranolol alone did not ameliorate arrhyth-
mia risk in a LQT3 mouse model (Fabritz et al., 2010). Further, 
clinical studies of LQTS have suggested that β-blockers are less 
efficacious in LQT3 than in other genetic subtypes (Moss et al., 
2000; Schwartz et al., 2001; Priori et al., 2004), but the specific 
efficacy of propranolol alone or in combination with mexiletine 
(or other sodium channel blockers) has not been systematically 
evaluated. The non-stereospecificity of propranolol Na

V
1.5 block 

suggests that R-(+)-propranolol might offer utility as a sodium 
channel blocker in clinical circumstances where β-adrenergic 
block is undesirable such as LQT3 in which bradycardia could 
predispose to cardiac arrhythmias. The plasma concentration 

inactivated state of the channel as evidenced by a hyperpolarizing 
shift in the steady-state availability curve and slowing of recovery 
from inactivation. In Na

V
1.5 channels, mutation of F1760 greatly 

attenuates tonic and use-dependent block by both propranolol and 
lidocaine suggesting that there are some shared structural require-
ments for the action of both drugs. Mutation of F1760 also partially 
suppresses the effects of both drugs on recovery from inactiva-
tion but curiously has little impact on changes in conductance–
voltage relationship and steady-state availability suggesting that 
other residues or other structural domains contribute to these 
biophysical effects.

The clinical relevance of propranolol block of sodium channels 
may be significant in some circumstances. In congenital LQTS 
caused by SCN5A mutations (LQT3 subtype), an increase in non-
inactivating persistent sodium current underlies susceptibility 
to ventricular arrhythmias (Bennett et al., 1995). Propranolol 
has been demonstrated to suppress increased persistent current 

Figure 8 | Biophysical effects of lidocaine on NaV1.5-F1760A 
channels. (A) Current–voltage relationships in the absence and presence 
of 100 μM lidocaine. Peak current amplitudes were elicited from a holding 
potential of −120 mV to various test potentials then normalized to cell 
capacitance. (B) Conductance–voltage relationship in the absence and 
presence of 100 μM lidocaine. (C) Voltage-dependence of sodium channel 

availability (“steady-state inactivation”) in the absence and presence of 
drug measured using a two-pulse protocol illustrated in the inset. (D) Effect 
of lidocaine on recovery from inactivation (holding potential −120 mV). Fit 
parameters for data in (B–D) are provided in Table 2, and lines in panels 
(B,C) represent Boltzmann fits. Each point represents mean ± SEM from 
7 to 14 cells.
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Figure 9 | Biophysical effects of r-(+)-propranolol on NaV1.1. (A)   
Current–voltage relationships in the absence and presence of 50 μM 
R-(+)-propranolol. Peak current amplitudes were elicited from a holding 
potential of −120 mV to various test potentials then normalized to cell 
capacitance. (B) Conductance–voltage relationship in the absence and 
presence of 50 μM R-(+)-propranolol. (C) Voltage-dependence of sodium 

channel availability (“steady-state inactivation”) in the absence and presence 
of drug measured using a two-pulse protocol illustrated in the inset. 
(D) Effect of R-(+)-propranolol on recovery from inactivation (holding potential 
−120 mV). Fit parameters for data in (B–D) are provided in Table 3, and lines 
in (B,C) represent Boltzmann fits. Each point represents mean ± SEM from 
6 to 8 cells.

Table 3 | effects of r-(+)-propranolol on NaV1.1 biophysical properties.

 Voltage-dependence Steady-state availability recovery from inactivation 

 of activation

 V1/2 (mV) k (mV) n V1/2 (mV) k (mV) n τ2 (ms) (%) τ2 (ms) (%) n

Control −19.8 ± 1.1 −7.4 ± 0.2 8 −59.6 ± 1.7 −5.6 ± 0.3 6 2.0 ± 0.2 (82 ± 2%) 122 ± 43 (17 ± 2%) 6

50 μM R-(+)-propranolol −25.4 ± 0.9† −6.9 ± 0.4 8 −63.6 ± 2.0† −5.7 ± 0.2 6 3.2 ± 0.2** (52 ± 2%) 6110 ± 652† (45 ± 2%) 7

**P < 0.01; †P < 0.001 (Student’s t-test).

Table 4 | Tonic and use-dependent block of brain voltage-gated sodium channels by r-(+)-propranolol.

 Tonic block of current at 0 mV use-dependent (5 Hz) block of current at 0 mV

 log iC50 (iC50 in μM) Hill slope n log iC50 (iC50 in μM) Hill slope n

Nav1.1 1.69 ± 0.01 (48.7 μM) 1.11 ± 0.03 7–10 1.25 ± 0.03 (17.8 μM) 1.21 ± 0.10 10–12

Nav1.2 1.91 ± 0.01 (80.9 μM) 1.50 ± 0.07 6–12 1.45 ± 0.03 (28.0 μM) 0.75 ± 0.04 9–10

Nav1.3 2.01 ± 0.03 (103 μM) 1.72 ± 0.19 8–10 N.D. N.D.

R-(+)-propranolol concentrations tested were in μM: 1, 3, 10, 30, 100, 300, and 1000.
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Two general mechanisms have been proposed for the prophy-
lactic effect of propranolol in migraine: (1) modulation of the 
central catecholaminergic system (Schoenen et al., 1986) probably 
through central β-adrenergic receptors (Casucci et al., 2008); and 
(2) cross-interaction with serotonin receptors (Casucci et al., 2008). 
Recently, it has been demonstrated that propranolol suppresses 
cortical spreading depression frequency in rats (Ayata et al., 2006). 
Anti-convulsant drugs such as topiramate and sodium valproate 
have also been shown to be effective in reducing migraine attacks in 
clinical trials (Chronicle and Mulleners, 2004), and both drugs can 
block voltage-gated sodium channels. Moreover, propranolol has 
been shown to have anti-convulsive properties (Jaeger et al., 1979; 
Fischer, 2002). Based upon these many observations and our current 
data, we propose that brain sodium channels could be targets for 
propranolol in preventing migraine. On the other hand, the clinical 
efficacy of metoprolol (Kangasniemi and Hedman, 1984; Olsson 
et al., 1984) and the lack of efficacy of d-propranolol (Ayata et al., 
2006) in migraine prophylaxis are not consistent with this idea. 
Further, the rather high IC

50
 we observed in vitro for propranolol 

block of brain sodium channels would seem difficult to achieve in 
clinical settings. Nonetheless, further consideration should be given 
to sodium channels as molecular targets explaining certain clinical 
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eases, the drug is effective in preventing attacks of common migraine. 
Migraine is a significant public health problem affecting about 
18% of the women and 6% of the men in the United States (Bigal 
and Lipton, 2009). Migraine attacks can be preceded by transient 
neurological symptoms (aura) such as visual disturbances, which 
have been traced to the occurrence of cortical spreading depres-
sion, an initial increase in neuronal activity immediately followed 
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propagates across the cortex (Lauritzen, 1994). Migraine attacks are 
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