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At variance with most other available S1P receptor agents, FTY720 
has been used in a large number of publications (nearly 1000 PubMed-
indexed publications as of January 2011). Possibly because it has 
been the object of such an intense scrutiny, other, non-S1P receptor-
mediated effects of FTY720 have been documented. For instance, 
FTY720 has been shown to inhibit ceramide synthase (Lahiri et al., 
2009), cytosolic phospholipase A2 (Payne et al., 2007), S1P lyase 
(Bandhuvula et al., 2005), sphingosine kinase (SPK) 1 (Vessey et al., 
2007; Tonelli et al., 2010), and acid sphingomyelinase (Dawson and 
Qin, 2011), stimulate 27-hydroxycholesterol production (Blom et al., 
2010), bind to 14-3-3 proteins and inhibit their pro-survival signaling 
(Woodcock et al., 2010). Because most of these effects were observed 
at relatively high FTY720 concentration, they may not be relevant to 
the in vivo effects of the drug. But investigators should be cautious 
when interpreting the results of in vitro studies, particularly when 
these studies use high FTY720 concentrations. Incidentally, the fact 
that fingolimod does not discriminate between S1P

1
, S1P

3
, S1P

4
, and 

S1P
5
 receptors may not matter in vivo. Because blood levels of FTY720 

are low (<3 nM), the drug does not occupy S1P
3
 receptors to a sig-

nificant extent. However, after down-regulation of S1P
1
 receptors, 

homeostatic activation of S1P
2
 and S1P

3
 by endogenous plasma S1P 

(>200 nM) becomes predominant, and the S1P signaling balance is 
shifted from S1P

1
 to S1P

2
/S1P

3
, and thus from G

i
 to G

12/13
/Rho/Rho 

kinase activation. The observed functional consequence of FTY720 
administration may therefore be a sum of drug- and endogenous 
S1P-mediated effects, and be very similar with S1P

1
 selective agents 

and non-subtype selective S1P modulators.

Receptors for sphingosine-1-phosphate (S1P) were discovered 
and characterized in the late nineties. Ten years ago, there was no 
selective S1P receptor agonist or antagonist. Suramin, an old anti-
protozoal drug, was used as S1P

3
 receptor antagonist (Ancellin and 

Hla, 1999; Salomone et al., 2003), but its usefulness was limited 
because it lacked specificity (Voogd et al., 1993). Recently, a number 
of ligands for S1P receptors have been screened as agonists and 
antagonist (Im, 2010). Most of these newly developed agents are 
commercially available and are increasingly being used to char-
acterize the S1P receptor subtypes involved in specific biological 
mechanisms and functions. However, they have often not been 
screened for specificity against a wide array of targets, nor have 
they been systematically studied in vivo, as is required for drugs 
intended for human use.

In contrast, more detailed pharmacological data is available 
for compounds that show significant therapeutic potential. 
Among these, particularly worthy of mention is fingolimod 
(FTY720), an FDA- and EMA-approved drug, that, once phos-
phorylated, binds all S1P receptors but S1P

2
 in vitro. In vivo, phos-

pho-fingolimod down-modulates lymphocytic S1P
1
 to inhibit 

S1P-S1P
1
-signaling and lymphocyte egress (Matloubian et al., 

2004; Martin et al., 2010), which induces remission in patients 
with multiple sclerosis (Kappos et al., 2010). Fingolimod has 
been screened against a large number of other targets (includ-
ing about 100 receptors) to insure S1P receptor specificity 
(V. Brinkmann, Novartis Institutes for BioMedical Research, 
 personal communication).
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their  paradigm. It is however possible that the BML-241/CAY10444 
concentration used in these studies was too low to block S1P

3
 recep-

tors to a significant extent; indeed, using a β-arrestin recruitment 
assay, Wetter et al. (2009) showed that their S1P

3
 cell line response 

to S1P was inhibited to 78% of the receptor response by 100 μM 
BML-241/CAY10444, with an IC

50
 of 4.6 μM. A less likely, but possible 

explanation for negative studies with BML-241 is that a non-specific 
action of the drug may have counteracted the partial blockade of S1P

3
 

receptors. In light of the low affinity of BML-241/CAY10444 for S1P
3
 

receptors, it does not appear that the few studies that documented 
an effect of the antagonist at 1 or 5 μM were justified in implicating 
S1P

3
 receptors. Two studies that used higher BML-241/CAY10444 

concentrations (50 and 100 μM) did observe an antagonist effect. 
In one of these studies, the S1P

1
 agonist SEW2871 had no effect, 

while the S1P
1
/S1P

3
 receptor antagonist VPC23019 reproduced the 

effect of BML-241/CAY10444 (Lichte et al., 2008). In the other study, 
B-cell migration was promoted by a mixed S1P

1
/S1P

3
 receptor agonist 

(VPC24191), but not by the S1P
1
 agonist SEW2871. Furthermore, 

B-cells from S1P3
+ −/  mice migrated to S1P, whereas cells from S1P

3
 

knockout mice were unable to migrate to S1P at all concentrations 
of S1P tested (Donovan et al., 2010). Interestingly, in this study B-cell 
migration was only slightly, and not significantly, inhibited by BML-
241/CAY10444, tested at concentration as high as 100 μM.

It is increasingly recognized that S1P, generated intracellularly 
by SPK, can be released into the extracellular space and thereby 
stimulate membrane S1P receptors, establishing an autocrine 
loop (Kim et al., 2009; Takabe et al., 2010). When this occurs, 
even a specific S1P receptor antagonist might inhibit the response 
to an agonist other than S1P. Autocrine loops might account for 
the fact that JTE-013 and BML-241 inhibit responses to U46619, 
endothelin-1 and high KCl, and to purinergic P

2
 receptor or α

1A
-

adrenoceptor stimulation, respectively. However, autocrine loops 
cannot explain why an agonist such as JTE-013 has any action in 
mice lacking S1P

2
 receptors. Potential S1P autocrine loops should 

be taken into account when screening S1P receptor antagonists in 
complex systems (cell or organism level), particularly when both 
SPK inhibitors and S1P receptor blockade (pharmacologically or 
by preventing receptor expression) attenuate the response (Peter 
et al., 2008; Schnitzer et al., 2009; Salomone et al., 2010).

VPC23019 was initially described as an S1P
1/3

 receptor antago-
nist, with pK

B
 values of 7.5 and 6.0 for the S1P

1
 and S1P

3
 receptors, 

respectively (Davis et al., 2005). Since then it has been mainly used 
for characterizing S1P

1
-receptor mediated responses. In a few stud-

ies, however, it has been also used as an S1P
3
 receptor antagonist. 

For example, as mentioned above, Lichte et al. (2008), reported 
that S1P-induced calcium signaling in human keratinocytes is 
mainly mediated by S1P

3
, because it can be blocked by the puta-

tive S1P
3
 antagonists BML-241, and VPC23019. Recently, Jongsma 

et al. (2009), using three different assays, have shown that sev-
eral compounds of the VPC series, including VPC23019, behave 
as full or partial agonists at S1P

3
 receptors. Although obtained 

in vitro, in a system expressing high S1P
3
 receptor density, these 

data suggest that VPC23019 is a less than ideal tool to character-
ize S1P

3
-mediated responses. When studying the effects of S1P on 

vascular tone, we found that VPC23019 potentiated S1P-induced 
contractile response in both rat and mouse basilar arteries with 
intact endothelium, while it failed to do so in preparations without 

We chose to focus this Perspective on JTE-013 and BML-241 
because they are commonly used despite reports of their lack of 
specificity. We also discuss VPC23019, for which evidence of S1P

3
 

receptor antagonism activity seems weak. JTE-013 was developed 
by Central Pharmaceutical Research Institute, Japan Tobacco Inc. 
Its patent (Patent WO 01/98301; December 27, 2001) stated that 
JTE-013 inhibited the specific binding of radiolabeled S1P to mem-
branes of CHO cells transfected with human and rat S1P

2
 recep-

tors, with IC
50

 values of 17 ± 6 and 22 ± 9 nM, and did not affect S1P 
binding to S1P

3
 and S1P

1
, at concentrations up to 10 μM (Osada 

et al., 2002; Ohmori et al., 2003). Based on these data, JTE-013 
has been considered since then a specific S1P

2
 receptor ligand and, 

following further experimental data, a S1P
2
 antagonist. Because 

JTE-013 had been used to characterize the S1P receptor mediating 
canine coronary artery contraction (Ohmori et al., 2003), we used 
it in rodent isolated vessels to assess the role of S1P

2
 receptors in 

S1P-induced vasoconstriction of basilar arteries (Salomone et al., 
2008). We knew that S1P-induced vasoconstriction was abolished 
in S1P3

− −/  mice and were therefore surprised to see that JTE-013 
inhibited vasoconstriction to S1P in arteries from wild type mice, 
because this suggested that S1P

2
 instead of, or in addition to, S1P

3
 

was mediating S1P effect. Investigating further, however, we real-
ized that JTE-013 inhibited vasoconstriction not only to S1P, but 
also to the prostanoid analog U46619, endothelin-1 and high KCl 
(Salomone et al., 2008; of note, vasoconstriction induced by high 
KCl is not receptor-mediated but related to L-type Ca2+ chan-
nels). We then performed a critical genetic control experiment, 
and found that JTE-013 inhibited S1P-induced vasoconstriction 
in S1P2

− −/  mice, demonstrating that this effect was not related to 
S1P

2
 receptors. Yet, JTE-013 is still widely used to characterize 

S1P
2
-dependent effects (Table 1). Of note, most studies that did 

validate S1P
2
-blocking effects of JTE-013 used concentrations 

equal to or lower than 1 μM, while we found evidence of non-
specificity at 10 μM. It is therefore possible that JTE-013 retains 
sufficient selectivity and remains a useful antagonist in the submi-
cromolar range, but S1P

2
 receptor involvement should be validated 

by other means.
BML-241 was developed at the same time as JTE-013, by rational 

drug design using the structure of S1P to interrogate a three-dimen-
sional database. Two novel compounds were identified that showed 
antagonist activity. When tested at 10 μM, “Compound 2” inhibited 
by 37% S1P-induced increases in [Ca2+]

i
 in HeLa cells expressing 

S1P
3
 receptors and by about 7% [Ca2+]

i
 increases in cells express-

ing S1P
1
 receptors (Koide et al., 2002). Strikingly, this study was 

based on measurements with a single BML-241 concentration and 
the comparison of only two potential targets (S1P

1
 and S1P

3
 recep-

tors) in one assay; furthermore, an inhibition by less than 40% by a 
10-μM antagonist concentration in cell culture might be considered 
less than impressive. Nevertheless, at least 20 studies (Table 2) were 
published using BML-241 (also known as CAY10444), most of them 
after the publication of an article showing that BML-241 inhibits 
[Ca2+]

i
 increases via purinergic P

2
 receptor or α

1A
-adrenoceptor 

stimulation and α
1A

-adrenoceptor-mediated contraction, while not 
affecting the S1P

3
-mediated decrease of forskolin-induced cAMP 

accumulation (Jongsma et al., 2006). In a third of these studies, 
BML-241/CAY10444, tested at 1 or 10 μM, had no effect, leading 
the authors to conclude on a lack of involvement of S1P

3
 receptors in 
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Table 1 | Some published data obtained with JTE-013 (among more than 50 PubMed-indexed citations).

System Effect Concentration Inferred significance Validation Conflicting 

data/caveat

Reference

Smooth muscle 

cells/HUVEC

Cell migration Up to 10 μM S1P inhibits cell migration 

via S1P2

None Osada et al. (2002)

Hepatocytes DNA synthesis Up to 10 μM S1P inhibits hepatocyte 

proliferation via S1P2

None Ikeda et al. (2003)

Coronary artery 

smooth muscle 

cells

Contraction Up to 10 μM S1P contracts coronary 

muscle via S1P2

None Ohmori et al. 

(2003)

Transfected 

CHO cells

Ca2+ mobilization Up to 1 μM S1P2 negatively regulates 

cell motility

S1P2 overexpression Arikawa et al. 

(2003)

Melanoma B16 

cells

ERK activation

Cell migration

Human 

coronary 

smooth muscle 

cells

cAMP production Up to 10 μM S1P2 induces cAMP 

production through PGI2

siRNA-mediated S1P2 

knockdown

Damirin et al. 

(2005)

Mouse spiral 

modiolar artery

Contraction Up to 3 μM S1P2 receptors mediate 

modiolar artery 

contraction

Kono et al. (2007)

HUVEC Permeability 0.2 μM S1P2 increases vascular 

permeability

S1P2 overexpression Sanchez et al. 

(2007)

Rabbit bladder 

smooth muscle

Contraction 1 μM S1P contracts bladder 

smooth muscle via S1P2

Phospho-

FTY720 also 

contracted

Watterson et al. 

(2007)

U373 

glioblastoma 

cells

uPAR and PAI-1 

mRNA 

expression

1 μM S1P induces uPAR and 

PAI-1 mRNA expression 

via S1P2

siRNA-induced S1P2 

knockdown

Bryan et al. (2008)

WiT46 cells CTGF expression 1 μM S1P induces CTGF 

expression via S1P2

S1P2 overexpression Li et al. (2008a)

Rat vascular 

smooth muscle 

cells

Cell migration 

and Rac 

activation

1 μM S1P inhibits cell migration 

via S1P2

S1P2 overexpression Takashima et al. 

(2008)

Rat/mouse 

basilar artery

Contraction 10 µM S1P3 mediate basilar 

artery constriction

S1P2 and S1P3 

knockout mice

Salomone et al. 

(2008)

JTE-013 is not specific 

for S1P2

Rat vascular 

smooth muscle 

cells

Proliferation 1 μM S1P inhibits cell 

proliferation via S1P2

Wamhoff et al. 

(2008)

Hamster 

resistance 

arteries

Contraction 1 μM S1P induces contraction 

via S1P2

S1P2 knockdown by 

antisense 

oligonucleotide

No proof of 

S1P2 mRNA 

or protein 

decrease

Peter et al. (2008)

Mouse neural 

progenitors

Cell migration 0.25 nmol/h, 

icv

S1P inhibits cell migration 

via S1P2

shRNA-mediated 

S1P2 knockdown

Kimura et al. 

(2008)

Human mast 

cells

Cytokine/

chemokine 

secretion

100 nM S1P degranulates mast 

cell and modulates 

anaphylaxis via S1P2

siRNA-induced S1P2 

knockdown

Oskeritzian et al. 

(2010)

(continued)
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Until the end of 1980s, pharmacological studies were mainly 
based on the use of agonists and antagonists (Salomone, 2010). More 
recently, investigators have also manipulated the expression levels of 
receptors using molecular techniques and genetic alterations. This 
approach represents, under critical evaluation, the most specific phar-
macologic strategy available today. When using a drug as an agonist 
or antagonist, one has to consider the probability of off-target effects; 
instead, when using a receptor knock out animal, one can exclude, 
with great degree of confidence, that an effect is mediated by the 
receptor product of the deleted gene. We therefore believe that such 
a molecular genetic control, whenever available, should be consid-
ered the best validation in analytical and experimental pharmacol-
ogy. Unfortunately, investigational pharmacological agents, agonists 
or antagonists, are increasingly being used to come to pharmacologic 
conclusions on receptor function, even though data on their selectivity 
is seldom sufficient and little information on their specificity is avail-
able. As this Perspective demonstrates, these conclusions are sometimes 
drawn despite conflicting evidence (see shaded rows in Tables 1 and 
2), such as that coming from gene-deletion studies.

In conclusion, experimental ligands not used in humans (for 
which extensive pre-clinical characterization has uncovered poten-
tial off-target actions) and for which only limited information from 
simple systems (in vitro, transfected cell lines) is available should 
be used with caution and pharmacological data obtained with 
them should be considered as weak evidence, unless supported by 
consistent stronger evidence (for example genetic knockdown or 
knockout data, or concurrent pharmacological evidence obtained 
with other chemically unrelated ligands). Furthermore, negative 
and/or conflicting data obtained with experimental ligands should 
be considered and quoted; in other words, negative and/or conflict-
ing data should be used for retrospective analysis and to interpret 
data already published with these compounds. Finally, potential 
off-target effects, including non-receptor-mediated effects, should 
always be considered and might sometimes be suspected by looking 
at the reversibility (many receptor-mediated effects are reversible, 
toxic non-specific effects are often irreversible), concentration–
response or dose–response relationship, or at the kinetics of the 
response (some effects are too slow or too fast to be compatible 
with a given receptor function).

endothelium (Salomone et al., 2008). We interpreted this finding 
as a result of S1P

1
 antagonism exerted by VPC23019, because S1P

1
 

receptors located on vascular endothelium are known to stimulate 
nitric oxide release and induce vasodilatation (and may therefore 
counteract vasoconstriction induced by S1P through S1P

3
 recep-

tors). However, we were surprised not to observe inhibition of S1P-
induced vasoconstriction by VPC23019, at concentrations as high 
as 10 μM, when solid evidence (S1P

3
 knockout mice) indicated 

that S1P-induced vasoconstriction was mediated by S1P
3
 recep-

tors. Indeed, Murakami et al. (2010) showed that the novel potent 
and selective S1P

3
 antagonist TY-52156 restores coronary blood 

flow reduced by S1P, but VPC23019 was inactive in this system. 
Interestingly, the same study also showed that in isolated coronary 
smooth muscle cells, TY-52156 inhibited both Rho activation and 
Ca2+ signal, whereas VPC23019 only inhibited Ca2+ signal. Taken 
together with our data, this study suggests that results obtained 
with VPC23019 should be interpreted with caution.

While we are emphasizing in this Perspective issues related to 
three particular receptor antagonists, our purpose is to make a 
broader methodological point on the distinction between selectiv-
ity and specificity. The term “selectivity” should refer to the ability 
of a drug to discriminate between related targets (e.g., receptors 
or enzymes), showing a higher binding affinity for one subtype or 
isoform. Selectivity should be assessed by screening in pure systems 
(e.g., cell lines transfected with one receptor subtype at a time) 
and eventually in complex systems, including in vivo wild type 
and genetically altered models. The term “specificity” should refer 
not only to the ability of a drug to identify a receptor of interest, 
but also to its potential for discriminating between negative and 
positive interactions; i.e., the drug should bind the receptor with 
appropriate affinity, the drug should have low/no cross-reactivity 
with other receptors. In order for “specificity” to be assessed, the 
drug should therefore be screened for its interaction with the target 
of interest and for its interaction with as many unrelated biological 
targets as possible. For receptors, ligand binding studies may be 
considered adequate to quantitatively assess affinity for the binding 
sites under examination, but require further assessment of function, 
in the presence and absence of the reference agonist, to categorize 
a given ligand as agonist or antagonist.

Mouse Passive 

anaphylaxis

20 μg/mouse S1P2 knockout mice

Hamster 

resistance 

artery

Myogenic tone 1 μM S1P induces myogenic 

tone via S1P2

Lidington et al. 

(2009)

Isolated 

perfused 

mouse lung

Vasoconstriction 10 μM S1P modulates 

pulmonary vascular tone 

in vivo via S1P2

S1P2 knockout mice Szczepaniak et al. 

(2010)

Mouse Proatherosclerotic 

cytokine release

1.2 mg/kg S1P2 receptors regulate 

macrophage retention 

and inflammatory 

cytokine secretion

S1P2 knockout mice Skoura et al. (2011)

Table 1 | Continued
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Table 2 | Published data obtained with BML-241/CAY10444.

System Effect Concentration Inferred significance Validation Conflicting data/

caveat

Reference

Transfected 

HeLa cells

[Ca2+]i increase 10 μM Blocks S1P3 receptors No effect on 

S1P1-Hela

Koide et al. 

(2002)

Endothelial cells Expression of 

adhesion 

molecules

1–10 μM S1P3 receptors 

modulate adhesion 

molecule expression

Antisense 

oligonucleotides

Kimura et al. 

(2006)

Pancreatic Islet 

β Cells

Cell survival 10 μM S1P3 receptors mediate 

protective effects on 

β-cells against 

cytokine-induced 

apoptosis.

None Laychock et al. 

(2006)

B lymphocytes Rap1 

activation

10 μM S1P3 receptors activate 

Rap1 and might 

promote B-cell 

adhesion and migration

None Durand et al. 

(2006)

Transfected 

CHO cells

[Ca2+]i 

increase

10 μM BML-241 is not 

selective

Jongsma et al. 

(2006)

Astrocytes Cell migration 10 μM No role of S1P3 none Sato et al. (2007)

Fibroblast-like 

synoviocytes

Cell migration 

Cytokine/ 

chemokine 

secretion 

Cell survival

5 μM S1P stimulates FLS 

migration through S1P1 

and S1P3, induces 

cytokine/chemokine 

secretion through S1P2 

and S1P3, and protects 

from cell apoptosis via 

S1P1.

None Zhao et al. 

(2008)

Multiple 

myeloma cells

Cell survival 10 μM S1P3 receptors mediate 

S1P-induced STAT3 

phosphorylation and 

Mcl-1 upregulation

None Li et al. (2008b)

Keratinocytes [Ca2+]i increase 50 μM S1P3 receptors mediate 

[Ca2+]i increase

No effect of 

SEW2871 (S1P1 

agonist), inhibition 

by VPC23019

Specificity of 

SEW2871 and 

VPC23019 non-fully 

characterized

Lichte et al. 

(2008)

Transfected 

HEK-293 cells

[Ca2+]i increase 50 μM S1P3 receptors mediate 

[Ca2+]i increase

No effect of 

SEW2871 (S1P1 

agonist), inhibition 

by VPC23019

Specificity of 

SEW2871 and 

VPC23019 non-fully 

characterized

Lichte et al. 

(2008)

Mouse 

cardiomyocytes

Erk activation 0.1–10 μM No role of S1P3 none Tao et al. (2009)

B35 

neuroblastoma 

cells

Cell migration 10 μM No role of S1P3 No effect with other 

S1P3 antagonists 

(VPC23019, 

VPC25239)

Hans et al. 

(2009)

Embryonic 

stem cells

Erk activation 1–10 μM S1P5, not S1P3, activate 

Erk1/2

None Rodgers et al. 

(2009)

(continued)
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