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to inhibit vascular smooth muscle cell (VSMC) proliferation and 
de-differentiation (Fetalvero et al., 2006, 2007). Within the lungs, 
PGI

2 
reduces pulmonary blood pressure as well as bronchial hyper-

responsiveness (Idzko et al., 2007). Within the kidneys, PGI
2 
serves 

to regulate renal blood flow and glomerular filtration rate, as well as 
mediates the release of renin (Komhoff et al., 1998). In the nervous 
system, PGI

2 
has been shown to elicit nociceptive pain response 

(Murata et al., 1997).

Prostacyclin as an inflammatory mediator
As described, prostacyclin (PGI

2
) is best known for its regulatory 

role within the cardiovascular system, where it promotes VSMC 
relaxation (vasodilatation) and inhibits platelet aggregation (anti-
thrombotic). However, it is also an important inflammatory media-
tor. The seminal work by Vane (1971) demonstrating the inhibition 
of prostaglandin biosynthesis as the mechanism of action for aspirin 
(acetylsalicylic acid) and other aspirin-like drugs first highlighted 
the importance of the prostaglandin family of molecules, and set 
the stage for the development of many pharmacologic agents, such 
as traditional, non-selective non-steroidal anti-inflammatory drugs 
(tNSAIDs) and the newer selective COX-2 inhibitors. Further work 
by Davies et al. (1984) pinpointed particular prostaglandins, princi-
pally prostaglandin E

2
 (PGE

2
) and prostacyclin (PGI

2
), in the medi-

ation of vascular permeability associated with the hyperemia and 
edema seen with acute inflammation. Murata et al. (1997) demon-
strated the involvement of prostacyclin (PGI

2
)-mediated inflamma-

tory swelling in vivo, using prostacyclin receptor deficient (IP−/−) 
mice. In these critical experiments, it was shown that mice lacking 
the prostacyclin receptor had a reduced inflammatory response, 
as measured by percent change in vascular permeability using a 
carrageenan-induced paw-edema model (Murata et al., 1997). Limb 
edema was decreased by approximately 50% in IP-deficient mice, 
similar to levels seen in mice pre-treated with the non-steroidal 
anti-inflammatory agent indomethacin. Moreover, a significant 

Pharmacology of Prostacyclin and its recePtor
Prostacyclin (PGI

2
) is a member of the prostaglandin family of 

bioactive lipids, and is a derivative of the 20-carbon, omega-6 fatty 
acid, arachidonic acid (AA or 5,8,11,14-eicosatetraenoic acid). Both 
cyclooxygenase enzymes (COX-1 and COX-2) convert AA into the 
prostaglandin precursor PGH

2
, which is subsequently synthesized 

into prostacyclin (PGI
2
) via prostacyclin synthase (PGIS; Figure 1). 

However, the majority of PGI
2
 produced in vivo, particularly within 

the systemic and pulmonary vasculature (Moncada et al., 1977; 
Catella-Lawson et al., 1999; McAdam et al., 1999), and other regions 
like the synovium (Brodie et al., 1980; Crofford et al., 1994), appears 
to be derived from COX-2. PGI

2
 is unstable at physiological pH and, 

thus, has a very short half-life in vivo (<2 min), rapidly forming 
the inactive hydration product 6-keto-prostaglandin F1α (6-keto-
PGF

1α; Lewis and Dollery, 1983; Smyth and FitzGerald, 2002). The 
actions of PGI

2
 are mediated through a seven-transmembrane-

spanning G-protein coupled receptor (GPCR), referred to as the 
IP receptor (International Union of Pharmacology nomenclature). 
The IP receptor is a Class A rhodopsin-like GPCR that couples pre-
dominately to the Gs subunit of the heterotrimeric G-protein and 
mediates intracellular signaling via adenylyl cyclase (AC) activation 
and cyclic AMP (cAMP) production (Boie et al., 1994). Animal 
studies have also shown that PGI

2
 may also signal through alternate 

Gq- and Gi-related pathways (Lawler et al., 2001), as well as nuclear 
receptor-mediated pathways, such as the peroxisome proliferator 
activated receptor gamma (PPARδ) pathway (Lim and Dey, 2002). 
Stitham et al. (2003) have elucidated the putative binding pocket 
for the human IP receptor, which has been reported to also accom-
modate type E prostanoids (i.e., PGE

1 
and PGE

2
) in addition to 

its native ligand PGI
2
 and its analogs (Boie et al., 1994; Nakagawa 

et al., 1994). The physiological effects of PGI
2
 are vast with much 

remaining to be uncovered. Within the vasculature, PGI
2 

serves 
as a potent vasodilator and is the major inhibitory prostanoid in 
platelet aggregation (Smyth et al., 2009), and has also been shown 
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reduction in lung exudate volume, using a carrageenan-induced 
pleurisy model, was also observed (although data not shown) for 
IP-deficient mice as well (Murata et al., 1997). In contrast, a study by 
Takahashi et al. (2002) demonstrated the IP-deficient mice showed 
higher skin and airway immune responses (relating to increased 
capillary permeability in these tissues) in antigen-sensitized inflam-
mation, suggesting a protective role for PGI

2
 in allergic inflamma-

tion. These studies (among others) have highlighted prostacyclin 
as a major endogenous mediator of inflammation – both pro-
inflammatory and anti-inflammatory, depending upon the tissue 
and pathological model being studied (Figure 2).

role of Prostacyclin in arthritis
While the majority of focus has centered around the role of prostag-
landin E

2
 (PGE

2
) in rheumatoid arthritis (RA), some studies have 

shown that the predominate prostaglandin detected within the syn-
ovial fluid of patients with RA is in fact prostacyclin (PGI

2
; Brodie 

et al., 1980). Moreover, using both collagen-induced arthritis and 
collagen-antibody-induced arthritis models, Honda et al. (2006) 
showed that prostacyclin receptor knockout (IP−/−) mice exhibited 
significantly reduced clinical and histological arthritic scores versus 
control mice, in both arthritis models, placing further emphasis on 
receptor-mediated prostacyclin activity in the pathogenesis of RA. 
Using a K/BxN serum-transfer arthritis model, Chen et al. (2008) 
administered serum from arthritic K/BxN mice to induce an IgG-
mediated autoantibody-induced inflammatory arthritis to recipi-
ent mice lacking either prostaglandin E synthase-1 (mPGES-1−/−) 

or the prostacyclin receptor (IP−/−), in order to determine the rela-
tive importance of PGE

2
 and PGI

2
, respectively. Findings revealed 

that mice deficient in prostaglandin E synthase-1 mPGES-1 (and 
therefore unable to produce PGE

2
), developed arthritis in normal 

fashion, whereas mice lacking the receptor for PGI
2
 demonstrated 

a significant decrease (31% versus wild-type) in clinical arthritis. 
Furthermore, using COX-1 and COX-2 knockout animals, it was 
shown that mice the lacking COX-1 isoform were resistant to the 
development of arthritic disease, while those lacking the COX-2 
isoform remained vulnerable (Wang et al., 2008).

These results convey two important points: (1) a substantial 
proportion of the prostanoid contribution to joint inflamma-
tion (at least in the K/BxN serum-transfer arthritis model) can be 
accounted for by PGI

2 
and its interaction with the IP receptor, and 

(2) selective COX-1 inhibition through genetic knockout prevented 
the development of disease, suggesting that COX-1-derived PGI

2
 

is the major inflammatory mediator within this arthritis model 
(Wang et al., 2008). More importantly, such studies lend weight to 
the involvement of prostacyclin in chronic inflammatory disease 
processes, as well as being an acute mediator, and also call into 
question the paradigm regarding COX-1- and COX-2-derived pros-
taglandin functions in vivo (i.e., regulatory “housekeeping” versus 
inflammatory induction).

Interestingly, from the perspective of clinical therapies, there does 
not seem to be a difference in efficacy according to COX selectiv-
ity. As Chen et al. (2008) showed, meta-analysis from a systematic 
review of 145 randomized controlled trials, examining the clinical 

FIgure 1 | Prostanoid biosynthesis pathway. The enzyme phospholipase 
A2 (PLA2) hydrolyzes arachidonic acid (AA) from the phospholipids of the 
extracellular membrane. Arachidonic acid is modified by the cyclooxygenase 
(COX) enzymes (COX-1 and COX-2) to form the intermediate precursor 
prostaglandin G2 (PGG2) via the addition of two oxygen (O2) molecules. 
Prostaglandin H2 (PGH2) is subsequently formed by the actions of peroxidase 

enzyme, which releases a single oxygen (O2) molecule. As shown, all 
prostanoids are derived from the parent compound PGH2 and are formed 
via their respective synthase enzymes, namely prostaglandin I2 synthase 
(PGIS), prostaglandin E2 synthase (PGES-1), prostaglandin D2 synthase 
(PGDS), prostaglandin F2α synthase (PGES-2), and thromboxane A2 
synthase (TBXAS-1). 
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(PAH) is in fact a heterogeneous group of diseases sharing similari-
ties in pathophysiological mechanisms, clinical presentation, and 
therapeutic approaches (Simonneau et al., 2009). The pathogen-
esis of PAH is complex and incompletely understood, with both 
genetic and environmental factors contributing to altered vascular 
structure and function (Badesch et al., 2007). The main vascular 
changes in PAH are vasoconstriction, VSMC proliferation, endothe-
lial loss or dysfunction, and thrombosis (Farber and Loscalzo, 
2004), which implicates a disruption of vascular hemostasis and 
its principle mediators, particularly PGI

2
 and TxA

2
, among others. 

This is evidenced by findings in patients with PAH, whereby both 
the production of prostacyclin synthase (PGIS) within small-to-
medium pulmonary arteries, as well as urinary metabolites (6-keto-
prostacyclin F2α) of prostacyclin, were shown to be decreased, 
while levels of thromboxane metabolites (thromboxane B2) were 
increased (Christman et al., 1992; Tuder et al., 1999). Interestingly, 
this imbalance of PGI

2
 and TxA

2 
within the pulmonary vascula-

ture, leading to increased mean pulmonary artery pressure, mim-
ics that of the cardio-systemic vasculature system. In fact, many 
of the pathophysiological mechanisms identified in PAH overlap 
with those involved in atherogenesis, including vascular smooth 
muscle and endothelial cell dysfunction, enhanced platelet activity 
and thrombosis, inflammation, and cellular chemotaxis (Essop, 
2010). Owing to its potent vasodilatory, anti-thrombotic, and anti-
proliferative effects, PGI

2 
has secured a central role in the treatment 

of PAH. Continuous intravenous epoprostenol (synthetic PGI
2
) is 

the best-studied advanced therapy for PAH and remains a first-line 
agent, particularly for those with severe disease (WHO functional 
class IV), as it has been shown to improve overall symptoms, exer-
cise capacity, and hemodynamic status in controlled clinical trials 
(Barst et al., 2009), as well as confer a survival benefit in both 
idiopathic and heritable forms of PAH (IPAH and HPAH; Barst 
et al., 2009). There are limitations to treatment with epoprostenol 
based upon its pharmacology (plasma half-life = 3–5 min) and 
long-term use requires a permanent central venous catheter and 
a portable infusion pump. Analogs of PGI

2 
have also been used 

clinically, and are administered by a variety of routes, including 
intravenously (e.g., treprostinil and iloprost), subcutaneously (e.g., 
treprostinil), inhalation (e.g., iloprost), and orally (e.g., beraprost). 
These medications are generally more stable with longer half-lives, 
but have variable safety and efficacy equivalencies compared to 
epoprostenol, and clinical trials with these (and other) alterna-
tive agents are limited with respect to severe disease classification 
(Barst et al., 1996). Other vasoactive therapies for PAH include the 
dual endothelin receptor (ET

A
 and ET

B
) antagonist (e.g., bosentan) 

and phosphodiesterase type-5 (PDE-5) inhibitors, which have been 
proven effective, alone or in combination therapy, in milder forms 
of PAH (WHO functional class II and III; Rubin et al., 2002; Sitbon 
et al., 2003; Galie et al., 2005; McLaughlin et al., 2005; Pepke-Zaba 
et al., 2008). Again, the central role of PGI

2
, as both an inflamma-

tory and hemodynamic mediator, puts it at the forefront in under-
standing the pathophysiology and pharmacological treatment of 
pulmonary vascular diseases, particularly PAH.

Interestingly, PGI
2
 seems to have a similar safeguarding effect in 

the chronic inflammatory condition of idiopathic pulmonary fibrosis 
(IPF), as recent studies have shown that COX-2-derived PGI

2 
serves 

a protective role against bleomycin-induced pulmonary fibrosis – a 

effectiveness of a variety of COX-2 inhibitors (including etodolac, 
meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib, and lumira-
coxib), showed similar efficacy compared to non-selective NSAIDs 
(including naproxen, diclofenac, ibuprofen, loxoprofen, nabumetone, 
piroxicam, indomethacin, tenoxicam, and nimesulide) in the symp-
tomatic relief of both RA and osteoarthritis (OA), but with superior 
gastrointestinal tolerability and protection against complicated upper 
gastrointestinal events (e.g., ulcers, bleeding, perforations) – the 
majority of evidence coming from OA populations. However, the 
amount of evidence for this gastro-protective effect varied considera-
bly across individual drugs. Moreover, an increased risk of myocardial 
infarction (MI) was also observed among those drugs with greater 
volume of evidence in terms of exposure in patient-years (Chen et al., 
2008), presumably as a by-product of the discriminating suppression 
of COX-2-derived PGI

2, 
which has been shown to be cardioprotective 

(Murata et al., 1997; Cheng et al., 2002; Egan et al., 2004). Along these 
same lines, as chronic inflammation has been linked to enhanced 
development of atherogenesis (Libby et al., 2002), individuals with 
RA may already be at increased risk for cardiovascular disease. In fact, 
a recent comparative study involving disease-duration-matched RA 
and diabetes mellitus (DM) patients found that RA was a substantial 
and independent cardiovascular risk factor, with similar severity to 
DM, with significantly worsened preclinical atherosclerotic markers, 
increased intima-to-media thickness, as well as lower flow-mediated 
dilatation (measure of endothelial function; Stamatelopoulos et al., 
2009). Thus, the combination of chronic RA-mediated inflamma-
tion, perpetuating an increased atherosclerotic burden, along with 
COX inhibition therapy – either selective (COX-2 inhibitor) or non-
selective (NSAIDs) – would undoubtedly increase cardiovascular 
risk drastically, given what we now know about PGI

2
. Thus, PGI

2
 

is emerging as an important intermediary in inflammatory condi-
tions such as rheumatoid and OA, with the dualistic purpose of 
pro-inflammatory mediator on the one hand – involved in disease 
pathophysiology – and cardioprotective factor on the other – both 
of which are central in the consideration of pharmacologic therapies 
and adverse effects.

role of Prostacyclin in Pulmonary fibrosis and 
Pulmonary hyPertension
While pulmonary fibrosis and pulmonary hypertension are dis-
tinct pathophysiological entities, they do share some commonali-
ties, some of which involve PGI

2
. Pulmonary arterial hypertension 

FIgure 2 | Paradoxical actions of prostacyclin in three inflammatory 
diseases. Prostacyclin (PGI2) serves as a protective, anti-inflammatory 
mediator in the processes of atherosclerosis and pulmonary vascular 
diseases, such as pulmonary arterial hypertension (PAH) and idiopathic 
pulmonary fibrosis (IPF). Conversely, in rheumatological conditions, such as 
rheumatoid arthritis (RA) and osteoarthritis (OA), PGI2 acts as a propagatory, 
pro-inflammatory molecule.
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connective tissue cells as seen in other chronic inflammatory and 
fibro-proliferative diseases (e.g., RA, pulmonary fibrosis, glomeru-
losclerosis; Ross, 1999). The critical role of PGI

2
 in atherosclerosis 

is quickly emerging, with evidence spanning from molecular and 
cell biology to human clinical trials. Mounting data has demon-
strated the protective effect of prostacyclin activity against the 
development of atherothrombotic cardiovascular disease through 
the inhibition of various cellular processes, including platelet 
activation, leukocyte adhesion, as well as VSMC modulation. As 
such, PGI

2 
analogs (e.g., iloprost) are able to down-regulate lym-

phocyte adhesion to endothelial cells, which suggests an ability to 
block the early events in atherosclerosis (Della Bella et al., 2001). 
Furthermore, interactions within the realm of lipid metabolism 
has lent further support toward the atheroprotective properties of 
PGI

2
 (Thiemermann, 1991). Specifically, HDL has been shown to 

induce COX-2 expression and PGI
2
 production in both endothe-

lial and VSMCs (Pomerantz et al., 1985; Vinals et al., 1997, 1999) 
while, conversely, PGI

2
 has been shown to induce cholesterol ester 

hydrolase activity, which catalyzes the first step in the removal of 
cholesterol from foam cells, critical components in atherogenesis 
(Hajjar and Weksler, 1983; Weksler et al., 1983; Hajjar et al., 1989). 
The effects of PGI

2
 on VSMCs are becoming an important target for 

understanding both the pathophysiology of atherothrombosis and 
the atheroprotective effects of prostacyclin. In mature blood ves-
sels, VSMCs are quiescent and exhibit a differentiated, contractile 
phenotype. However, in response to vascular injury, these cells have 
been shown to re-enter the cell cycle, proliferate, migrate toward 
attractants, down-regulate expression of contractile proteins, and 
up-regulate synthesis of proteins, particularly ECM (Campbell 
et al., 1988). PGI

2
 has been shown to exert both anti-proliferative 

(Grosser et al., 1995; Zucker et al., 1998) and anti-migratory (Blindt 
et al., 2002) effects on smooth muscle cells. In advanced athero-
sclerotic lesions (as well as restenotic lesions), expression levels 
of smooth-muscle-specific differentiation markers are markedly 
reduced (Wilcox, 1992; O’Brien et al., 1993), and as Fetalvero et al. 
(2006) have shown, treatment with the stable PGI

2
 analog, iloprost, 

induces VSMC differentiation via a cAMP-PKA-mediated signaling 
pathway. In similar fashion, Kasza et al. (2009) went on to further 
show that, in addition to increased contractile protein expression 
and contractile morphology, iloprost-treated VSMCs up-regulate 
COX-2 expression, mediated not only by cAMP-PKA, but also novel 
pathways involving ERK-1/2 activation and Akt-1 inhibition. In 
turn, the up-regulated COX-2 expression lead to subsequent PGI

2
 

release (i.e., prostacyclin-induced prostacyclin release), which was 
shown to have a paracrine, positive-feedback effect on neighbor-
ing VSMCs (not exposed to iloprost), inducing similar cellular 
responses (Kasza et al., 2009). Thus, there appears to be a clear 
link between the major atheroprotective effects of prostacyclin and 
VSMC modulation. As such, the phenotypic change in VSMCs 
toward a proliferative and de-differentiated state, which is a hall-
mark occurrence in the progression of atherosclerosis and resteno-
sis, necessitates a clear understanding of this regulatory process and 
is an extremely important area of research.

Mouse models have provided valuable insight into the role 
of prostacyclin in cardiovascular homeostasis and pathogen-
esis. IP-deficient (IP−/−) mice display increased propensities 
toward thrombosis (Murata et al., 1997), intimal hyperplasia 

major animal model for IPF that mimics the progressive fibrosis 
and interstitial inflammation of sub-pleural lung tissue in humans. 
In a study by Lovgren et al. (2006), IP-deficient mice were more sus-
ceptible to bleomycin-induced pulmonary fibrosis, demonstrating 
increased collagen deposition and cellularity after bleomycin admin-
istration compared with the wild-type mice. These observations cor-
related with increases in quantitative measurements of histological 
lung scores and hydroxyproline levels within the lung parenchyma. 
Similar results were found using COX-2-deficient mice, but were 
not supported using knockouts for either the EP2 or EP4 receptors, 
which bind COX-2-derived prostaglandin E

2
 (PGE

2
; Lovgren et al., 

2006). Such findings put direct focus on the loss of COX-2-derived 
prostacyclin as a protective factor. While COX-2-derived prostacyclin 
is now well known for its protective effects within the cardiovascular 
system, such results provide compelling evidence for PGI

2
-mediated 

protection against fibrotic pathologies as well.
A more recent animal study by Zhu et al. (2010) also confirms 

these findings, pharmacologically, and identifies PGI
2
 as a poten-

tial new therapeutic agent for pulmonary fibrotic disease. Using 
intra-peritoneal injections of iloprost, a stable PGI

2 
analog, it was 

demonstrated that a single dose of iloprost (200 μg/kg; prior to 
bleomycin injection) could preclude pulmonary inflammation 
and fibrosis in mice (Zhu et al., 2010). Pre-treatment with iloprost 
seemed to significantly reduce both inflammatory infiltration and 
collagen deposition with the pulmonary interstitium, as well as 
improve lung mechanics (reduced static compliance and elevated 
tissue elastance; Zhu et al., 2010). However, the specific inflam-
matory cell subtype being suppressed could not be delineated in 
this current study. Iloprost pre-treatment decreased production of 
pro-inflammatory and fibrotic cytokines, such as TNF-alpha, IL-6, 
and TGF-beta-1, and increased release of anti-fibrotic mediators, 
including IFN-gamma and chemokine CXCL10/IP-10, as measured 
by mRNA expression levels or ELISA. Moreover, the cumulative 
mortality in iloprost-treated mice was 10% at day 21 versus 60% 
in the non-iloprost-treated cohort (Zhu et al., 2010).

In human studies, inhaled iloprost has been proven efficacious 
in the treatment of various forms of pulmonary hypertension, 
including pulmonary hypertension secondary to pulmonary fibro-
sis (Olschewski et al., 1999). In fact, it has been suggested that the 
majority of vascular resistance in fibrotic lung disease is due to 
persistent vasoconstriction (Olschewski et al., 1999), which may 
explain the effectiveness of PGI

2
 analog therapy. Certain studies also 

suggest a long-term clinical benefit from continued therapy with 
inhaled iloprost, which was well tolerated and required no substan-
tial dose increase over a 2-year trial (Olschewski et al., 2010). In the 
United States, its use has been approved for PAH New York Heart 
Association (NYHA) functional class III and IV; for individuals 
with marked limitations or inability to carry on physical activity 
(Gomberg-Maitland and Olschewski, 2008). Thus, PGI

2
 seems to be 

an important effector in both these fibro-proliferative disorders of 
the lung, playing both a protective role against disease development, 
as well as a therapeutic role in symptom management.

role of Prostacyclin in atherosclerosis
Atherosclerosis is now known as an inflammatory disease, with the 
same complex cellular interactions involving monocytes, macro-
phages, lymphocytes, extracellular matrix (ECM) components, and 

Stitham et al. Prostacyclin and inflammation

Frontiers in Pharmacology | Inflammation Pharmacology  May 2011 | Volume 2 | Article 24 | 4

http://www.frontiersin.org/inflammation_pharmacology/
http://www.frontiersin.org/inflammation_pharmacology/archive


predisposed patients (Fitzgerald, 2004; White et al., 2004; Bresalier 
et al., 2005). These latter findings relating adverse cardiovascular 
events to unmatched suppression of COX-2-derived PGI

2
 have 

been widely discussed and demonstrate that a disrupted balance 
between PGI

2
 and TxA

2
 – favoring unopposed COX-1-derived TxA

2 

 
production –

 
is responsible, at least in fair part, for pro-thrombotic 

and perhaps pro-atherogenic effects (McAdam et al., 1999; Vane, 
2002). In a recent opinion article, Rovati et al. (2010) proposed that 
concomitant TP receptor antagonism, along with selective COX-2 
inhibition (dual COXIB-TP antagonists), may abrogate such 
adverse cardiovascular events (caused by the imbalance between 
PGI

2
 and TxA

2
) and improve the safety profile of selective COX-2 

inhibitors. Other groups have proposed this concept as well, but 
clinical trials have yet to be pursued. As another approach, Capone 
et al. (2010) suggest assessment of COX-2 activity in whole blood ex 
vivo, perhaps in combination with biomarkers – such as biochemi-
cal (urinary levels of 6-keto-PGF

1α) and genetic (IP receptor and 
other prostacyclin-related polymorphisms) – as potential surrogate 
endpoints to assess for prostacyclin synthesis in vivo as a predictor 
of cardiovascular risk.

novel Prostacyclin-related theraPies in 
inflammation
As the role of PGI

2 
is becoming more defined in inflammatory-

related diseases, the development of novel agonists and antagonists 
for the IP receptor is at the forefront of research. As previously 
stated, the role of PGI

2 
in arthritic diseases (RA and OA) is one 

of a pro-inflammatory mediator, and the use of wide-ranging 
inhibitors of prostaglandin synthesis (NSAIDs and selective COX-2 
inhibitors) has remained a mainstay of therapy. However, targeted 
antagonism of PGI

2 
activity has proven effective in reducing pain 

and inflammation in preclinical trials. Using a mono-iodoacetate 
(MIA)-induced rodent model of chronic OA, Pulichino et al. 
(2006) have shown that a novel arylamide compound (Keitz et al., 
2004) with specific IP receptor antagonism significantly reduced 
joint discomfort in a dose-dependent manner, and with similar 
efficacy to diclofenac as well as an MF-tricyclic COX-2 inhibitor. 
Furthermore, in a collagen-antibody-induced model of RA, the 
same IP antagonist reduced mean scores for all arthritic parameters 
by 93% (AUC of the clinical scores) when given in prophylactic 
mode 1 day prior to collagen antibody injection, in IP+/− mice 
(Pulichino et al., 2006). Comparably, a 91% reduction in arthritic 
scores was observed for IP−/− mice and a 98% reduction for COX-
2-treated mice. Interestingly, treatment in therapeutic mode (6 days 
post-injection) had no effect on clinical scores (Pulichino et al., 
2006). However, as discussed earlier, targeted PGI

2 
antagonism has 

the potential for increased risk of adverse cardiovascular effects, 
which may be even more pronounced than with broader-spectrum 
NSAIDs or selective COX-2 inhibitor therapies.

For the treatment of pulmonary vascular disease such as PAH 
and IPF, the vasoactive PGI

2
 analog formulations (e.g., epopros-

tenol, treprostinil, and iloprost) are all in clinical use, but are 
reserved for advanced therapy for persistent disease (Barst et al., 
2009). Moreover, these agents have limitations, including short 
half-lives, parenteral (non-oral) routes of administration, and 
heterogeneous therapeutic response. Thus, the quest for novel 
therapies for these diseases is ongoing. In preclinical studies of 

and  restenosis (Cheng et al., 2002), and reperfusion injury (Xiao 
et al., 2001). Moreover, in both atherogenic apolipoprotein E 
(apo-E)- and low-density lipoprotein receptor (LDL-R)-deficient 
backgrounds, mice lacking the IP receptor demonstrated greater 
atherosclerotic burden with higher platelet reactivity and leukocyte 
adhesion to endothelial cells (Egan et al., 2004; Kobayashi et al., 
2004). Moreover, Egan et al. (2004) went on to further demon-
strate that, in female pre-menopausal LDL-R knockout mice, the 
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2
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ated, COX-2-derived PGI

2
 in the protection against atherogenesis 

(Egan et al., 2004). Such in vivo findings highlight the important 
functional presence of prostacyclin activity in the maintenance 
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2
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2
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COX-2-derived prostacyclin (PGI

2
) resulted in increased risk of car-
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centrality of PGI

2
 activity in various inflammatory-mediated 
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conclusion
The culmination of data presented in this review reinforces the 
notion that Bunting et al. (1983) put forth almost 30 years ago – that 
a dynamic balance between the prostaglandins prostacyclin (PGI

2
) 

and thromboxane A
2
 (TxA

2
; in addition to many other mediators) is 

crucial in maintaining cardiovascular homeostasis, and has critical 
pathophysiological and therapeutic implications. However, we are 
just now realizing the potential breadth and scope of this seminal 
proposition with PGI
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playing a central role. Our current knowledge 

of PGI
2
, as both a physiological–pathophysiological mediator and 

therapeutic agent, in a host of inflammatory-related diseases, is 
growing rapidly. As demonstrated, PGI

2
 has been shown to play 

protective roles in atherogenesis – relating to CAD, MI, stroke, 
and other cardiovascular abnormalities. It has also been shown to 
be involved in certain fibro-proliferative and pulmonary vascular 
diseases, such as IPF and PAH, where it serves as both a protective 
factor and first-line pharmacotherapy. Furthermore, in the setting 
of RA, PGI

2
 seems to play a pro-inflammatory role and, as evidence 

increases, perhaps may one day be considered a therapeutic target 
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medicine, is needed and will undoubtedly yield new insights into 
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