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Physiologically based pharmacokinetic (PBPK) models have a potentially significant role in
the development of a reliable predictive toxicity testing strategy. The structure of PBPK
models are ideal frameworks into which disparate in vitro and in vivo data can be inte-
grated and utilized to translate information generated, using alternative to animal measures
of toxicity and human biological monitoring data, into plausible corresponding exposures.
However, these models invariably include the description of well known non-linear bio-
logical processes such as, enzyme saturation and interactions between parameters such
as, organ mass and body mass. Therefore, an appropriate sensitivity analysis (SA) tech-
nique is required which can quantify the influences associated with individual parameters,
interactions between parameters and any non-linear processes. In this report we have
defined the elements of a workflow for SA of PBPK models that is computationally feasi-
ble, accounts for interactions between parameters, and can be displayed in the form of a
bar chart and cumulative sum line (Lowry plot), which we believe is intuitive and appropriate
for toxicologists, risk assessors, and regulators.
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INTRODUCTION
Current approaches to testing industrial and agricultural chemi-
cals for potential toxicity in people are inefficient, expensive, and
reliant on animal experimentation. As a consequence most chemi-
cals in global commerce today have undergone limited or no safety
testing at all (Judson et al., 2009).

Over the last few decades alternative methods of evaluating the
toxicological hazard of chemical compounds has focused on the
potential of in vitro test systems. These are biological systems of
a lower level of organization than a complete organism, e.g., iso-
lated organs, cell cultures, and sub-cellular systems. Whilst these
systems have been useful in studying the mechanism(s) of toxic
action they have been, and perhaps still are, viewed as an alter-
native means of studying clinically observable toxicity endpoints
(Blaauboer, 2010). More recently, the National Research Coun-
cil (NRC) report, Toxicity Testing in the Twenty-First Century: a
Vision and a strategy proposes an ambitious, long-term approach
requiring the development of novel in vitro systems (NRC, 2007).
This vision is based upon the growing knowledge and elucidation
of interconnected pathways composed of complex biochemical
interactions of genes, proteins, and small molecules that maintain
normal cellular function, control communication between cells
and allow cells to adapt to environmental stressors. “Toxicity path-
ways” are perturbed cellular-response networks that precede and
ultimately lead to overt “apical” toxicity. The novel in vitro systems
would allow the evaluation of these perturbations of cellular-
response pathways. If adopted, the NRC approach would represent
a paradigm shift in toxicology and in human and environmental
health risk assessment (RA).

The need for alternative approaches to toxicity testing is clear.
Whether this involves the development of “traditional,” direct,

one to one replacement of animal tests with in vitro systems or
“alternative ways” of doing RA, as envisioned in the NRC report,
there is a requirement that is common to both: in vitro–in vivo
extrapolation. The ability to translate information generated using
alternative systems into a reliable predictive toxicity testing strat-
egy is dependent upon a framework into which disparate data can
be integrated and utilized. Physiologically based pharmacokinetic
(PBPK) models are ideally suited for this and are now recognized
as essential tools in the evaluation of in vitro and structure activ-
ity relationship-derived data on dose–response relationships in
intact organisms (Blaauboer et al., 1996, 1999; DeJongh et al.,
1999; Blaauboer, 2001, 2002, 2003a,b, 2010; Bouvier d’Yvoire et al.,
2007).

A PBPK model is an independent, structural model, compris-
ing compartments that correspond directly and realistically to the
organs and tissues of the body (e.g., adipose, brain, gut, heart,
kidney, liver, lung, muscle, spleen, skin, and bone) and connected
by the cardiovascular system. They are mathematical descriptions
of biological systems that are translated into computer code and
solved computationally. They are frameworks that can capture our
understanding of the science underlying the biological processes
that lead to disease. A PBPK model is mechanistic because it is
specifically formulated to provide insights into the interaction of a
foreign chemical(s) with biological processes thought to govern a
biological response(s). The principle application of PBPK models
is in the prediction of the appropriate form of the target tissue
dose, or dose metric, of the parent chemical or its reactive metabo-
lite(s). The dose metric must capture the critical biochemical steps
that lead to an effect. Such mechanisms may take place within any
compartment, e.g., blood, organ, or sub-cellular compartment.
Use of an appropriate dose metric in chemical RA calculations
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provides a better basis for relating to the observed toxic effects than
the external or administered exposure concentration of the par-
ent chemical (Conolly and Butterworth, 1995; Barton et al., 1998;
IGHRC, 1999; Johanson et al., 1999; Andersen, 2003; Clewell and
Clewell, 2008; Lipscomb and Poet, 2008). Therefore, PBPK mod-
els contain knowledge of the system being studied in the form of
dozens of parameters and inputs. However, these parameters and
inputs are affected by uncertainties, which affect the output of the
model.

Sensitivity analysis (SA) allows the model output uncertainty
to be ascribed to the source within the model thereby offering a
means of evaluating the consistency between internal model struc-
ture and the system it tries to emulate (Campolongo and Saltelli,
1997; Campolongo et al., 1999; Saltelli et al., 2004). The many
SA methods that exist for the analysis of complex deterministic
models can be grouped into two categories: local or one-at-a-time
(OAT) methods that consider sensitivities close to a specific set
of input parameter values, and global methods, which calculate
the contribution of a parameter over the set of all possible input
parameters. In a PBPK modeling context a global method would
perturb all organ and tissue masses, blood perfusion rates, meta-
bolic parameters, and partition coefficients (PCs) within plausible
ranges. The contribution to model output of any single parame-
ter and/or interactions of multiple parameters, e.g., peak venous
blood concentration of parent chemical or urinary metabolite
is measured yielding useful quantitative information about the
overall relative importance of all model parameters. The most
commonly applied global method quantifies the importance of
parameters as an exact percentage of the total output variance that
each factor (or group of factors) is accounting for. This informa-
tion may be expressed as a bar or pie chart (Campolongo and
Saltelli, 1997; Campolongo et al., 1999; Saltelli et al., 2004; Marino
et al., 2008) or by the “Lowry Plot” visualizations developed in
this paper. In most cases when SA has been conducted on a PBPK
model published in the peer-reviewed literature this has been an
OAT. This involves the adjustment of individual model parame-
ters, whilst all other parameters are held constant, and observation
of the predicted changes in model output, either at a single time
or throughout a time course. The results are usually expressed as
normalized sensitivity coefficients (SCs), which are the percentage
change in the output produced by a fixed and constant percentage
(usually 1%) change in the parameter (Plowchalk et al., 1997).

When trying to establish the contribution of a parameter to
model predictions, OAT SA techniques are fairly rapid and simple
to implement but can give somewhat misleading results if there are
substantial interactions among multiple parameters (Campolongo
and Saltelli, 1997; Campolongo et al., 1999; Saltelli et al., 2000b,
2004; Loizou et al., 2008). In a model for rat nasal uptake of vinyl
acetate the authors conducted an OAT at several exposure con-
centrations to address the highly non-linear nature of the model
and described the SCs as being concentration dependent (Plow-
chalk et al., 1997). This is inappropriate since the plausible range
of the parameters will typically be much wider than this technique
allows (and the uncertainty in the parameters should be repre-
sented via a joint probability distribution), and as it is OAT results
may be unreliable unless the interactions between parameters are
negligible, generally this is not true. PBPK models, more often

than not, do describe non-linear processes, such as metabolism,
and certainly contain interactions between parameters, e.g., tissue
and organ masses and blood perfusion rates are related to body
mass and cardiac output, respectively. Very often the purpose of
the model is to extrapolate beyond the domain of “observation”
used to construct and evaluate the model (Andersen and Krish-
nan, 1994; Andersen, 2003; Barton et al., 2007, 2009; Chiu et al.,
2007; Kirman et al., 2008). These model applications and model
behaviors along with input variables that are often affected by
uncertainties of different orders of magnitude call for a global SA
that is independent from assumptions about the model structure
(Campolongo and Saltelli, 1997; Campolongo et al., 1999; Saltelli
et al., 2004).

Since we are often interested in concentration-time profiles of
xenobiotics in biological systems, here we describe an approach
for uncertainty and SA adapted to consider sensitivity indices of
PBPK model parameters that vary with time. We propose the ele-
ments of a workflow for the application of global SA during PBPK
model development and evaluation.

Finally, there is a need to develop increased awareness and
confidence in the use of PBPK models. Therefore, an important
objective underpinning this work is to remain mindful of the need
to develop user-friendly tools that shift the emphasis away from
mathematical and programming expertise to the biology under-
lying RA and to present such information in a manner that is
acceptable to toxicologists, risk assessors, and regulators. With the
future development of intuitive, user-friendly tools, we believe
that the workflow we propose does not require in-depth mathe-
matical expertise and could be undertaken by biological scientists.
Mathematical equations are included for the interested reader but
may be skipped without diminishing the primary objective of this
report and we endeavored to provide examples with clear biolog-
ical relevance. We hope that this work can make a contribution to
the development of good PBPK modeling practice and facilitate
the dialog between toxicologists and risk assessors and regulators
(Kohn, 1995; Clark et al., 2004; Barton et al., 2007; Chiu et al.,
2007; Loizou et al., 2008).

MATERIALS AND METHODS
THE PBPK MODEL
A human PBPK model describing a bladder compartment to sim-
ulate fluctuations in metabolite concentration in urine caused
by micturition (Franks et al., 2006), was adapted to study the
inhalation pharmacokinetics of m-xylene (Figure 1). Liver, adi-
pose, richly and slowly perfused tissues, and the bladder represents
the body. The model parameter abbreviations and point values,
which are similar to previous models, are listed in Table 1 along
with the ranges used in the SA (Loizou et al., 1999; MacDonald
et al., 2002). Exhalation, metabolism, and renal excretion were the
routes of elimination. The amount of unbound 3-methylhippuric
acid (MHA) the main metabolite of m-xylene in the blood, was
assumed to be available for secretion into the renal tubules via
glomerular filtration where no re-absorption takes place but passes
directly into the urine (Rowland et al., 1973). The amount of MHA
delivered to the kidney and appearing in the urine was described
by the following equations,
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FIGURE 1 | Schematic of the PBPK model for m-xylene.

d(MHAB)

dt
=

(
MRLi × MWMHA

MWxyl

)
− (MHAB × K1)

d(MHAU )

dt
= MHAB × K1

MRLi = Vmax × CVLi

KM + CVLi

Curine = MHAU

VolU × Cre

Where, MRLi is the rate of metabolism of m-xylene to MHA in the
liver, MWMHA and MWxyl are the molecular weights of MHA and
m-xylene, respectively, MHAB is the amount of MHA in the blood,
K1 is a first-order elimination rate constant describing removal of
MHAB from the blood to the urine, V max is the limiting rate and
KM is the Michaelis–Menten constant for hepatic metabolism of
m-xylene, CVLi is the hepatic venous effluent concentration of
m-xylene, MHAU is the amount of MHA in the urine, VolU is the
volume of urine in the bladder and Cre is the concentration of
creatinine. The concentration of MHA in the urine was expressed
in millimole/mole creatinine. To imitate micturition, the bladder
is assumed to fill with urine at a constant (but adjustable) rate and
empty at discrete time intervals (when the volume of urine reduces
to zero). This enables comparison to be made between model pre-
dictions and experimental observations with timed sampling in
human volunteer studies (Franks et al., 2006).

The Michaelis–Menten constant KM and the in vitro V max for
hepatic metabolism of m-xylene were obtained from the literature
(Tassaneeyakul et al., 1996). In vitro –in vivo extrapolation of V max

was obtained by multiplying the in vitro value by a human hepatic
microsomal protein yield (MPY) of 32 mg g−1 wet weight liver
and the mass of liver (g) (Howgate et al., 2006; Barter et al., 2007).

Table 1 | Anatomical, physiological, and kinetic constants and

parameters used in the PBPK model.

Parameter Abbreviation Value Range

Molecular mass m-xylene (g/mol) MWxyl 106.17 –

Molecular mass MHA (g/mol) MWMHA 193.2 –

Body mass (kg) BW 75 49–92

Proportion of vascularized tissue

(body mass)

VT 0.91 –

Cardiac output (L h−1 BW0.75) QCC 12 10–20

METABOLISM (LIVER)

In vitro Michaelis constant

(mMol L−1)

KM 11.8 9.1–14.6

In vitro maximum rate of

metabolism (pmol min−1 mg−1

microsomal protein)

V max 895 761–1028

Microsomal protein yield per

gram wet weight liver (mg g−1)

MPY 32 18–75

GAS EXCHANGE

Respiratory rate (L h−1 BW0.75) QPC 12 10–20

Respiratory dead space

(proportion respiratory rate)

DS 0.3 0.2–0.33

PARTITION COEFFICIENT

Blood:air partition coefficient Pba 19 12–26

Rapidly perfused Prpda 117 50–150

Slowly perfused Pspda 53 40–80

Adipose Pfaa 1874 1400–2200

Liver Plia 279 150–350

TISSUE BLOOD FLOW AS A FRACTION OF CARDIAC OUTPUT

Rapidly perfused QrpdC 0.48

Slowly perfused QspdC 0.22 0.2–0.35

Adipose QfaC 0.05 0.09–0.10

Liver QliC 0.25 0.2–0.3

TISSUE MASS AS A FRACTION OF BODY MASS

Rapidly perfused VrpdC 0.09

Slowly perfused VspdC 0.604

Adipose VfaC 0.19 0.07–0.28

Liver VliC 0.0257 0.02–0.031

BLADDER COMPARTMENT

Rate of urine production (L h−1) Rurine 0.07 0.06–0.115

Urinary creatinine concentration

(mmol L−1)

CRE 12.5 7–15

Elimination rate constant (h−1) K1 10 2–18

GLOBAL SA TECHNIQUES
The extended Fourier amplitude sensitivity test (eFAST) method
proposed in this paper is one of a suite of methods for a quan-
titative global SA. Alternative model independent methods for
calculating main effect and total effect sensitivity indices include
the method of Sobol (1993, 2001) and the top marginal variances
(TMV) method described in Jansen et al. (1994). The Winding
Stairs sampling scheme (Chan et al., 2000) is an efficient method of
calculating both these sets of sensitivity indices. Indeed, this sam-
pling scheme can also calculate all interaction variances in addition
to main and total effects, and can a handle some dependence
between inputs. Whilst Sobol’ or TMV have some advantages over

www.frontiersin.org June 2011 | Volume 2 | Article 31 | 3

www.frontiersin.org
http://www.frontiersin.org/predictive_toxicity/archive


McNally et al. PBPK model global sensitivity analysis

eFAST and are suitable alternatives, they require a greater number
of model evaluations.

Some alternative methods for a global SA that require many
fewer model evaluations are available. These include a class of
methods based upon regression analysis (Helton and Davis, 2000)
and include standardized regression coefficients (SRC), Spearman
correlation coefficients (SCC) and partial correlation coefficients
(PCC). These methods are based upon a linear approximation to
the model, therefore results from the SA are only approximate and
may be poor for highly non-linear models. As the paper proposes a
consistent workflow for SA, model dependent methods were con-
sidered to be inadequate. Another alternative is an SA method
based upon an emulator, a surface fit that approximates the model
(Oakley and O’Hagan, 2004). This is a powerful technique, how-
ever it requires a greater understanding of the underpinning
mathematics (to assess the quality of fit of the emulator) than
the method suggested in the paper.

In this study the two-step approach to SA of large models pro-
posed by Campolongo and Saltelli (1997) was adapted for PBPK
models as follows:

1. The Morris test as a preliminary screening exercise to identify
the subset of the most potentially explanatory parameters of
model output.

2. The eFAST for the quantitative analysis of the selected subset
of parameters.

The Morris method is global in the sense that it is obtained
by taking average values of local measures throughout the input
space and produces two sensitivity measures for each parameter,
μ and σ. A high μ indicates a factor with an important overall
influence on model output; a high σ indicates either a factor inter-
acting with other factors or a factor whose effects are non-linear.
The magnitude of μ and σ for each model parameter is relative,
i.e., a parameter has a low μ relative to the parameter with the
highest μ. For a screening method to be effective, the probability
of not identifying a factor that is important must be low. Previous
exercises using the Morris method have satisfied this requirement
(Campolongo and Saltelli, 1997; Campolongo et al., 1999; Saltelli
et al., 2000a).

The eFAST test is a variance-based global method that is inde-
pendent of any assumptions regarding model structure (it does
not rely on assumptions as to the functional relationship between
the model output and its inputs) and is valid for use with non-
monotonic models (models that do not give exclusively increasing
or decreasing predictions). The method provides a way to esti-
mate the expected value and variance of the dose metric (model
output variable) and the contribution of input parameters and
their interactions to this variance, given physiologically feasible
parameter ranges for inputs. It is important that interactions are
identified if the applications of SA are to be fully realized (Cam-
polongo and Saltelli, 1997; Campolongo et al., 1999; Saltelli et al.,
1999, 2004; Marino et al., 2008). The eFAST technique can pro-
duce two types of sensitivity measure that vary with time: main
effects (Si) and total effects (STi ). The main effect of a parameter
represents the reduction in variance if the“true”value of that para-
meter is known, e.g., the reduction in variation in venous blood

concentrations of m-xylene if the real liver mass of an individual is
known. The total effect of a parameter represents the proportion
of variance remaining if the “true” values of all the other parame-
ters are known, e.g., the variation in venous blood concentrations
of m-xylene would be due solely to the variation in liver mass
because the true, unique values for all other parameters are known.
However, total effects of a given parameter usually have a higher
variance when compared to the main effects because although the
“true” values of all the other parameters are known, any interac-
tions between these and any number of parameters are unknown.
It is useful to think of STi as the sum of Si and interactions.

SA WORKFLOW
The workflow comprises the following steps:

1. Perform the screening exercise using the Morris test
2. Identify and select the most important parameters
3. Identify the time period where model output variance is of

interest
4. Perform eFAST on the most potentially explanatory subset of

parameters
5. Present STi , Si and interactions as a Lowry plot

THE SCREENING EXERCISE
In order to test the validity of the screening exercise as a single
initial step for parameter sensitivity measures that change over
time, the means of μ and σ were calculated over a period of 0–14 h
corresponding to the change in venous blood concentration of m-
xylene (CV; Figure 2A) and from 3 to 14 h corresponding to the
change in concentration of urinary MHA (Curine; Figure 2B).

THE eFAST METHOD
In order to delineate the various steps of a possible workflow the
analysis initially was conducted at 40 ppm, the target exposure con-
centration of the human volunteer studies. For CV eFAST was run
at 3–5 h, to investigate parameter sensitivities in the distribution
and elimination phases (Figure 2A) and at 5–8 h for Curine to inves-
tigate the early and latter urinary elimination phase (Figure 2B). In
order to investigate parameter interactions further analyses were
conducted at 0.3, 3, 5, and 8 h at an intermediate concentration of
200 ppm and at 500 ppm, a concentration calculated to generate a
hepatic concentration of m-xylene 17% greater than the KM value
for P450 metabolism.

PARAMETER RANGES
Parameter ranges used for both the Morris Screening and eFAST
tests were identical and are listed in Table 1. Anatomical and
physiological parameter distributions were obtained from the
freely available web-based application PopGen, which is a virtual
(healthy) human population generator1. A human population,
comprising 50% male and 50% female, white Caucasians, age
range 16–65, height range 140–200 cm, body mass indices 18.5–30
was generated to encompass the characteristics of the volunteers
that took part in the study described below. In PopGen, organ

1http://xnet.hsl.gov.uk/popgen
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FIGURE 2 | Simulation of venous blood m-xylene and urinary excretion

of methylhippuric acid (expressed against creatinine). The symbols are
typical measured values from two volunteers and the solid lines are model
predictions using mean point values for anatomical, physiological and
biochemical parameters for, (A) CV and (B) Curine. In panel (A) the lower
broken line shows the region of approximate total variance. The upper
broken line is the approximate total variance multiplied by 25 in order to
show more clearly the relationship to model prediction. The short broken
lines at 3 and 5 h in panel (A) and 5 and 8 h in panel (B) show the time
slices chosen for eFAST analysis.

masses and blood flows are determined for virtual individuals from
both a priori distributions of anthropometric parameters such as
body mass, height, and body mass index and measured data from
existing studies. The algorithms, were derived and evaluated by
Willmann et al. (2007).

Parameter ranges were set at the 5 and 95th percentiles of the
distributions, with the exceptions of the PCs Prpda, Pspda, Pfaa,
and Plia. There were no available distributions for these PCs and
therefore the ranges set were considered reasonable assumptions.
VspdC and VrpdC, the masses of the slowly and rapidly perfused
tissues respectively, were not included in the SA because they are
aggregated compartments from which organs and tissues are sub-
tracted when discretely defined during model building. In order to
ensure that logical constraints on mass balance and blood flow to
the tissues were met the re-parameterizations described in Gelman
et al. (1996) were adopted.

The mean value and range for K1, the first-order elimination
rate constant describing removal of MHAB from the blood to
the urine was estimated by simulating the post exposure urinary
excretion of methylhippuric acid following exposures at 1–10, 11–
20, 21–30, and 31–40 ppm (Engström et al., 1978). The four data
sets from were digitized and K1 estimated using the QuasiNewton
algorithm within acslX Libero (see Software).

THE DATA
Venous blood m-xylene and urinary MHA concentrations from a
human volunteer study, which will be fully reported in due course,
were used to illustrate the SA analysis workflow. Briefly, groups of
four volunteers were exposed for 4 h on two separate occasions to a
target concentration of 40 ppm m-xylene vapor in the Health and
Safety Laboratory controlled atmosphere facility (CAF), a purpose
built room 8 m3 in volume (Loizou et al., 1999). Individual body
mass, body fat mass, resting alveolar ventilation rate, blood:air
PC, urine volumes, and creatinine concentrations were measured.
Venous blood samples were taken prior to entering the exposure
facility and at hourly intervals during exposure, then every 20 min
for the first hour after exiting the exposure facility before returning
to hourly intervals for the next 3 h (Figure 2A). Urine samples were
taken at 4, 6, 8, 10, 12, 14, 24, 27, 31 h post exposure (Figure 2B).

SOFTWARE
The numerical solutions to the model equations were obtained
using acslX Libero version 3.0.1.6 (AEgis Technologies2). The
M functions for the Morris Test and eFAST included with the
acslX Optimum suite of tools were adapted for use in this study.
Lowry plots were created using R and ggplot2 (Wickham, 2009;
R Development Core Team, 2010) with additional code by Taka-
hashi (2010). Data were digitized using Grab It! Graph Digitizer
(Datatrend Software, Inc.3). The computer used in this study was
a Dell Optiplex 755 Intel Core(TM)2 Duo CPU 3.00 GHz 2.00 GB
RAM.

RESULTS
Results of the Morris screening exercise for variance in CV and
Curine are shown in Figures 3A and 3B. The sensitivity indices,
μ and σ were plotted for all 19 input parameters but due to lack
of space, only 10 in the case of CV, and 7 in the case of Curine,
are annotated. The parameters are ranked in order of importance
according to μ for both CV and Curine in Table 2. The recom-
mended procedure in Campolongo and Saltelli (1997) would be
to perform the more computationally expensive eFAST analysis
on the most important of the screened parameters. These would
certainly include the annotated parameters in Figures 3A and
3B. However, in this study we investigated the correspondence
in ranking of the mean values of μ with eFAST indices for every
parameter (no parameters were screened out) for both CV and
Curine. Unlike the Morris test mean sensitivity indices, it is not
straightforward to take averages of STi and Si. Therefore, to test
concordance with the Morris screening, eFAST was conducted on

2http://www.acslx.com/
3www.datatrendsoftware.com
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FIGURE 3 |The Morris Screening exercise. Results of the Morris
Screening exercise for, (A) the concentration of m-xylene in venous blood
(CV) and, (B) the urinary excretion of methylhippuric acid (expressed
against creatinine) (Curine).

all 19-model parameters at various discrete time points. The two
methods were compared by examining the rankings of the μ and
STi values. Unlike STi ,μ does not include a measure of interactions
with other model parameters, therefore strictly speaking, is not a
directly comparable sensitivity index. However, since the Morris
test has been proposed as a screening method based on ranking
μ this comparison is therefore justified (Campolongo and Saltelli,
1997).

Table 2 shows the comparison of ranking of mean values of
μ with STi values calculated at 3, 5, 8, and 11 h for both CV and
Curine. A tick next to an STi value indicates correspondence with
the Morris screening across all four time points by being ranked
consistently in the top 10 or bottom 9. A cross next to an STi value
indicates a parameter that may be ranked in the top 10 or bottom
9 at different time points.

The Morris screening test was then conducted at the same time
points as the eFAST analysis. Tables 3 and 4 show that there is
an improved concordance in the ranking between STi and μ for
each parameter at 3, 5, 8, and 11 h for CV but less so for Curine.

The rankings are not exactly the same although more parameters
are ranked in the top 10 or bottom 9 by both methods. For CV at
3 h BW is ranked in the top 10 most influential parameters and
Prpda in the bottom 9 by eFAST in disagreement with the Morris
screening. For Curine the following STi indices differ in ranking to
the corresponding μ for VliC and Pspda at 3 h, VliC and K1 at 5 h,
VliC, KM, and K1 at 8 h (although K1 was ranked in the top 10 for
both methods) and KM and K1 at 11 h.

The computing time for the Morris screening test for all 19
parameters for both CV and Curine was approximately 8 s.

THE eFAST METHOD
In addition to calculating STi and Si eFAST analysis also produces
some useful outputs that can be used to support modeling assump-
tions. The approximate distribution of total variance of the dose
metric with time can be visualized to compare with the domain of
experimental observation. Figures 2A and 2B show that the mag-
nitude of approximate total variance over time follows the quantity
of substance in blood and urine, respectively. In Figure 2A the
lower broken line shows the region of approximate total variance
for CV. The upper broken line is the approximate total variance
multiplied by 25 in order to show more clearly the relationship
to model prediction. Therefore, the profile of the approximate
total variance of the dose metric was used to select appropriate
time points for detailed eFAST analysis. In contrast to CV, the
approximate total variance for Curine did not require scaling to be
graphed. The figures also highlight that variance is very sensitive
to the units of measurement and may be only weakly related to
the uncertainty in the level of the substance (in blood, urine, or
any body compartment of interest) that arises due to uncertainty
in the parameters of the model. This does not impact on the func-
tionality of variance-based methods for SA, however the standard
deviation (the square root of the variance) is a more appropri-
ate measure of the underlying uncertainty in the model output
that results from parameter value uncertainty. Some outputs in
the PBPK model may be much more sensitive to the inputs than
others. The total variance can be used to compare the sensitivity
of model outputs (to the model inputs) provided those outputs
have the same units of measurement. For example, if the variance
of the substance in the liver was found to be much larger than
the variance of the substance in the kidney, one could conclude
that the liver parameter value (e.g., mass, perfusion rate, PC) was
a much more sensitive parameter than the corresponding kidney
parameter.

Figures 4A,B show the Lowry plots of the eFAST quantitative
analysis for CV at 3 and 5 h. Let oi be the main effects (Si), ordered
from largest to smallest.

The amount of variance that is accounted for by including
all parameters up to a specified point is bounded below by the
cumulative sum of the ordered main effects (the base of the rib-
bon) and is bounded above by the cumulative sum of the total
effects. Note that there is multiple accounting of the interactions
associated with each parameter, which causes the total to exceed
100% eventually. In fact, we have an even stricter limit for the
upper bound: it cannot exceed 100% minus the sum of the main
effects that are not included in the cumulative sum up to that point
(the top of the ribbon).
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Table 2 | Ranking of model parameters: comparison of Morris test screening and eFAST.

More formally, the lower bound of the included variance for
the first k parameters is given by

lk =
k∑

j=1

Oij

and the upper bound is given by

uk = min

⎛
⎝ k∑

j=1

(Oij + ij), 1 −
n∑

j=k+1

Oij

⎞
⎠

where n is the total number of parameters.
Thus, the amount of variance that is accounted for by includ-

ing all parameters up to a specified point can be determined by
taking a cross section of the ribbon above that parameter, i.e., the
range from lk to uk. For example, in Figure 4A, if you include all
parameters up to BW, then the amount of variance accounted for
is between approximately 94 and 98%. In this case, to ensure that
at least 90% of the model variance is captured you would need to

include all terms up to and including MPY, since that is the first
point when the lower cumulative frequency line rises above 90%.
By including the top 10 parameters, we account for between 95%
and 99% of variance at 3 h, and between 90 and 98% at 5 h post
exposure.

The contribution of different parameters to variance of CV
changes with time. The most notable being Qspdc, the blood per-
fusion rate of the aggregated slowly perfused compartment, which
increases from less than 1.0% (Figure 4A) to 15.3% (Figure 4B).
The parameters accounting for most of the variance are similar
at both time points except that at 5 h body mass, BW is replaced
by Pspda, the blood:air PC for the slowly perfused compartment.
MPY, can be seen as representing the contribution of Vmax to vari-
ance because MPY significantly affects the magnitude of Vmax in
the in vitro–in vivo scaling calculation. Therefore, both metabolic
parameters, KM and Vmax contribute to variance of CV at both
time points.

Figures 4C,D show the results of the eFAST quantitative analy-
sis for Curine at 5 and 8 h. In this case Rurine and CRE are
dominant parameters at both time points accounting for about
80–85% variance in Curine. Beyond Rurine and CRE the parameter
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Table 3 | Comparison of ranking of model parameters for variance in CV.

rankings differ significantly. At 5 h post exposure Rurine, CRE,
and Pba, account for at least 86% of variance due the Si and
approximately 90% including interactions (Figure 4C). At 8 h
post exposure the Si of Rurine, CRE, and VfaC account for at
least 90% of variance and almost 95% including interactions
(Figure 4D).

Figure 5 is a selection of latticed Lowry plots showing exam-
ples of changes in parameter interactions and ordering at various
exposure concentrations and time points. There was a broad
consistency in the results at the three doses however there were
some important differences. The principle differences in results
were that (a) the dominance of the most important parameters
increased as the dose increased; this was particularly evident at
the first two time points (of 0.3 and 3 h) where Pba and QPC
accounted for a progressively larger proportion of variance as
the dose increased; (b) the results of the SA show that there
were some changes in the parameter orderings, in particular MPY
became more important as the dose increased; and (c) the Lowry
plots clearly indicate that interactions accounted for a larger pro-
portion of variance at all time points for the 200 and 500 ppm
doses.

The computing time for the eFAST analysis of 19-model
parameters for CV and Curine was approximately 13 h each.

DISCUSSION
The probability of non-identification of important parameters by
the Morris test has been reported to be low (Campolongo et al.,
1999). However, previous studies did not involve the calculation
of sensitivity measures that change over time and involved mod-
els with a larger number of parameters (60+; Campolongo and
Saltelli, 1997; Campolongo et al., 1999; Saltelli et al., 1999; Marino
et al., 2008). In this study the Morris screening exercise performed
well when conducted at the same time points as eFAST. Disagree-
ment with the Morris screening occurred at the 3-h time point for
CV where BW was ranked in the top 10 and Prpda in the bottom
9. Quantitatively, BW accounted for 2.3% and Prpda 0.3% of vari-
ance. In the case of Curine disagreement with the Morris screening
occurred at each time point. For both CV and Curine the disagree-
ments in rankings were small and occurred with parameters that
accounted for a very small percentage of dose metric variance. It is
recommended that the screening phase be performed at the same
time points as the eFAST analysis.

The computational cost of performing global SA may be an
important criterion for determining whether a screening exercise
is required. In this study the eFAST conducted on a PBPK model
with 19 parameters took approximately 13 h to complete on a dual
core desktop PC. However, the run time increases substantially as
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Table 4 | Comparison of ranking of model parameters for variance in Curine.

the number of parameters is increased. In a preliminary investiga-
tion the number of model parameters was increased to 25 (each
compartment requires a mass, perfusion rate and PC) by adding a
kidney and brain compartment. The run time for eFAST analysis
of the 25-parameter model increased to 72 h. Therefore, in the case
of PBPK models with modest numbers of parameters, e.g., 19–25,
the screening should be used to reduce the number of parameters
for quantitative analysis by de-selecting the 10 least important.
The run time will still be several hours (this would be substantially
reduced on a multicore system).

The eFAST results are consistent with other studies showing
that the influence of model parameters on model output follow
a Pareto-like distribution (Campolongo et al., 1999; Saltelli et al.,
2000a). This is a highly skewed distribution with tails correspond-
ing to extreme values. This means that most of the variance would
be described by a few parameters. This is certainly the case with
the eFAST data obtained at the early time points for both CV and
Curine. At 3 and 5 h for CV and 3 and 8 h for Curine, the com-
putation of sensitivity measures occurs in a region of parameter
space that corresponds to the time period where the concen-
tration of m-xylene in the system is still substantial. Numerical
methods are still able to calculate sensitivity measures even as
the variance tends to zero, which occurs at later time points. As
this happens the sensitivity measures reflect sampling variability

and noise rather than important model structure. It is there-
fore important to recognize an appropriate point to terminate
eFAST, to avoid the region where the variance asymptotes toward
zero.

The keys points are that it is important to conduct the SA at
a dose within the range of any experimental data as the results
from the SA may be sensitive to the dose. However, an advantage
of conducting the SA at multiple doses is that the sensitivity of
results, in effect the degree of interaction between the parame-
ters of the PBPK model and the dose, can be assessed. Perhaps
most importantly, whilst there were some important differences
in the most sensitive parameters, there was little change in the
ordering of the least important parameters. There was a consis-
tency in the least important parameters at all three doses, therefore
the approach suggested in this workflow, of eliminating the least
sensitive parameters, was independent of the dose.

The primary objective in the paper was to introduce the ele-
ments of a workflow for SA and some of the technical details
have been omitted from the methodology for clarity of presen-
tation. One important issue is on the assumed probability dis-
tribution for the parameters. In the examples presented in the
paper uniform distributions were assumed in all cases. Oakley
and O’Hagan (2004) showed that sensitivity indices are influ-
enced by both the relationship between the model output and
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FIGURE 4 | Lowry plot of the eFAST quantitative measure. The total
effect of a parameter STi

, is comprised the main effect Si (black bar) and
any interactions with other parameters (grey bar) given as a proportion of
variance. The ribbon, representing variance due to parameter interactions,

is bounded by the cumulative sum of main effects (lower bold
line) and the minimum of the cumulative sum of the total effects (upper
bold line), (A) CV at 3 h, (B) CV at 5 h, (C) Curine at 5 h and (D) Curine

at 8 h.

its inputs, and by the probability distributions for the model
parameters. A full treatment of both of these sources of influ-
ence is referred to as probabilistic SA. However, this latter source
of influence, whilst important, is rarely covered in detail in the
literature.

If little information is known about the model parameters it
may be reasonable to assume uniform distributions on the inputs
(although a robust SA might also examine the results under a
variety of assumed probability distributions). However, if it is

feasible to obtain reliable probability distributions from sources
such as PopGen these should be used in sensitivity analyses. After
appropriate transformations of the parameters a variety of distri-
butions can be used in eFAST. Some minor differences in the SA
results in this work would have resulted from different probability
distributions on the inputs.

In practice there is a balancing act between the availability of
a suite of probability distributions and ease of use. The authors
consider uniform distributions as a default setting, coupled with a
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FIGURE 5 | Selected latticed Lowry plots showing concentration and time-dependent changes in parameter interactions and ordering.

choice of uniform, log-uniform, normal, and log-normal prob-
ability distributions for model parameters to be a reasonable
compromise.

Despite greater computational cost a number of factors shift
the balance in favor of eFAST over OAT techniques. These are: (i)
different parameters are affected by different ranges of variation
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and uncertainty in different regions of parameter space, i.e., dif-
ferent patterns of parameter sensitivity predominate in different
regions of parameter space, (ii) the presence of significant inter-
actions between parameters should never be discounted, (iii)
presentation of quantitative information on SA in the form of
a bar chart is intuitive. Specifically, the presentation of the main
effects, Si with a bar representing the sum total contribution of
all interactions STi , to variance in the form of a Lowry plot is
recommended, (iv) the importance of one parameter rather than
another can only be justified if parameter interactions have been
quantified.

CONCLUSION
We have defined the basis of a workflow for SA of PBPK models
that is computationally feasible, accounts for interactions between
parameters, and can be displayed in an intuitive manner. When
used to analyze PBPK models containing up to 25 parameters,

Morris screening should be used to identify the 10 least impor-
tant. However, judgment and experience should guide the user as
to the number of parameters to eliminate before performing the
more computationally costly eFAST analysis. The results of eFAST
analysis can be presented as a bar chart and cumulative sum line
that we have named a “Lowry plot” showing the proportional con-
tribution to variance of the most significant parameters and their
interactions. We believe the presentation of this kind of data in this
form is intuitive and appropriate for toxicologists, risk assessors
and regulators.
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APPENDIX
R CODE FOR CREATING LOWRY PLOTS
The plots were created using R (R Development Core Team, 2010) and the ggplot2 package (Wickham, 2009).

library(ggplot2)

The data are assumed to have three columns:

• “Parameter,” containing the name of the parameter
• “Main Effect,” containing the size of the main effects
• “Interaction,” containing the size of the interactions

In practise, you are likely to read in the data from a file, but for simplicity, here is some code to create sample data.

m_xylene_data <- data.frame(
Parameter = c(

"BW", "CRE", "DS", "KM", "MPY", "Pba", "Pfaa",
"Plia", "Prpda", "Pspda", "QCC", "QfaC", "QliC",
"QPC", "QspdC", "Rurine", "Vfac", "VliC", "Vmax"),

"Main Effect" = c(
1.03E-01, 9.91E-02, 9.18E-07, 3.42E-02, 9.27E-3, 2.82E-2, 2.58E-05,
1.37E-05, 5.73E-4, 2.76E-3, 6.77E-3, 8.67E-05, 1.30E-02,
1.19E-01, 4.75E-04, 5.25E-01, 2.07E-04, 1.73E-03, 1.08E-03),

Interaction = c(
1.49E-02, 1.43E-02, 1.25E-04, 6.84E-03, 3.25E-03, 7.67E-03, 8.34E-05,
1.17E-04, 2.04E-04, 7.64E-04, 2.84E-03, 8.72E-05, 2.37E-03,
2.61E-02, 6.68E-04, 4.57E-02, 1.32E-04, 6.96E-04, 6.55E-04

)
)

Sometimes it is easier to use the data in wide format, other times in long format. This data fortification process returns both, plus
some extra columns.

fortify_lowry_data <- function(data,
param_var = "Parameter",
main_var = "Main.Effect",
inter_var = "Interaction")

Frontiers in Pharmacology | Predictive Toxicity June 2011 | Volume 2 | Article 31 | 14

http://www.frontiersin.org/predictive_toxicity/
http://www.frontiersin.org/predictive_toxicity/archive


McNally et al. PBPK model global sensitivity analysis

{
#Convert wide to long format
mdata <- melt(data, id.vars = param_var)

#Order columns by main effect and reorder parameter levels
o <- order(data[, main_var], decreasing = TRUE)
data <- data[o, ]
data[, param_var] <- factor(

data[, param_var], levels = data[, param_var]
)

#Force main effect, interaction to be numeric
data[, main_var] <- as.numeric(data[, main_var])
data[, inter_var] <- as.numeric(data[, inter_var])

#total effect is main effect + interaction
data$.total.effect <- rowSums(data[, c(main_var, inter_var)])

#Get cumulative totals for the ribbon
data$.cumulative.main.effect <- cumsum(data[, main_var])
data$.cumulative.total.effect <- cumsum(data$.total.effect)

#A quirk of ggplot2 means we need x coords of bars
data$.numeric.param <- as.numeric(data[, param_var])

#The other upper bound
#.maximum = 1 - main effects not included
data$.maximum <- c(1 - rev(cumsum(rev(data[, main_var])))[-1], 1)

data$.valid.ymax <- with(data,
pmin(.maximum, .cumulative.total.effect)

)

mdata[, param_var] <- factor(
mdata[, param_var], levels = data[, param_var]

)
list(data = data, mdata = mdata)

}

The plot is essentially a bar chart plus a cumulative frequency ribbon, with some minor adjustments to improve appearance of the
plot.

lowry_plot <- function(data,
param_var = "Parameter",
main_var = "Main.Effect",
inter_var = "Interaction",
x_lab = "Parameters",
y_lab = "Total Effects (= Main Effects + Interactions)",
ribbon_alpha = 0.5,
x_text_angle = 25)

{
#Fortify data and dump contents into plot function environment
data_list <- fortify_lowry_data(data, param_var, main_var, inter_var)
list2env(data_list, envir = sys.frame(sys.nframe()))

p <- ggplot(data) +
geom_bar(aes_string(x = param_var, y = "value", fill = "variable"),

data = mdata) +
geom_ribbon(
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aes(x = .numeric.param, ymin = .cumulative.main.effect, ymax = .valid.ymax),
data = data,
alpha = ribbon_alpha) +

xlab(x_lab) +
ylab(y_lab) +
scale_y_continuous(formatter = "percent") +
opts(axis.text.x = theme_text(angle = x_text_angle, hjust = 1)) +
scale_fill_grey(end = 0.5) +
opts(legend.position = "top",

legend.title = theme_blank(),
legend.direction = "horizontal"

)
p

}

m_xylene_lowry <- lowry_plot(m_xylene_data)
m_xylene_lowry

PBPK MODEL CSL FILE
! ACSL script Model name: MHA_mict_CH.csl
! This model has a kidney+brain+lung compartment added to base model of
! slowly, rapidly perfused, liver and adipose
! Empirical model describing elimination of metabolite from blood to urine

PROGRAM

INITIAL

ALGORITHM IALG = 2
MAXTERVAL MAXT = 1.0e9
MINTERVAL MINT = 1.0e-9

CONSTANT RMM = 106.17 ! m-xylene molecular mass (g/mol)
CONSTANT MWMHA = 193.2 ! Methylhippuric acid molecular mass (g/mol)
CONSTANT CREmmol = 10.2 ! Urinary creatinine concentration (mmol/L)
CONSTANT BW = 79 ! body mass (kg)
CONSTANT VT = 0.91 ! proportion of vascularised tissue
CONSTANT QCC = 12. ! cardiac allometric constant (L/h/kgˆCAE)
CONSTANT QPMC = 350 ! Alveolar ventilation (not scaled for SA analysis)
CONSTANT CAE = 0.75 ! cardiac allometric exponent
CONSTANT RAE = 0.75 ! respiratory allometric exponent
CONSTANT QspdAC = 0.27 ! overall fractional blood flow
CONSTANT VspdAC = 0.794 ! overall fractional volume
CONSTANT Pba = 15.1 ! blood:air partition coefficient
CONSTANT Pspda = 53. ! slowly perfused tissue:air partition coefficient
CONSTANT Prpda = 117. ! rapidly tissue:air partition coefficient
CONSTANT Pfaa = 1874. ! adipose tissue:air partition coefficient
CONSTANT Plia = 279. ! liver tissue:air partition coefficient
CONSTANT Pkia = 70.8 ! Kidney tissue:air partition coefficient
CONSTANT Pbr = 117.6 ! Brain tissue:blood partition coefficient
CONSTANT Plua = 33.4 ! lung tissue:air partition coefficient

CONSTANT QfaC = 0.05 ! adipose fractional blood flow
CONSTANT QspdC = 0.22 ! slowly perfused tissue fractional blood flow
CONSTANT QkiC = 0.19 ! Kidney fractional blood flow
CONSTANT QliC = 0.25 ! liver fractional blood flow
CONSTANT QbrC = 0.12 ! brain fractional blood flow to brain
CONSTANT QluC = 0.025 ! lung fractional blood flow
CONSTANT qrpdc = 0.1450 ! Logical constraint used to re-parameterise flows
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CONSTANT VliC = 0.0257 ! liver fractional volume
CONSTANT VfaC = 0.299 ! adipose fractional volume
CONSTANT VspdC = 0.4950 ! slowly perfused tissue fractional volume
CONSTANT VkiC = 0.0044 ! Kidney fractional volume
CONSTANT VbrC = 0.02 ! brain fractional volume
CONSTANT VluC = 0.0167 ! lung fractional volume (both lungs)
CONSTANT vrpdc = 0.0492 ! rapidly perfused logical constraint used to re-parameterise masses
CONSTANT MPY = 32. ! microsomal protein yield (mg microsomal protein/g liver)
CONSTANT Km2E1 = 1.253 ! km (mg/L)
CONSTANT VmaxCivM2E1 = 895 ! vmax (molar; in˜vitro; microsomal) (pmol/min/mg)
CONSTANT DS = 0.3 ! proportion of dead space
CONSTANT QPC = 14.7 ! respiratory allometric constant (L/h/kgˆRAE)
CONSTANT CIppm = 40 ! inhalation exposure concentration (ppm)
CONSTANT tinhon01 = 0. ! inhalation timepoint on (h)
CONSTANT tinhoff01 = 4. ! inhalation timepoint off (h)
CONSTANT K1 = 10 ! First-order elimination rate from blood (/h)

! Logical constraints for mass balance
qfaci = qfac/qcci
qkici = qkic/qcci
qbrci = qbrc/qcci
qluci = qluc/qcci
qlici = qlic/qcci
qspdci = qspdc/qcci
qrpdci = qrpdc/qcci

vrpdci = vrpdc/vti
vspdci = VspdC/vti
vfaci = vfac/vti
vbrci = vbrc/vti
vluci = vluc/vti

! scaling parameters
BWc = BW ** CAE
BWr = BW ** RAE

! Calculated tissue:blood partition coefficient
Pspdb = Pspda / Pba
Prpdb = Prpda / Pba
Pfab = Pfaa / Pba
Plib = Plia / Pba
Pkib = Pkia / Pba
Pbrb = Pbr / Pba
Plub = Plua / Pba

! scaled fractional masses
Vfa = VfaCi * BW
Vki = VkiC * BW
Vbr = VbrCi * BW
Vli = VliC * BW
Vlu = VluCi * BW
Vrpd = VrpdCi * BW
Vspd = VspdCi * BW

Vmax2E1 = VmaxCivM2E1 *1E-12 * Vli * RMM * MPY * 1000000 *60 ! vmax (mg/h)

! Logical constraint (tissue masses re-parameterised for global SA analysis)
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vti = vrpdc + vspdc + vbrc + vluc + vkic + vlic + vfac

! Logical constraint (tissue blood perfusion rates re-parameterised for global SA analysis)
qcci =(QrpdC + QSPDC + QbrC + QluC + QkiC + QliC + QFAC)

P = 1 -- DS ! proportion of inhaled gas
QC = QCC * BWc ! cardiac output (L/h)
QspdC = QspdAC - QfaC

QPa = QP * P ! alveolar ventilation rate (L/h)
Qspd = QspdCi * QC ! scaled fractional blood flow
Qrpd = QrpdCi * QC ! scaled fractional blood flow
Qfa = QfaCi * QC ! scaled fractional blood flow
Qli = QliCi * QC ! scaled fractional blood flow
Qki = QkiCi * QC ! scaled fractional blood flow to kidney
Qbr = QbrCi * QC ! scaled fractional blood flow to brain
Qlu = QluCi * QC ! scaled fractional blood flow
VspdC = VspdAC -- VfaC

! Initial conditions
constant Afa0 = 0.0
constant Ali0 = 0.0
constant AMli0 = 0.0
constant Arpd0 = 0.0
constant Aspd0 = 0.0
constant AX0 = 0.0
constant AEx0 = 0.0
constant dose0 = 0.0
constant Aki0 = 0.0
constant AMki0 = 0.0
constant Abr0 = 0.0
constant Alu0 = 0.0
constant AMHAU0 = 0.0
constant AMHAB0 = 0.0

binexpinh = 0.0;

schedule inhexp.at. tinhon01
schedule inhexp.at. tinhoff01

!************ start 1st set of micturition additions ************

constant RUrine=0.074; ! Rate of Urine Production (l/h)
constant VBladder0 = 0.0 ! Initial volume of liquid in bladder

! Array of micturition timings
parameter(MAX_URINATIONS = 20)
dimension urinationTime(MAX_URINATIONS)
constant urinationTime = 0.0, 4.0, 6.0, 8.0, 10, 12, 14, 13*0.0
integer numUrinations
constant numUrinations = 7

! schedule urination events
do 10 i = 1, numUrinations

schedule urination.at. urinationTime(i)
10: continue

! initialize the concentrations of urine
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! inside the bladder and expelled urine
CBladder = 0.0 ! urine still in bladder
CUrine = 0.0 ! urine which has been expelled

!************ end 1st set of micturition additions **************
END ! INITIAL
! ****************************************************************************************
! Model
! ****************************************************************************************
DYNAMIC
!****************************************************************
!************ start 2nd set of micturition additions ************
!****************************************************************
! Discrete event code for urination
! Just reset the amount of liquid and chemical
! in the bladder to zero. Also update the variable
! which contains the concentration of chemical
! in expelled urine.

DISCRETE urination
! concentration of chemical in expelled urine
if(VBladder.gt. 0.0) then

CUrine = AUCREmmol / (VBladder*CREmmol)
else

CUrine = 0.0
endif

! reset the bladder liquid volume and amount of chemical
! in the bladder

VBladder = 0.0
AMHAU = 0.0

END

!****************************************************************
!************ end 2nd set of micturition additions **************
!****************************************************************

DISCRETE inhexp
! inhalation binary exposure
if((t.ge. tinhon01).and. (t.lt. tinhoff01)) then

binexpinh = 1;
else

binexpinh = 0;
endif

END

DERIVATIVE
! inhalation binary exposure
binexpinh = RSW((t.GT.tinhon01).AND.(t.LT.tinhoff01), 1, 0)

IH = CIppm * binexpinh * (RMM / 24450) ! inhalation infusion (mg/L)

! mass in system (mg)
mass = Aspd + Arpd + Afa + Ali + Aki + Abr + Alu + AMli + AX

rel = mass / (dose+1e-10) ! mass balance

Cfa = Afa / Vfa ! fat concentration (mg/L)
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Cli = Ali / Vli ! liver concentration (mg/L)
Cki = Aki / Vki ! kidney concentration in kidney (mg/L)
Cbr = Abr / Vbr ! brain concentration in brain (mg/L)
Clu = Alu / Vlu ! lung concentration (mg/L)
Cspd = Aspd / Vspd ! slowly perfused concentration (mg/L)
Crpd = Arpd / Vrpd ! rapidly perfused concentration (mg/L)
CVlu = Clu / Plub ! lung venous organ concentration (mg/L)
CVfa = Cfa / Pfab ! fat venous organ concentration (mg/L)
CVli = Cli / Plib ! liver venous organ concentration (mg/L)
CVbr = Cbr / Pbrb ! Brain venous organ concentration (mg/L)
CVki = Cki / Pkib ! kidney venous organ concentration (mg/L)
CVspd = Cspd / Pspdb ! slowly perfused venous organ concentration (mg/L)
CVrpd = Crpd / Prpdb ! rapidly perfused venous organ concentration (mg/L)

CV = ((CVspd * Qspd) + (CVrpd * Qrpd) + (CVfa * Qfa) + (CVli * QLI) + (CVki * Qki)+(CVbr *
Qbr)+ (CVlu * Qlu)) / QC ! venous concentration (mg/L)

CVumol = (CV/RMM)*1000 ! Venous concentration (micromoles/L)
CA = ((QC * CV) + (QPMC * IH)) / (QC + (QPMC / Pba)) ! arterial concentration (mg/L)

MRli = (Vmax2E1 * CVli) / (Km2E1 + CVli) ! rate of change of metabolism (mg/h/kg)
Rdose = QPMC * IH ! dose derivative (mg)
RAMli = Mrli ! amount metabolised derivative

CX = CA / Pba ! exhaled concentration (mg/L)
CXPPM = (0.7*CX + 0.3*ih)*(24450.0/RMM) ! exhaled concentration (ppm)
RAfa = Qfa * (CA - CVfa) ! fat compartment derivative (mg/h/kg)
RAli = (QLI * (CA - CVli)) -- Mrli ! liver compartment derivative (mg/h/kg)
RAspd = Qspd * (CA - CVspd) ! slowly perfused compartment derivative (mg/h/kg)
RArpd = Qrpd * (CA - CVrpd) ! rapidly perfused compartment derivative (mg/h/kg)
RAki = Qki * (CA - CVki) ! kidney compartment derivative (mg/h/kg)
RAbr = Qbr * (CA - CVbr) ! Brain compartment derivative (mg/h/kg)
RAlu = Qlu * (CA - CVlu) ! lung compartment derivative (mg/h/kg)
RAX = QPMC * CX ! amount exhaled derivative (mg)

RAMHAB = MRli*(MWMHA/RMM)- (K1 * AMHAB) ! amount of methylhippuric acid in blood

RAMHAU = K1 * AMHAB ! amount of methylhippuric acid in bladder compartment
AUCREmmol = AMHAU*1000/MWMHA ! amount in bladder (mmol)

%[Bladder and micturition]

Afa = integ(RAfa, Afa0)
Ali = integ(RAli, Ali0)
AMli = integ(RAMli, AMli0)
Arpd = integ(RArpd, Arpd0)
Aspd = integ(RAspd, Aspd0)
AX = integ(RAX, AX0)
Aki = INTEG (RAki, Aki0)
Abr = INTEG (RAbr, Abr0)
Alu = INTEG (RAlu, Alu0)
AMHAU = INTEG (RAMHAU, AMHAU0)
AMHAB = INTEG (RAMHAB, AMHAB0)
dose = INTEG (Rdose,dose0)

!************ start 3rd set of micturition additions ************
! Amount of liquid in bladder
! Liquid accumulates in bladder at a constant rate
VBladder = integ(Rurine, VBladder0)
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! Concentration of chemical in bladder urine
if(VBladder.gt. 0.0) then

CBladder = AUCREmmol / (VBladder*CREmmol)
Else

CBladder = 0.0
Endif

!************ end 3rd set of micturition additions **************
CONSTANT TSTOP = 32
TERMT (T.GE. TSTOP, ’checked on communication interval: REACHED TSTOP’)

END ! DYNAMIC
END ! DERIVATIVE
TERMINAL

! code that is executed once at the end of a simulation run goes here
END ! TERMINAL

END ! PROGRAM

M.FILE FOR eFAST ANALYSIS
% NOTE: THIS SCRIPT ASSUMES THE SIMULATION HAS ALREADY BEEN COMPILED AND LOADED!!!
% GSA using 2.5th and 97.5th percentiles caculated using PopGen for organ masses and

flows and Vmax
% Other ranges based on measured data
% Output partial variances
% Model m-xylene_CLEAN_Megen_1.CSL

seedrnd(45678)

tic
prepare @clear
prepare t cv

% name of response variable
obsName = "Curine";

% names of parameters
factNames = ["RUrine","CREmmol","MPY","QPMC", "BW", "Pba", "VMAXCivM2E1", "Km2E1", "QCC",

"VfaC", "QliC","Pfaa", "VliC", "Plia", "Pspda", "QfaC", "Prpda", "QspdAC", "K1"];

% ranges over which parameter may vary
parmRanges = [...
0.041, 0.125
9.8, 15.2
20, 50
367, 412
49, 92
11, 30
750, 1031
0.1, 2
10, 20
0.07, 0.28
0.2, 0.3
1400, 2200
0.02, 0.031
150, 350
40, 80
0.087, 0.096
50, 150
0.2, 0.35
2, 18
];
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% interference factor, usually 4 or 6 (4 requires less computations)
% see Saltelli 1999 for explanation
M = 4;

% number of resamplings (lower number requires less computation)
% see Saltelli 1999 for explanation
Nr = 1;

% flags, see gsa.m comments for additional info
flags = 1;

% call main function to compute sensitivity coeffs
[si, sim, DD]= gsaEFAST(obsName, factNames, parmRanges, M, Nr, flags);

% plot the coeffs computed above
totals = 1 - sum(sim’)’;

%Save all variables in workspace
save("xylene CV full scan GSA results 500ppm.mat")

toc

M.FILE FOR GENERATING TOTAL AND MAIN EFFECTS AND INTERACTION PLOTTING RESULTS
load("xylene CV full scan GSA results 500ppm.mat")
set(@Format = ’Long’)
mainEffectsWithTotals = [sim totals];

h1 = gsaPlotCoefs(obsName, factNames, _t, si);
title(h1, "Total Effects.aps")
h2 = gsaPlotCoefs(obsName, [factNames "totals"], _t, mainEffectsWithTotals);
title(h2, "Main Effects.aps")
h3 = plot(_t, DD);
title(h3, "Approximate Total Variance.aps")

pim = [];
for i = 1:length(factNames)

pim = [pim, (DD(:,i).* sim(:,i))];
end
h4 = gsaPlotCoefs(obsName, factNames, _t, pim);
title(h4, "Partial Variances.aps")

h5 = gsaPlotCoefs(obsName, factNames, _t, si - sim);
title(h5, "Interactions")

% To evaluate one of your outputs at a specific time, use interp1, e.g.
%totalEffectAtTime5 = interp1(_t, si, 5)
mainEffectAtTime5 = interp1(_t, mainEffectsWithTotals, 5)
%partialVarianceAtTime5 = interp1(_t, pim, 5)
interactionsAtTime5 = interp1(_t, si - sim, 5)

%totalEffectAtTime8 = interp1(_t, si, 8)
mainEffectAtTime8 = interp1(_t, mainEffectsWithTotals, 8)
interactionsAtTime8 = interp1(_t, si - sim, 8)

%totalEffectAtTime11 = interp1(_t, si, 11)
mainEffectAtTim11 = interp1(_t, mainEffectsWithTotals, 11)
interactionsAtTime11 = interp1(_t, si - sim, 11)
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