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Atorvastatin δ-lactone, a major, pharmacologically inactive metabolite, has been associated
with toxicity. In a previous study we showed that polymorphisms of UGT1A3 influence
atorvastatin δ-lactone formation. Here we investigated the reverse reaction, atorvastatin
δ-lactone hydrolysis, in a human liver bank. Screening of microarray data revealed paraox-
onases PON1 and PON3 among 17 candidate esterases. Microsomal δ-lactone hydrolysis
was significantly correlated to PON1 and PON3 protein (r s = 0.60; r s = 0.62, respectively;
P < 0.0001). PON1 and PON3 were strongly correlated to each other (r s = 0.60) but PON1
was shown to be more extensively glycosylated than PON3. In addition a novel splice-
variant of PON3 was identified. Genotyping of 40 polymorphisms within the PON -locus
identified PON1 promoter polymorphisms (−108T > C, −832G >A, −1741G >A) and a
tightly linked group of PON3 polymorphisms (−4984A > G, −4105G >A, −1091A > G,
−746C >T, and F21F) to be associated with changes in atorvastatin δ-lactone hydrolysis
and expression of PON1 but not PON3. However, carriers of the common PON1 polymor-
phisms L55M or Q192R showed no difference in δ-lactone hydrolysis or PON expression.
Haplotype analysis revealed decreased δ-lactone hydrolysis in carriers of the most com-
mon haplotype *1 compared to carriers of haplotypes *2, *3, *4, and *7. Analysis of
non-genetic factors showed association of hepatocellular and cholangiocellular carcinoma
with decreased PON1 and PON3 expression, respectively. Increased C-reactive protein and
γ-glutamyl transferase levels were associated with decreased protein expression of both
enzymes, and increased bilirubin levels, cholestasis, and presurgical exposure to omepra-
zole or pantoprazole were related to decreased PON3 protein. In conclusion, PON -locus
polymorphisms affect PON1 expression whereas non-genetic factors have an effect on
PON1 and PON3 expression. This may influence response to therapy or adverse events in
statin treatment.
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INTRODUCTION
Statins are generally well tolerated drugs. Severe adverse events are
rare, but hepatotoxicity, myopathy, and rhabdomyolysis are well
known. One to 5% of patients develop muscle pain symptoms
often leading to discontinuation of treatment (Thompson et al.,
2003). A comprehensive explanation for the development of the
described adverse events has not yet been found. One plausible
mechanism proposes inhibition of an early step of the choles-
terol biosynthesis, reducing not only cholesterol as intended, but
also production of mevalonate pathway products like ubiquinone
(Coenzyme Q10) or isoprenoids/terpenoids (Baer and Wortmann,
2007; Marcoff and Thompson, 2007). On the other hand it was
shown that highly metabolized statins like atorvastatin were asso-
ciated with the highest risk for adverse events (Law and Rud-
nicka, 2006; Silva et al., 2006). This is further emphasized by
reports of increased numbers of adverse events when statins are
co-administered with known inhibitors of statin metabolizing
enzymes. A striking example is the fibrate gemfibrozil where

combinations with cerivastatin have greatly increased the rate of
rhabdomyolysis (Neuvonen et al., 2006) due to the inhibitory effect
of gemfibrozil and its glucuronide metabolite on CYP2C8 and
OATP1B1 dependent metabolism and transport, respectively (Shi-
tara and Sugiyama, 2006). After the death of several people caused
by this co-medication, it was decided to withdraw cerivastatin from
the market.

Recent observations highlight the role of certain metabolites for
adverse events or response to atorvastatin. Hermann et al. (2006)
compared the pharmacokinetics of atorvastatin and its metabo-
lites in healthy controls and myopathy patients. Interestingly,
myopathy patients had 2.4- and 3.1-fold increased AUC values
for atorvastatin-lactone and para-hydroxy-atorvastatin, respec-
tively. Moreover, by assessing the myotoxic potency of atorvastatin
and metabolites in primary skeletal muscle cells, it was found
that atorvastatin-lactone had a 14-fold higher potency to induce
cell-death compared to atorvastatin-acid (Skottheim et al., 2008).
These facts point to an involvement of certain metabolites in
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the development of statin-associated adverse events. Furthermore,
atorvastatin is administered as active acid form but like other
statins it is also found with nearly equal AUC in its inactive lactone
form (Kantola et al., 1998). Both, the acid and the lactone form
are substrates of CYP3A4 and CYP3A5, which convert them to the
respective para- (pOH) and ortho- (oOH) hydroxy-metabolites.
However, due to their higher lipophilicity the lactones are much
better substrates with identical (oOH) or even six-fold higher
(pOH) V max and about 20-fold lower K m, due to better access
to the hydrophobic substrate channel of the CYP enzyme near the
membrane surface (Jacobsen et al.,2000). It has therefore been sug-
gested that elimination of atorvastatin may proceed primarily via
hydroxylation of atorvastatin-lactone and not via hydroxylation
of the parent compound (Jacobsen et al., 2000).

We therefore hypothesized that enzymatic conversion between
atorvastatin-acid and atorvastatin-lactone and vice versa may
constitute an additional level of variation that could in princi-
ple be affected by both genetic and non-genetic factors. Con-
version of atorvastatin to the lactone has been reported to
occur spontaneously at low intestinal pH (Kearney et al., 1993)
but proceeds predominantly enzymatically at physiological pH
(Goosen et al., 2007). Enzymatic formation was shown to
occur via acyl-glucuronidation followed by spontaneous conver-
sion to the lactone (Prueksaritanont et al., 2002). Recently we
could show that UDP-glucuronosyltransferase UGT1A3 is the
main enzyme responsible for the lactonization of atorvastatin.
As a result, UGT1A-polymorphisms affecting UGT1A3 expres-
sion were found to significantly increase atorvastatin-lactone
formation (Riedmaier et al., 2010).

The reverse reaction, hydrolysis of the lactone to the open
acid conformation may happen chemically or enzymatically via
esterases or paraoxonases (Testa and Mayer, 2003). Such a con-
version by paraoxonase 1 (PON1) has been shown for simvastatin
and lovastatin (Billecke et al., 2000) and by paraoxonase 3 (PON3)
for lovastatin (Draganov et al., 2005). Hydrolysis of atorvastatin-
lactone by these enzymes has not been examined before to the best
of our knowledge. The three members of the paraoxonase fam-
ily, PON1, PON2, and PON3, are primarily lactone hydrolyzing
enzymes and share an amino acid identity of ∼65%. The PON1
structure consists of a six-bladed beta-propeller containing two
Ca2+ ions necessary for enzyme stability and activity (Draganov,
2010). The activity of PON3 was also found to be Ca2+ depen-
dent (Lu et al., 2006). Polymorphisms of PON1 have been studied
extensively in the context of its antioxidative potential in coro-
nary artery disease and stroke (Ranade et al., 2005; Banerjee,
2010; Dahabreh et al., 2010) and most recently an involvement
in the generation of the active metabolite of clopidogrel has been
proposed (Bouman et al., 2011). Several of the studied polymor-
phisms indeed affect PON1 expression or activity. A functional
promoter polymorphism (−108T > C ; rs705379) with variant
allele frequency (VAF) of 38.9% in Caucasians was reported to
disrupt the binding site for transcription factor Sp1 (Deakin
et al., 2003) or AhR (Gouédard et al., 2004). Two coding poly-
morphisms (Q192R; rs662; VAF = 35.8% in Caucasians; L55M;
rs854560; VAF = 39.7% in Caucasians) were shown to change the
catalytic activity for several substrates (Costa and Furlong, 2002).
Much less is known about the variability of PON3 and potential

polymorphic markers for expression and function. Although sev-
eral promoter polymorphisms were studied in relation to PON1
substrates their functional relevance remained unclear (Marsillach
et al., 2009).

In this study, we hypothesized that paraoxonases may play an
active role in the hydrolysis of atorvastatin-lactone, and that inter-
patient variation in the expression and activity of these enzymes
could be a determinant of atorvastatin response and/or toxicity. We
investigated this hypothesis in vitro in a large human liver bank.
By determining the population variability and using correlation
analysis we provide evidence that both PON1 and PON3 con-
tribute to atorvastatin-lactone hydrolysis. Further, we investigated
the influence of 40 genetic polymorphisms at the PON -locus as
well as of several non-genetic factors on expression and function of
these genes. We identified several polymorphisms and haplotypes
that are associated with changes in atorvastatin δ-lactone hydrol-
ysis and PON expression. Hence, this comprehensive analysis
renders the PON -locus a promising candidate that could influence
patients’ response to atorvastatin treatment.

RESULTS
GENERAL ROLE OF ENZYMATIC LACTONE HYDROLYSIS
First experiments based on published results for lovastatin hydrol-
ysis indicated that in human liver microsomes both spontaneous
and enzymatic conversion of lovastatin-lactone and atorvastatin-
lactone to the acid forms occurs. Enzymatic compared to spon-
taneous hydrolysis, the latter of which was assessed by identical
incubation with heat-inactivated protein fractions, was found to
be 1.3-fold higher for lovastatin-lactone and 3.8-fold higher for
atorvastatin-lactone in a pooled microsomal fraction (data not
shown). In all subsequent analyses with atorvastatin-lactone, con-
trol incubations with heat-inactivated protein (95˚C, 5 min) were
included and the respective background was subtracted.

VARIABILITY OF MICROSOMAL ATORVASTATIN-LACTONE HYDROLYSIS
Next we determined enzymatic atorvastatin-lactone hydrolysis in
a large number of microsome samples (N = 142). Establishing the
atorvastatin-lactone hydrolysis assay, we could show that the activ-
ity was increased by approximately 20% by adding 1 mM CaCl2,
although these reactions are not depending on co-substrates.
Figure 1 shows the variability of atorvastatin-lactone hydrolysis
in our cohort of human liver samples. The fraction of enzymatic
lactone hydrolysis ranged from 0 to 42% of total atorvastatin-
acid formation indicating a large interindividual variability of the
enzymatic fraction of the reaction. Comparison of the coefficients
of variation revealed similar variability for UGT1A3-dependant
lactone formation (Riedmaier et al., 2010) and enzymatic lactone
hydrolysis (62 and 54%, respectively). Of note, UGT enzymes are
only active in the presence of UDP-glucuronic acid. This cofactor
was not included in the atorvastatin-lactone hydrolyzing assay.

CANDIDATE ESTERASE SCREENING
Our next aim was to identify the enzyme(s) responsible for this
conversion. Since several enzymes known to possess esterase activ-
ity were possibly involved (Testa and Mayer, 2003), we used
mRNA profiling data previously obtained by microarray analy-
sis of the liver samples (Schröder et al., manuscript submitted).
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Table 1 shows the results of a correlation analysis between mRNA
expression data of a selection of candidate esterases and enzy-
matic atorvastatin-lactone hydrolysis activity in the human liv-
ers. The analysis included acetylcholinesterase (ACHE), acyl-CoA
thioesterase 1 (ACOT1), albumin (ALB), butyrylcholinesterase
(BCHE), carboxyl ester lipase (CEL), carboxylesterase (CES1, 2,
3, 4, 7), paraoxonases (PON1, 2, 3), lysosomal acid, cholesterol
esterase (LIPA), and sialic acid acetylesterase (SIAE). Interestingly,
this analysis identified PON1 and PON3, already known to be
involved in the hydrolysis of simvastatin and lovastatin (Draganov
et al., 2005; Suchocka et al., 2006) as the two top candidates. Sig-
nificant correlations (Holm-adjusted P < 0.05) were also observed
for BCHE, CES3 (positive) and PON2, LIPA (negative).

POPULATION VARIABILITY OF MICROSOMAL PON1 AND PON3
EXPRESSION
In further experiments we concentrated on PON1 and PON3,
because their expression showed the strongest correlation to
atorvastatin-lactone hydrolysis. To quantitate mRNA transcripts
by real-time PCR, we first carried out RT-PCR experiments
to quantitate distinct transcripts described for PON1 (four
splice-variants; Ensembl: ENSG00000105852) and PON3 (nine
splice-variants; Ensembl: ENSG00000005421). We identified the

FIGURE 1 | Frequency histogram (left axis) and cumulative frequency

(right axis) showing population distribution of the hydrolysis of

atorvastatin-lactone (10 μM) to atorvastatin-acid in human liver

microsomes (N = 142). Incubations (5 μg of microsomal protein) were
performed in the presence of 1 mM CaCl at 37˚C for 30 min.
Atorvastatin-acid was quantitated by LC–MS/MS analysis.

predicted PON1 and PON3 wild type transcripts and a novel vari-
ant PON3 mRNA species, which was shown by sequence analysis
to contain an additional exon of 144 bp (corresponding to 48
amino acids) between exons 3 and 4. No other PON3 variants
were detected using primers for full-length mRNA amplification in
a subset of 20 samples. On average, this splice-variant was 3.1-fold
less expressed compared to wild type. When comparing the coef-
ficients of variation, mRNA levels of PON3 wild type and variant
were similarly variable (40 and 43%, respectively). Quantification
of mRNA expression of PON1 and PON3 by self-designed spe-
cific TaqMan assays revealed that PON3 wild type mRNA was on
average 5.1-fold higher expressed than PON1 mRNA (for correla-
tions see below). PON1 mRNA had a high coefficient of variation
(150%).

Protein expression of PON1 and PON3 was quantified by West-
ern blot analysis using monoclonal primary antibodies. PON1 was
identified as a triple band in a range of approximately 35–40 kDa,
in agreement with earlier data on purified human serum paraox-
onase (Furlong et al., 1991; Gan et al., 1991; Figure 2A). These
bands occurred only in human liver microsomes but not in cytosol.
PON3, on the other hand, was found as a single band at 38 kDa in
human liver microsomes. In cytosolic samples of the same livers
as well as in a sample prepared from primary human hepatocytes,
two bands at 21 and 35 kDa were identified, whereas the 38-kDa
band was absent (Figure 2B). The PON3 variant was not detected.
Endoglycosidase treatment was performed to test whether gly-
cosylation was responsible for the various immunoreactive pro-
teins. Treatment of human liver microsomes lead to a shift of
the detected bands toward a single 35 kDa band with both anti-
bodies (Figure 2C). This finding suggested that PON1 and PON3
are highly glycosylated proteins in microsomes. Remarkably, the
35 kDa band, presumably representing the unglycosylated PON1
and PON3 forms corresponded to one of the two PON3 bands
detected in human liver cytosol and in hepatocytes. The observed
microsomal pattern of three bands for PON1 and one band for
PON3 corresponded to three reported glycosylation sites (amino
acids N226, N252, and N323) on PON1 and one site (N323) on
PON3 (Liu et al., 2005). For quantification, the liver samples were
analyzed in their glycosylated state and the relevant signals were
combined.

Taken together, these analyses revealed that both PON1 and
PON3 varied considerably with regard to the analyzed phenotypes
of expression and atorvastatin-lactone hydrolysis. Table 2 presents
an overview of the PON population variability parameters at
mRNA and protein/function levels. All measured phenotypes were
not normally distributed in our Caucasian liver donor cohort. The

Table 1 | Correlation analysis of candidate gene expression and atorvastatin-lactone hydrolysis.

ACHE ACOT1 ALB BCHE CEL CES1 CES2 CES3

Atorvastatin-acid formation r s = 0.21* n.s. n.s. r s = 0.38*** n.s. r s = 0.24* n.s. r s = 0.35***

CES4 CES7 PON1 PON2 PON3 LIPA SIAE

Atorvastatin-acid formation n.s. n.s. r s = 0.40*** r s = −0.39*** r s = 0.52*** r s = −0.32*** r s = −0.27**

*p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2 | Immunoblots of human liver cytosol (HLCs) and

microsomes (HLMs) of livers 1–5 stained with specific antibodies

against (A) PON1 and (B) PON3 (performed on identical blot

after stripping). Analysis was performed on cytosolic and microsomal

fractions of livers 1–5, on a human liver microsome pool (lane 11) and on
lysate of primary human hepatocytes. (C) Deglycosylation was performed
by analysis with (+) or without (−) pretreatment by endoglycosidase
PNGase F.

Table 2 | Population variability of hepatic PON1 and PON3 expression phenotypes.

PON1 PON3

mRNA/RPLP0

relative units

Protein

(relative units)

Wildtype

mRNA/RPLP0

relative units

Variant

mRNA/RPLP0

relative units

Protein

(relative units)

Atorvastatin-

acid formation

(pmol/min/mg)

Minimum 0.61 51.40 7.29 2.20 0.90 6.67

Median 5.84 620.0 28.73 9.50 14.10 309.70

Maximum 120.30 2200 73.74 22.51 74.65 816.0

Ratio max./min. 196.25 42.80 10.12 10.23 82.94 122.34

Normal distribution No No No No No No

Sample skewness 6.88 1.05 0.67 0.58 1.44 0.30

Coefficient of variation (%) 150 69 40 43 74 54

coefficient of variation was lowest for PON3 mRNA and activity,
higher for PON1 and PON3 protein expression and highest for
PON1 mRNA expression.

IDENTIFICATION OF RESPONSIBLE HYDROLYZING ENZYMES BY
CORRELATION ANALYSIS
To further substantiate the involvement of PON1 and PON3
in atorvastatin-lactone hydrolysis, correlation analysis was per-
formed. As shown in Table 3, rather strong associations above
r s > 0.5 (i.e., r2

s > 0.25; highlighted cells) were obtained for three
parameter-pairs. Most notably,atorvastatin-lactone hydrolysis was
correlated with similarly high Spearman coefficients to both,
PON1 and PON3 protein expression, indicating that both enzymes
contribute approximately equally to the microsomal enzymatic
reaction. Furthermore the mRNAs of PON1 and PON3 (wildtype
and splice-variant ) were also significantly correlated to activity,
although with lower Spearman coefficients. Moreover, correla-
tions were also observed between transcripts, as well as between
PON1 and PON3 protein indicating co-regulation of these two
paraoxonases.

GENETIC VARIABILITY AT THE PON-LOCUS
We analyzed the genetic variability at the PON-locus to select
known functional SNPs that cover the coding and regulatory
regions of the two candidate genes PON1 and PON3. In addition,
we included tagging SNPs selected for the less well characterized
PON3 gene. In total we genotyped 7 promoter SNPs, 11 coding
SNPs, 14 intronic SNPs, and 1 3′UTR polymorphism of PON3
including the selected tagging SNPs. Furthermore three promoter
SNPs, two amino acid changing polymorphisms of PON1, and
two intergenic polymorphisms located between the two genes were
included. A summary of the selected polymorphisms including a
comparison of the measured VAF with published data is shown in
Table A1 in Appendix. Major frequency deviations were observed
for some polymorphisms derived from the Seattle SNP database,
probably because only 23 subjects had been included in their analy-
ses. For SNP 19, only data from a Chinese cohort was available and
this polymorphism was much more common in our Caucasian
population.

Calculation of pairwise LD values at the PON -locus revealed
a block of tightly linked polymorphisms comprising the PON3
promoter region, several intronic polymorphisms and the
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synonymous polymorphisms F21F (rs13226149), and A99A
(rs1053275; D′ = 0.88–1.0; r2 = 0.04–1.0; Figure 3). Of note, this
block is also linked to the −1741G > A PON1 promoter polymor-
phism (D′ = 0.49–1.0; r2 = 0.09–0.43). Linkage was also detected
between PON1 promoter polymorphisms and L55M (D′ = 0.59–
0.87; r2 = 0.14–0.19). PON1 Q192R on the other hand was only
linked to L55M (D′ = 0.95; r2 = 0.23), but neither to PON1
promoter polymorphisms nor to polymorphisms of the PON3
linkage block. Linkage was additionally detected between the

rare polymorphisms PON3–794C > T, 3′UTR rs17885558 and
the intergenic polymorphism rs7778771 (VAF = 1.3%; D′ = 1;
r2 = 1).

Association of PON polymorphisms with PON-related phenotypes
Univariate analysis was carried out for association between
single SNP genotypes and the PON phenotypes, atorvastatin-
lactone hydrolysis, PON1 and PON3 protein expression
(Figures 4–6).

Table 3 | Correlation analyses of PON1 and PON3 expression and microsomal atorvastatin-lactone hydrolysis.

PON1 protein PON3 WT mRNA

(exon 3–4)

PON3 VAR mRNA

(exon 3a–4)

PON3 protein Atorvastatin-acid

formation

r s = 0.45*** r s = 0.42*** r s = 0.40*** n.s. r s = 0.28*** PON1 mRNA (exon 8–9)

r s = 0.27*** r s = 0.28*** r s = 0.48*** r s = 0.60*** PON1 protein

r s = 0.90*** r s = 0.31*** r s = 0.33*** PON3 WT mRNA (exon 3–4)

r s = 0.32*** r s = 0.32*** PON3 VAR mRNA (exon 3a–4)

r s = 0.62*** PON3 protein

*p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 3 | Pairwise linkage disequilibrium is shown for the 40 polymorphisms genotyped in this study. The map was generated using Haploview 4.2.
Numbers represent D ′ values. D ′ = 1: bright red (LOD > 2) or blue (LOD < 2); D ′ < 1: shades of pink (LOD > 2) or white (LOD < 2).
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FIGURE 4 | Boxplots of PON1 and PON3 protein expression and

microsomal atorvastatin-lactone hydrolysis in liver microsomes for

indicated polymorphisms. Heterozygotes and homozygotes of variant allele

are compared with homozygotes of reference allele by Wilcoxon–Mann–
Whitney-tests significance levels are indicated for P < 0.05 (*), P < 0.01 (**),
and P < 0.001 (***).

The three linked PON1 promoter polymorphisms −108T > C,
−832G > A, and −1741G > A were associated with significantly
increased atorvastatin-lactone hydrolysis (up to 1.1-fold increased
median values in heterozygous or 1.6- to 1.7-fold in homozygous
carriers, respectively). These changes corresponded to increased
PON1 protein (1.5- to 1.7-fold higher in heterozygous and
2.3- to 3.0-fold in homozygous samples, respectively; tested

by Wilcoxon–Mann–Whitney, not adjusted for multiple test-
ing) whereas PON3 protein was unchanged in these variants.
Similar changes were seen for the corresponding mRNA tran-
scripts (data not shown). Two amino acid changes in PON1,
L55M, and Q192R, previously described to affect the kinetics
of various substrates (Costa and Furlong, 2002) were not con-
sistently associated with changes in either atorvastatin-lactone
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FIGURE 5 | Boxplots of PON1 and PON3 protein expression and

microsomal atorvastatin-lactone hydrolysis in liver microsomes for

indicated polymorphisms. Heterozygotes and homozygotes of variant allele

are compared with homozygotes of reference allele by Wilcoxon–Mann–
Whitney-tests significance levels are indicated for P < 0.05 (*), P < 0.01 (**),
and P < 0.001 (***).

hydrolysis or PON1/PON3 protein expression, although there
was a trend for decreased PON1 expression in relation to L55M
and a trend for increased PON1 expression in relation to Q192R
(Figure 5).

Linkage analysis of PON3 SNPs revealed F21F (rs13226149)
as a suitable marker SNP for a haplotype block compris-
ing several PON3 promoter polymorphisms, A99A (rs1053275),
and several intronic variations (Figure 3). F21F was associ-
ated with increased atorvastatin-lactone hydrolysis and with
increased PON1 protein expression,but not with PON3 expression
(Figure 6).

In contrast to the SNPs above, which were only associ-
ated with PON1 expression, the intergenic variation at +12285
(var55146), was associated with 1.8-fold increased PON3 protein
but only minimally changed activity or PON1 protein. Because
only one homozygote was found for this variant, homozygous and
heterozygous carriers were analyzed together (Figure 6).

Analysis of PON-haplotypes and their association with PON-related
phenotypes
Based on the SNP genotyping data haplotypes for the PON -locus
were deduced. To limit the number of generated haplotypes we

only included SNPs with VAF < 2% (see Materials and Methods).
Furthermore, because the above analysis revealed that PON3 poly-
morphisms are associated with changes in PON1 phenotype we
defined the haplotypes such that they included both genes and
the intergenic region. This lead to the definition of 13 haplotypes
with predicted frequencies between 0.022 and 0.206 (Table 4). In
order to classify functionally relevant haplotypes, we included the
results from the univariate analyses to derive seven major hap-
lotypes. Thus, haplotypes ∗3 to ∗7 comprised the PON3 linkage
block including F21F and/or PON1 promoter SNPs (Figure 3).
Haplotype ∗2 was defined by the intergenic variant +12285,
and ∗1 comprised all haplotypes lacking these variants. Of note,
definition of these haplotypes did not consider the amino acid
variants L55M and Q192R, which had no functional influence in
this study.

Association of these seven haplotypes revealed that
atorvastatin-lactone hydrolysis was markedly increased in carri-
ers of haplotypes ∗2 (1.7-fold) and ∗6 (1.6-fold) as compared to
homozygotes of haplotype ∗1 (Figure 7). Less pronounced but still
significant changes were also found between carriers of haplotypes
∗2, ∗3, ∗4, and ∗6 as compared to heterozygous carriers of ∗1.
PON1 mRNA expression was increased approximately two-fold
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FIGURE 6 | Boxplots of PON1 and PON3 protein expression and

microsomal atorvastatin-lactone hydrolysis in liver microsomes for

indicated polymorphisms. Heterozygotes and homozygotes of variant allele

are compared with homozygotes of reference allele by Wilcoxon–Mann–
Whitney-tests significance levels are indicated for P < 0.05 (*), P < 0.01 (**),
and P < 0.001 (***).

Table 4 | Structure of deduced PON -haplotypes.
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FIGURE 7 | PON -locus haplotype–phenotype relationships in human

liver. Atorvastatin-lactone hydrolysis, PON1 and PON3 mRNA and
microsomal protein are displayed for the indicated haplotypes. Horizontal lines
indicate the median. Wilcoxon–Mann–Whitney-tests were applied to compare
*2 to *7 carriers with *1/*1 (marked by *) or *1 carriers (marked by #).

Significance levels not adjusted for multiple testing are indicated for P < 0.05
(* or #), P < 0.01 (** or ##), and P < 0.001 (*** or ###). After adjusting for
multiple testing *3, *4,*5,*7 against *1/*1 or *3 and*4 against *1 were
significantly different on PON1 mRNA level and *2 to *7 against *1/*1 or *3,
*4, and *6 against *1 were significantly different on PON1 protein level.
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in ∗3, ∗4, ∗5, ∗7 and 2.7-fold in the ∗6 haplotype carriers but
only marginally in the ∗2 haplotype. PON1 protein expression
resembled the mRNA pattern with ∼2.1- and 1.6-fold increased
expression in ∗2 and ∗7, respectively, ∼2-fold increase in ∗3, ∗4,∗5,
and 3.3-fold increase in ∗6. For PON3 no significant associations
were found with respect to these haplotypes, although we noted
increased expression of PON3 protein in most carriers of the ∗2
haplotype, which includes the above mentioned var55146.

INFLUENCE OF NON-GENETIC FACTORS AND MULTIVARIATE ANALYSIS
Univariate analysis revealed that in patients with hepatocellular
carcinoma (HCC) compared to patients with metastases PON1
protein expression was decreased 1.3-fold (P < 0.05), whereas in
patients with cholangiocellular carcinoma (CCC) compared to
patients with metastases, PON3 expression was 1.7-fold decreased
(P < 0.05). Interestingly, clinically elevated C-reactive protein
(CRP) levels (> 8.2 mg/l) were associated with 2.3-fold lower
PON1 (P < 0.01), 2.6-fold lower PON3 (P < 0.01), and 1.7-fold
lower atorvastatin-lactone hydrolysis (P < 0.05). Similarly, ele-
vated levels of γ-glutamyl transferase (GGT; >64 in men/>36 in
women) were associated with 1.4-fold decreased PON1 and PON3
expression as well as atorvastatin-lactone hydrolysis (P < 0.01).
Bilirubin levels higher than 1.2 mg/dl were associated with 1.8-
fold decreased PON3 expression (P < 0.01) and 1.3-fold decreased
atorvastatin-lactone hydrolysis (P < 0.05). Significant differences
between non-cholestasic and cholestatic patients (Nies et al.,
2009) were identified for PON3 expression (decreased 1.6-
fold, P < 0.01) and atorvastatin-lactone hydrolysis (decreased
1.4-fold, P < 0.05). Presurgical drug exposure to omeprazole
or pantoprazole was associated with a significant decrease of
PON3 mRNA (1.3-fold, P < 0.05), protein (1.6-fold, P < 0.01),
and activity (1.7-fold, P < 0.01) compared to patients receiving
no drugs.

Multivariate linear models and step-wise model selection were
applied to determine the contribution of polymorphisms and
non-genetic factors to atorvastatin-lactone hydrolysis and PON1
and PON3 expression variability. Figure 8 shows the fraction
of observed population variability explained by polymorphisms,
non-genetic factors,or both. Of the atorvastatin-lactone hydrolysis
variability, 15.0% were explained by F21F (rs13226149), PON3-
1091A > G promoter polymorphism and the non-genetic factors
sex, CRP, γ-glutamyl transferase, and cancer classification. PON1
−108T > C promoter polymorphism together with non-genetic
factors (noted in brackets) determined 13.1% of PON1 mRNA
(smoking status, cholestasis) and 35.3% of protein expression
(sex, smoking status, CRP, γ-glutamyl transferase). PON3 expres-
sion appeared to be affected mainly by non-genetic factors, which
explained about 20% of protein variance when smoking status,
cancer classification, CRP, bilirubin level, γ-glutamyl transferase
were considered, whereas mRNA variation could not be explained
reasonably.

DISCUSSION
In this study we aimed to identify the primary enzyme(s) responsi-
ble for atorvastatin-lactone hydrolysis in human liver microsomes
and to characterize genetic and non-genetic factors of influ-
ence. Our results strongly suggest that both PON1 and PON3

FIGURE 8 | Percentage of total atorvastatin-lactone hydrolysis, PON1,

and PON3 expression variation explained by multivariate linear

models containing only non-genetic factors (white), only genetic

factors (gray), or both (black). The bars indicate the coefficient of
determination adjusted for the number of factors in the different models.
Linear models were derived by step-wise model selection procedure using
Akaike’s information criterion.

contribute to this reaction and to its interindividual variability,
which is an important pathway for atorvastatin biotransforma-
tion (Figure 9). This conclusion is based on atorvastatin-lactone
hydrolysis measurements and population-genetics investigations
in a large human liver bank.

IDENTIFICATION AND CHARACTERIZATION OF PON1 AND PON3 IN
HUMAN LIVER
We first screened expression profiles of 17 candidate esterase
genes for correlation with atorvastatin-lactone hydrolysis activity,
revealing several positively and negatively correlated genes. While
PON1 and PON3 showed the strongest correlations, butyryl-
cholinesterase (BCHE) and carboxylesterase 3 (CES3) were less
strong but also positively correlated. Although no information
on relative expression of these enzymes in liver exists, BCHE is
found in plasma (3 mg/l) in an amount comparable to PON3
(1.8 mg/l) and ∼30-fold lower than PON1 (96 mg/l; Nicolet et al.,
2003; Aragones et al., 2011), whereas nothing is known about
substrate specificity toward statin-lactones. The negative corre-
lation of PON2 with atorvastatin-lactone hydrolysis seems to
point to some degree of co-regulation of the three paraoxonases,
as it also correlated negatively with PON1 and PON3 expres-
sion data. Although we did not follow up on these other cor-
related candidate esterase genes, it may be assumed that they
contribute to minor extent to the overall hydrolysis reaction in
liver.

For PON1 and PON3 we validated these initial correlation
results by real-time PCR mRNA quantification based on detailed
transcript analyses. These lead to some additional observations
on the mRNA level. In contrast to database information, which
suggested the existence of up to four and nine transcript variants
for PON1 and PON3, respectively, we identified by RT-PCR only
a single, so far unknown splice-variant of PON3 with an open
reading frame corresponding to 48 additional amino acids. This
variant was estimated to be about three-fold less expressed. As it
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FIGURE 9 | Proposed pathway for the metabolism of atorvastatin in human liver including Hydroxylation by CYP3A enzymes, Lactonization by

UGT1A3, and Hydrolysis of Lactones by PON1 and PON3.

was not detected on western blots, it is most probably either not
translated or post-translationally degraded.

At the protein level our work extends previous studies show-
ing PON1 expression in liver (Gonzalvo et al., 1998), by the
observation of predominantly microsomal localization of human
PON3.The similar correlation of PON1 and PON3 (r s = 0.60 and
0.62, respectively) to atorvastatin lactonase activity was in agree-
ment with Western blots showing comparable signal intensities for
PON1 and PON3 in pooled liver microsomes, although absolute
quantification could not be performed due to the lack of standards.
The combined protein levels of both paraoxonases accounted
for ∼46% of the ∼122-fold variability of atorvastatin-lactone
hydrolysis in the liver samples.

Furthermore, by absolute quantification of transcript levels we
found PON3 normal transcript to be 4.9-fold higher expressed
compared to PON1. This finding contrasts to opposite propor-
tions reported for circulating, HDL-bound PON1 and PON3 in
the bloodstream of 96 and 1.8 mg/l, respectively (Aragones et al.,
2011). A plausible explanation might be strongly favored secre-
tion of PON1 due to its more pronounced glycosylation. This is
supported by the fact that N-glycans constitute sorting signals for
proteins (André et al., 2009).

PON GENETICS AND POLYMORPHISMS
Although several SNPs at the PON-locus on chromosome 7 have
been previously studied (Wang et al., 2003; Carlson et al., 2006)
this is the first study to look at PON1 and PON3 together, which
included a thorough genotyping of PON3 through analysis of 35
SNPs covering the whole gene. Evaluation of the linkage patterns
of these SNPs enabled us to define 13 PON1–PON3 haplotypes,
which could be grouped into seven major haplotypes based on
functionally relevant SNPs. Interestingly these did not include
the two amino acid variants L55M and Q192R. Crystal structure
analysis revealed that Q192R affects the active histidine dyad of

PON1 (Harel et al., 2004). However the catalytic consequences are
not uniform, as the kinetics of some substrates are accelerated (e.g.,
paraoxon) whereas others are slowed down (e.g., diazoxon) or not
affected (e.g., phenylacetate; Costa and Furlong, 2002). According
to our studies in liver microsomes, atorvastatin-lactone belongs
to the substrates, which are not affected by either of these two
variants.

In contrast to the amino acid variants PON1 promoter poly-
morphisms had a clear effect on expression of PON1 but not
PON3. The most influential SNP for atorvastatin-lactone hydrol-
ysis and PON1 expression appeared to be −108T > C, which
explained 23% of PON1 protein expression in liver, in very good
agreement with a previous estimation that this SNP accounts for
∼22–25% of variation in PON1 serum expression in white adults
(Costa and Furlong, 2002). Functional evidence for −108T > C
as a causal variant includes approximately two-fold higher activ-
ity of the C-allele in a reporter gene assay (Leviev and James,
2000), presumably due to disruption of a binding site for the
transcription factor Sp1 in the T-allele (Deakin et al., 2003), or
a binding site for the aryl hydrocarbon receptor, AhR (Gouédard
et al., 2004).

Furthermore, carriers of the high-expressor C-allele were found
to show reduced LDL oxidation following treatment with ator-
vastatin or simvastatin, presumably due to PON1 induction via
promoter binding of SREBP-2 near to the Sp1 site (Deakin
et al., 2003; Sardo et al., 2005). Analysis of statin treatment of
our liver donors (N = 7, atorvastatin and simvastatin) revealed
indeed a trend toward higher PON1 protein levels in treated
vs. untreated PON1-108CC carriers (P = 0.051). On the other
hand, protein levels of T-allele carriers on statins were similar or
lower than untreated patients with the same allele. Taken together,
our findings support –108T > C as a causal variant influencing
PON1 expression and inducibility, as well as atorvastatin-lactone
hydrolysis.
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The other two PON1 promoter polymorphisms −832G > A
and −1741G > A were also associated with increased PON1 pro-
tein and atorvastatin-lactone hydrolysis. These associations may
well be explained by the extensive linkage between the three
promoter polymorphisms, although one study reported 1.7-fold
higher activity of the −832A allele in a reporter gene assay (Leviev
and James, 2000).

Although the common variations analyzed in this study did
not affect PON3 expression, one variant located about 12 kb
downstream of the last PON3 exon and about 23 kb upstream
of PON1 (var55146, VAF = 5%) was associated with increased
protein expression of only PON3, and with marginally increased
atorvastatin-lactone hydrolysis, but not with altered mRNA.
Whether this association is based on the high linkage to six
intronic SNPs (Figure 3) or (an) unidentified polymorphism(s)
or on a downstream enhancer element of PON3 remains to
be clarified. Of interest, most of the identified PON3 promoter
and intronic polymorphisms, as well as F21F (rs13226149) and
A99A (rs1053275), were part of a block of high linkage not
affecting PON3 expression, but clearly increasing the expression
of PON1.

On the other hand, as shown by multivariate analysis, non-
genetic factors clearly influenced PON3 expression more than
polymorphisms (Figure 8). Observed associations with CRP,
γ-glutamyl transferase, bilirubin, cholestasis or treatment with
omeprazole or pantoprazole leading to decreased PON3 expres-
sion have not been described before. However, decreased expres-
sion of PON1 in patients with elevated CRP and γ-glutamyl
transferase and down-regulation of PON1 expression in response
to inflammatory cytokines has been described before (Van Lenten
et al., 2001; Han et al., 2006; Mackness et al., 2006; Araoud et al.,
2010). PON1 activity has therefore been suggested as a marker
for liver impairment (Marsillach et al., 2009). The associations
with hepatocellular carcinoma (PON1) and cholangiocellular car-
cinoma (PON3) also seem to be plausible as paraoxonases have a
protective effect against oxidative stress, which plays an important
role in chronic liver diseases leading to liver cirrhosis and the
development of carcinomas (Camps et al., 2009).

MATERIALS AND METHODS
CHEMICALS
Atorvastatin calcium salt, atorvastatin-d5 sodium salt, atorvastatin-
lactone, atorvastatin-d5 lactone, lovastatin, lovastatin-d3, lovas-
tatin hydroxy acid sodium salt, and lovastatin-d3 hydroxy acid
sodium salt were purchased from Toronto Research Chemicals
Inc. (North York, Canada). All other chemicals were obtained at
highest available grade from Sigma-Aldrich (St. Louis, MO, USA).

LIVER SAMPLES
Liver tissue and corresponding blood samples were previously
collected from patients undergoing liver surgery at the Cam-
pus Virchow, Humboldt University, Berlin, Germany. All tissue
samples were examined by a pathologist and only histologically
non-tumorous tissue was used. Clinical patient documentation
for all samples included age, sex, medical diagnosis, presurgical
medication, liver functions tests, alcohol and smoking habits, and
cancer classification. Patients with hepatitis, cirrhosis or chronic

alcohol use were excluded. Finally 150 liver samples, from which
high quality RNA and complete documentation could be obtained,
were included. The preparation of human liver microsomes had
been described before (Lang et al., 2001).

QUANTIFICATION OF ATORVASTATIN-ACID AND LACTONE
Atorvastatin-lactone hydrolysis was determined in human liver
microsomes. Incubation time, substrate concentration, and pro-
tein content were chosen with care to guarantee measurements
within the linear range for each condition. Separate incubation
experiments were always carried out together with a denatu-
rated sample of pooled human liver microsomes to guarantee
reproducibility and to subtract non-enzymatic conversion. Incu-
bations were performed with 5 μg of protein in 50 mM Tris HCl,
pH 7.4 and 1 mM CaCl2 in a total volume of 100 μl. The reac-
tion was started by adding 10 μM atorvastatin-lactone (dissolved
in acetonitrile). Reactions were stopped after 30 min by adding
100 μl ice-cold 250 mM formic acid/acetonitrile and immediate
cooling on ice. After adding 10 μM deuterated atorvastatin and
atorvastatin-lactone, the samples were centrifuged and analyzed
by LC–MS–MS. HPLC separation was performed at 30˚C on a
XBridge Shield RP18 column using (A) 1 mM formic acid and
(B) acetonitrile at a flow rate of 0.4 ml/min for 20 min. MS–MS
analysis was performed on an Esquire HCT ultra ion trap mass
spectrometer (Bruker Daltonics, Bremen, Germany). Lovastatin
hydrolysis was determined under similar conditions using 100 μg
pooled HLMs and 50 μM lovastatin for the performed preliminary
experiment. As internal standard, deuterated lovastatin-acid and
lovastatin-lactone were used. Precursor and product ions (m/z)
were ATV (559 and 440.2; 466.2), [2H5]ATV (564 and 445.2;
471.2), ATV-L (541.2 and 448.2), [2H5]ATV-L (546.2 and 453.2),
LOV-A (422 and 445.1), [2H3]LOV-A (425 and 448.1), LOV-L
(404 and 427.1), [2H3]LOV-L (407 and 430.1). Sodium adducts
were used in the quantification of lovastatin and its metabolites.
Possible quantification ranged from 0.5 to 500 pmol per sam-
ple. Gradient program and MS–MS conditions are available on
request.

IMMUNOBLOTTING
Relative protein quantification of microsomal and cytosolic
samples was performed by western blot analysis using mono-
clonal antibodies against PON1 (sc-59646, Santa Cruz; 1:1000)
and PON3 (ab71994, Abcam; 1:2000). Electrophoretic separa-
tion of samples in Laemmli-buffer was done on a 10% SDS-
polyacrylamide gel. Proteins were transferred by semidry-blotting
onto a nitrocellulose membrane. Membranes were blocked for
1 h at room temperature. Primary antibodies were diluted in 1%
skim milk-TBST and blots were incubated for 1 h at room tem-
perature or over night at 8˚C in this solution. Membranes were
washed and incubated (under protection from light) for 30 min
at room temperature with the corresponding secondary anti-
body (1:10000). Finally, membranes were washed again and the
ODYSSEY infrared imaging system (LI-COR) was used for detec-
tion. Relative quantification was performed based on standard
curves of pooled human liver microsomes recorded on each blot.
Results were expressed in relation to pooled human liver micro-
somes. For molecular weight estimation, high range rainbow
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marker (14.3–220 kDa; Amersham Biosciences) was used. Lysate
of primary human hepatocytes was analyzed for PON3 expres-
sion applying similar conditions. Immunoblotting of lysate was
performed using a LI-COR MPX (Multiplex) Blotter.

Deglycosylation of microsomal samples was performed accord-
ing to the manufacturer’s protocol by incubation with endogly-
cosidase PNGase F (New England Biolabs, Ipswich, MA, USA) for
1 h at 37˚C after denaturation at 100˚C for 10 min. For quantifica-
tion of microsomal expression, the combined intensity of stained
bands in untreated (glycosylated) samples was used.

QUANTIFICATION OF mRNA EXPRESSION
Total RNA was prepared from liver tissue by Trizol (Invitro-
gen, Paisley, FL, USA) extraction and using the RNeasy Mini Kit
with on-column DNase treatment (Qiagen, Hilden, Germany) as
described previously (Gomes et al., 2009). Only high quality RNA
preparations according to Agilent Bioanalyzer (Nano-Lab Chip
Kit, Agilent Technologies, Waldbronn, Germany) RIN assignment
(>7) were used in this study. Two hundred nanograms of total
RNA was amplified and labeled using the Illumina TotalPrep RNA
Amplification kit (Ambion Applied Biosystems, Darmstadt, Ger-
many). cRNA quality was assessed by capillary electrophoresis on
Agilent 2100 Bioanalyzer (Agilent Technologies). Expression levels
of mRNA transcripts were assessed by the Human-6 v3 Expres-
sion BeadChips (Illumina, Eindhoven, Netherlands). Hybridiza-
tion was carried out according to the manufacturer’s instructions.
Quantil normalized expression data of the 15 candidate esterases
was used in the analysis.

For PCR based quantification, synthesis of cDNA was per-
formed with 1 μg RNA using the TaqMan Reverse Transcription
Kit (Applied Biosystems, Darmstadt, Germany) according to the
supplier’s instructions. Quantification of PON1, PON3 wildtype,
and PON3 splice-variant mRNA was performed by specific Taq-
Man real-time reverse-transcription PCR on a 7900HT Fast Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA)
using exon–exon boundary spanning primers (Table A2 in Appen-
dix; 400 nM each) and FAM-labeled MGB probes (Table A2 in
Appendix; 200 nM). Specificity for PON1 was confirmed using
DNA plasmids constructed from PON1 and PON3 wildtype com-
plete cDNA (see Table A3 in Appendix for full-length amplifica-
tion primers), which were used as a linearized PON1 Taqman
standard (10 fg/μl–1 pg/μl) and PON3 wildtype negative con-
trol (1–100 pg/μl). Position of primers and probes were shown
according to cDNA NM_000446.5 (PON1) and NM_000940.2
(PON3). Specificity for PON3 wildtype and splice-variant were
confirmed using DNA plasmids constructed from PON3 wild-
type and splice-variant complete cDNA, which were used as
linearized Taqman standard (10 fg/μl–1 pg/μl) and as negative
control vice versa (1–100 pg/μl). PCR was performed using 2×
universal PCR Master Mix (Applied Biosystems) in a final vol-
ume of 12.5 μl and the following cycling conditions: 50˚C for
2 min; 95˚C for 10 min followed by 40 cycles of 95˚C for 15 s
and 60˚C for 1 min. Results were normalized to RPLP0 (60S large
ribosomal protein P0) and expressed in relation to the lowest
value, which was set at 1.0. Four extreme values of PON1 mRNA
(between rel. units 26 and 120) were excluded from subsequent
analyses.

GENOTYPING
Selection of polymorphisms for genotyping
Polymorphisms for PON -locus genotyping were derived from
dbSNP database (six coding, three promoter, four intronic, one
3′UTR polymorphisms) and seattle SNP database (from this data-
base six tagging polymorphisms with a VAF > 0.05 covered 72
polymorphisms; one tagging polymorphism with VAF > 0.02 cov-
ered 77 polymorphisms). Additional polymorphisms were found
in literature (two promoter SNPs from Marsillach et al., 2009; 12
intronic polymorphisms from Wang et al., 2003; Campo et al.,
2004; Ranade et al., 2005; Carlson et al., 2006; Erlich et al.,
2006; Saeed et al., 2006; Sanghera et al., 2008). Two PON1 cod-
ing polymorphisms (L55M, Q192R) were derived from Dahabreh
et al. (2010). Genomic positions of polymorphisms refer to ref-
erence sequence PON3 NG_008726.1 (modified by adding PON1
NG_008779 and the intergenic region in between). SNP num-
bering differences occurred in various studies for PON1 promoter
SNPs (−107 = −108; −824 = −832 according to Draganov and La
Du, 2004). Database VAFs were extracted from Caucasian samples
from one of these selections: dbSNP, build 132: (HapMap-CEU,
pilot.1.CEU, PGA-EUROPEAN-PANEL); Seattle SNP (23 CEPH
samples). Literature data was derived from these populations: 1143
southern Italians (Campo et al., 2004); 2634 Caucasians (Ranade
et al., 2005); 949 Chinese (Wang et al., 2003). Polymorphisms were
assigned by dbSNP rs number, Seattle SNP var number, amino acid
change or naming within literature.

MALDI-TOF MS assay
Thirty-seven polymorphisms were genotyped by two MALDI-
TOF MS assays. Primers (Table A4 in Appendix) were designed
to specifically amplify regions around polymorphisms and carried
a tag sequence (ACGTTGGATG) to avoid interactions with the
MALDI-TOF MS analysis. Correct amplification was confirmed
by sequencing. MassArray Assay Design (v3.0.0) was used for
the design of MALDI-TOF MS extension primers. Two different
assays were developed to include all 37 DNA variations analyzed
(Table A5 in Appendix). Each assay consisted of preamplification
by PCR, shrimp alkaline phosphatase (SAP) treatment, iPLEX
primer extension, and a clean resin step. Samples were trans-
ferred to a 384 SpectroCHIP® Array (Sequenom) and analyzed in
a MassArrayTM Compact mass spectrometer (Sequenom). Auto-
mated spectra acquisition was performed using Spectroacquire
and data analysis was performed with MassArray Typer software
v3.4. Further details are available on request.

Data for rs757158 (SNP 37) and rs854571 (SNP 38) were
obtained from HumanHap300v1.1 chip analysis (Microarray
Facility Tübingen Services, Tübingen, Germany). rs705379 (SNP
36) was genotyped using a predesigned TaqMan allelic discrimina-
tion assay (C_11708905_10; Applied Biosystems, Darmstadt, Ger-
many) using TaqMan 7900HT (Applied Biosystems, Darmstadt,
Germany).

Statistical analysis and computational genetic analysis
GraphPad Prism v4.00 (GraphPad Software Inc., San Diego,
CA, USA) was applied for Spearman correlation analysis
of (a) enzymatic atorvastatin-lactone hydrolysis activity with
mRNA expression of selected candidate genes and (b) PON1

www.frontiersin.org July 2011 | Volume 2 | Article 41 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacogenetics_and_Pharmacogenomics/archive


Riedmaier et al. Paraoxonase polymorphisms and atorvastatin-lactone hydrolysis

and PON3 mRNA and protein expression. Effects of non-
genetic factors on enzymatic atorvastatin-lactone hydrolysis
activity and PON1/3 mRNA/protein expression were tested by
Wilcoxon–Mann–Whitney-tests. Fold-changes are representing
observed differences between median values of corresponding
phenotypes.

Observed and expected allele and genotype frequencies within
populations were tested for deviation from Hardy–Weinberg equi-
librium using the online DeFinetti program (Hardy-Weinberg
Equilibrium, 2011). No deviation from Hardy–Weinberg equilib-
rium was detected for any of the SNPs analyzed. Linkage disequi-
librium (LD) plots were created by Haploview 4.2 (Barrett et al.,
2005). Haplotypes for the PON -locus were generated with statis-
tical software R v2.11.1 (The R Project for Statistical Computing,
2011) using the library haplo.stats v1.4.4. Exclusion criterion for
polymorphisms was a VAF < 2%. In case of 100% linked poly-
morphisms, only one representative was chosen and, if missing
data occurred, completed by the 100% correlated polymorphisms.
An iterative two-step expectation-maximization algorithm was
applied to predict haplotype assignment of individuals based on
activity data and polymorphisms (log-additive genetic model).
Rare haplotypes were defined by a haplotype frequency <2%
and were not included in further analyses. Resulting 13 haplo-
types were manually combined to seven major types according
to occurrence of PON1 promoter and PON3 F21F and four pro-
moter polymorphism (Table 4). Wilcoxon–Mann–Whitney-tests
were used to compare (a) carriers of identified haplotypes vs. car-
riers of reference haplotypes (∗1 or ∗1/∗1) and (b) for each of the
selected PON1/3 polymorphisms, heterozygote and homozygote
carriers of variant allele vs. homozygote carriers of reference allele.

Moreover, multivariate linear models and step-wise model
selection based on Akaike’s information criterion were applied to
determine the contribution of polymorphisms and non-genetic
factors to atorvastatin-lactone hydrolysis and PON1 and PON3
expression variability. In this analysis, atorvastatin-lactone hydrol-
ysis and PON1 and PON3 expression were first log-transformed
in order to satisfy Gaussian distribution assumption. Normality of
log-transformed values was verified by normal quantile–quantile
plots. Moreover, for each polymorphism, the genetic model (dom-
inant, recessive, or log-additive) with the most significant effect
on the corresponding phenotype in the univariate analyses was
chosen. Relevant polymorphisms in this analysis were: PON3

−4984 (var1496),−1091 (rs11767787), F21F (rs13226149), PON1
−1741 (rs757158), and −108 (rs705379). The coefficients of deter-
mination adjusted for the number of factors in the considered
models were then used to specify the fraction of phenotype vari-
ability explained by (a) only polymorphisms, (b) only non-genetic
factors, and (c) both, polymorphisms and non-genetic factors.

All tests were two-sided and statistical significance was defined
as P < 0.05.

CONCLUSION
PON1 and PON3 were identified as the major enzymes for
hydrolysis of atorvastatin-lactone in human liver. Although this
study focused on the transformation from atorvastatin-lactone
to atorvastatin-acid, it is very likely that these two enzymes
also convert the corresponding hydroxyl-metabolites. Based on
thorough polymorphism analysis, the two common amino acid
variants L55M and Q192R did not seem to be of functional
importance, while several rare protein variants were not present
in our collection. Our data show that PON1 expression is gov-
erned mainly by the linked promoter polymorphisms −108T > C,
−832G > A, and −1741G > A, the former of which likely rep-
resents the causal variant. Accordingly, haplotypes defined on
the basis of this variant show significant changes in expres-
sion and atorvastatin-lactone hydrolysis. Our extensive analysis
of PON3 polymorphisms failed to identify functional polymor-
phisms affecting PON3, which appears to be more subject to
control by non-genetic factors. As atorvastatin-lactone has been
associated with toxicity, these data may help to improve concepts
for safer use of statins.
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APPENDIX

Table A1 | Characteristics and variant allele frequencies (VAF) of polymorphisms determined in 150 Caucasian samples.

SNP Gene SNP ID dbSNP or

Seattle SNP

Genomic

position

Base

change

Residue

change

Region VAF

IKP

liver

bank

Database;

literature

1 PON3 var1496 42 A/G Promoter 0.295 0.200

2 PON3 var2115 661 A/T Promoter 0.087 0.200

3 PON3 var2375 921 G/A Promoter 0.288 0.200

4 PON3 rs11767787 3935 A/G Promoter 0.309 0.241

5 PON3 rs17885453 4232 C/T Promoter 0.014 0.023

6 PON3 rs17882539 4280 C/T Promoter 0.295 0.181

7 PON3 rs2072200 4528 C/G Promoter 0.198 0.272

8 PON3 rs13226149 5088 C/T F21F Exonic 0.309 0.250

9 PON3 var9827 8372 G/A Intronic 0.183 0.300

10 PON3 rs10487132 10383 T/C Intronic 0.360 0.383

11 PON3 var12788 11333 C/T Intronic 0.486 0.430

12 PON3 rs1003504 11895 A/G Intronic 0.018 0.022

13 PON3 rs978903 26521 T/C Intronic 0.497 0.458

14 PON3 Campo219 29055 C/G G51G Intronic 0.004 0.007

15 PON3 rs1053275 29133 G/A A99A Exonic 0.493 0.466

16 PON3 rs2375003 29155 G/A D107N Exonic 0 0

17 PON3 rs2375002 29330 T/A Intronic 0.09 0.043

18 PON3 rs468 32735 T/C Intronic 0.096 0.025

19 PON3 Wang.133 33772 G/T Intronic 0.004 0.227

20 PON3 rs3757708 33775 A/C Intronic 0.489 0.483

21 PON3 rs17879114 33898 G/A V126V Exonic 0 0

22 PON3 rs17878827 33956 G/A E146K Exonic 0 0

23 PON3 var37120 35664 G/A Intronic 0.036 0.110

24 PON3 rs9640632 36134 A/G Intronic 0.482 0.483

25 PON3 rs17883013 37354 C/A A179D Exonic 0 0

26 PON3 rs17880470 37427 T/C Y203Y Exonic 0.014 0.022

27 PON3 Ranade 38537 A/G Y233C Exonic 0 0

28 PON3 var40512 39056 A/G Intronic 0.183 0.300

29 PON3 rs2057682 39924 C/G Intronic 0.142 0.076

30 PON3 rs7778771 40352 C/T Intronic 0.014 0.025

31 PON3 Campo931 41269 T/A S311T Exonic 0 0.002

32 PON3 Campo971 41309 G/A G324D Exonic 0 0.006

33 PON3 rs17885558 41438 C/T 3(UTR 0.014 0.025

34 var45486 (44028) G/T Intergenic 0.014 0.050

35 var55146 (53688) G/A Intergenic 0.050 0.100

36 PON1 rs757158 (75164) G/A Promoter 0.486 0.408

37 PON1 rs854571 (76073) A/G Promoter 0.285 0.267

38 PON1 rs705379 (76797) T/C Promoter 0.460 0.389

39 PON1 rs854560 (84608) T/A L55M Exonic 0.335 0.397

40 PON1 rs662 (93246) A/G Q192R Exonic 0.352 0.358
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Table A2 | Amplification primers used for quantitative PCR.

Name cDNA position Primer sequence (5′ → 3′) Amplification

product (bp)

Purpose

TQ_PON3_for 181–209 TGAAGATATTGATATACTTCCTAGTGGGC For primer

TQ_PON3_WT_rev 297–316 TGCCCTTGGGTTTTGTTCAT Wt: 136, var: 132 Rev primer

TQ_PON3_VAR_rev 67–86 (Exon splVar) TATTTGCCGTTCTGCAGCCT Rev primer

TQ_PON3_WT 218–234 6FAM-ATCTCCAGTGGATTAAA-MGB Probe

TQ_PON3_VAR 218–8 (Exon splVar) 6FAM-ATCTCCAGTCTGCAGGT-MGB Probe

PON1_Hs00166557_m1 994–1018 TCCTGCATCAGAGGTGCTTCGAATC 122 Mix

Table A3 | Amplification primers used for plasmid generation.

Name cDNA Position Primer sequence (5′ → 3′) Amplification

product (bp)

Purpose

PON3_komplett_f 1–16 AGATCTAGTCGCCGCTGGGCAC 1203 For primer

PON3_komplett_r 1170–1193 AAGCTTTTGGTGTTTGCTATTTACTTAC Rev primer

PON1_kompl_neu_f 95–115 ACCATGGCGAAGCTGATTGCG 1239 For primer

PON1_kompl_neu_r 1306–1327 GAATTCTACACATCATATCACTCCCAGT Rev primer

Table A4 | Amplification primers used in MALDI-TOF MS genotyping.

Name Genomic position Primer sequence (5′ → 3′) Amplification

product (bp)

SNP ID

PON3_1f 3882–3982 ACGTTGGATGTAAGCAATCTGTGCTGCAGG 111 rs11767787

PON3_1r ACGTTGGATGGCTGACACCTATGTTAACGC

PON3_2f 4148–4256 ACGTTGGATGTCGGTGGAACCTAACAGAAC 119 rs17885453

PON3_2r ACGTTGGATGACTGAAGATGCGGGAAGA

PON3_3f 4256–4318 ACGTTGGATGTTCCTCCCCCTCCAACCT 73 rs17882539

PON3_3r ACGTTGGATGTCCTGCCAGGCAAGAAATG

PON3_6f 4496–4580 ACGTTGGATGAAGGCAATCGAAGCGAAGAG 95 rs2072200

PON3_6r ACGTTGGATGAGGTAAGGCACGAAGGTCAG

PON3_7f 4944–5039 ACGTTGGATGATCCGTACGCGAGGCAGGAA 106 rs17886586

PON3_7r ACGTTGGATGACGAGCTTCCCCATGGTCTC

PON3_8f 5058–5156 ACGTTGGATGGGTCGGCCTGTCCTTAGTC 109 rs13226149

PON3_8r ACGTTGGATGCTCACTTGGAAGAGGAGAG

PON3_10f 10322–10421 ACGTTGGATGTTCCCACACACTTATTAGCC 110 rs10487132

PON3_10r ACGTTGGATGACAGGCTAAGAAGCAGTAGG

PON3_11_12f 29232–29107 ACGTTGGATGAATGAACAAAACCCAAGGGC 136 rs1053275, rs2375003

PON3_11_12r ACGTTGGATGCCCCTTATCCCTAAACATAC

PON3_13f 32673–32769 ACGTTGGATGGTGAGAGTACTTTTCTTCTCC 107 rs468

PON3_13r ACGTTGGATGGTCATCTCCCTTAATTATG

PON3_14f 33844–33927 ACGTTGGATGGATAGGGGTAACTTTCTTGG 94 rs17879114

PON3_14r ACGTTGGATGATGTGGGGATGATTCACAAC

PON3_15f 33928–34038 ACGTTGGATGCCGCACAATACTTTCATTCC 121 rs17878827

PON3_15r ACGTTGGATGGAAGTCCACTGTGGAGATAT

PON3_16f 36189–36095 ACGTTGGATGTCAGGCTCCTCTTTAGATCC 105 rs9640632

PON3_16r ACGTTGGATGCTCTGGGAAGTACATCAGAC

PON3_17f 37280–37383 ACGTTGGATGGGGAGTTGGTAAAATAGTGG 114 rs17883013

PON3_17r ACGTTGGATGTGGGTCTCTTTTTCCACCTC

PON3_18f 37398–37496 ACGTTGGATGGAGATGATCTTGGATCTTCG 109 rs17880470

PON3_18r ACGTTGGATGTGTGATCCCATTGGCACTAC

(Continued)
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Table A4 | Continued

Name Genomic position Primer sequence (5′ → 3′) Amplification

product (bp)

SNP ID

PON3_19f 39847–39951 ACGTTGGATGTTGTACTTTCTCAATGAGGC 115 rs2057682

PON3_19r ACGTTGGATGAAGGCTCAGCAGAGTAAAGG

PON3_20f 40313–40426 ACGTTGGATGGATACATAGGATTATTGGAG 124 rs7778771

PON3_20r ACGTTGGATGAAAGGGTGTCAGTAATTGTG

PON3_21f 41395–41513 ACGTTGGATGACTCACTGGTTGGTGTTTGC 129 rs17885558

PON3_21r ACGTTGGATGGAGCTCTAGACTCTAGATAG

PON3_W2_1f 1–96 ACGTTGGATGGCAGAAGACATTACTCAGAC 106 var1496

PON3_W2_1r ACGTTGGATGCCTAATCATCATTTTCAGGC

PON3_W2_3f 594–688 ACGTTGGATGCAGATTCTCCAAGCCTAGAC 105 var2115

PON3_W2_3r ACGTTGGATGATGTTTAGGTGGAGGGACTG

PON3_W2_4f 877–965 ACGTTGGATGTTGAATCTGGAGAGGAAGGC 99 var2375

PON3_W2_4r ACGTTGGATGTGTTACTTCCAGTGGCTTCC

PON3_W2_9f 8318–8418 ACGTTGGATGTTGTGCTAGCAGCTGGAAAG 111 var9827

PON3_W2_9r ACGTTGGATGTCCCTTCTCCAACAGAATCC

PON3_W2_13f 11306–11405 ACGTTGGATGTGGGCATTCCTGTGGTGTTC 110 var12788

PON3_W2_13r ACGTTGGATGTGGATCCCTATGCTCTCATC

PON3_W2_14f 11833–11960 ACGTTGGATGGTGTATTTATGAGATGTTG 138 rs1003504

PON3_W2_14r ACGTTGGATGTTCCAGCAATCAGAATTCAC

PON3_W2_15f 26476–26564 ACGTTGGATGGTATAGAGTGAGAAGGGAGG 99 rs978903

PON3_W2_15r ACGTTGGATGCCCAGATAGAAATCCTGCTC

PON3_W2_16f 29001–29088 ACGTTGGATGTGTATATGTGTGCACACTTG 98 Campo219

PON3_W2_16r ACGTTGGATGTTTTCCTGGTTCATCTGGCG

PON3_W2_17f 29283–29404 ACGTTGGATGCCACATAGGGCCAAAAATAC 132 rs2375002

PON3_W2_17r ACGTTGGATGAACAGGAAGAGAGAAGATGC

PON3_W2_18f 33734–33863 ACGTTGGATGTGGCATTTGTCTGACTTACC 140 Wang133

PON3_W2_18r ACGTTGGATGCCAAGAAAGTTACCCCTATC

PON3_W2_20f 35612–35710 ACGTTGGATGGAAGGATCCTTCCCTAGAAC 109 var37120

PON3_W2_20r ACGTTGGATGCCAGAAATGTATTGCCTCGC

PON3_W2_22f 38481–38564 ACGTTGGATGTTAGCTGCTACATCAGCTAC 94 Y233C

PON3_W2_22r ACGTTGGATGGAGTGTTGTCTCTCATTACC

PON3_W2_23f 38982–39093 ACGTTGGATGTTCTTCCAAGTCACCCCAAC 123 var40512

PON3_W2_23r ACGTTGGATGAACTATAACCCTGAGGACCC

PON3_W2_25f 41234–41349 ACGTTGGATGTTTCTCGACAGGTACTTCGC 126 S311T

PON3_W2_25r ACGTTGGATGATGGTACACAGAAGCCACAG

PON3_W2_26f 41234–41349 ACGTTGGATGTTTCTCGACAGGTACTTCGC 126 G324D

PON3_W2_26r ACGTTGGATGATGGTACACAGAAGCCACAG

PON3_W2_27f (43979–44080) ACGTTGGATGTTGGATTCCTCCTGGAGTAG 112 var45486

PON3_W2_27r ACGTTGGATGTTGAAGGGAGATGACAAGGC

PON3_W2_28f (53627–53721) ACGTTGGATGGTGATATTGAAGTCCTCCTC 105 var55146

PON3_W2_28r ACGTTGGATGTCAAAGAACCTAGACCCAGC

PON3_W2_31f (84581–84698) ACGTTGGATGTTTCTGGCAGAAACTGGCTC 128 rs854560

PON3_W2_31r ACGTTGGATGGCCAGTCCTAGAAAACGTTC

PON3_W2_32f (93191–93291) ACGTTGGATGGGACCTGAGCACTTTTATGG 111 rs662

PON3_W2_32r ACGTTGGATGTAGACAACATACGACCACGC
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Table A5 | Extension primers used in MALDI-TOF MS genotyping.

No. Name Genomic

position

Assay Primer sequence (5′ → 3′) Mass of ampl.

prod. (Da)

SNP ID

1 PON3_W2_1e 42 2 ggCCTTTCTTAAGAAAGGGCTAAT 7391.8 var1496

2 PON3_W2_3e 661 2 CACCACCCCTTTGCTCATATCCAA 7152.7 var2115

3 PON3_W2_4e 921 2 GTAGGCCAAGTTAAGAAAC 5869.9 var2375

4 PON3_W2_5e 3935 2 AATTATCAACACAATCTCTGGAG 7015.6 rs11767787

5 PON3_2e 4232 1 TGCTACTTTGCCCGAACT 5425.5 rs17885453

6 PON3_3e 4280 1 CCTCCAACCTGGTGTT 4808.1 rs17882539

7 PON3_6e 4528 1 ATCTTCTCCAGGATTTGGGGCAC 7030.6 rs2072200

8 PON3_8e 5088 1 agTAGTCGGGGAGATGTT 5634.7 rs13226149

9 PON3_W2_9e 8372 2 ACGCCTTTCCTGAATT 4807.1 var9827

10 PON3_10e 10383 1 cGCCTATGCACAACTATCATTA 6638.3 rs10487132

11 PON3_W2_13e 11333 2 GGCTTTTTTAGTTGACTGGTTTACCC 7949.2 var12788

12 PON3_W2_14e 11895 2 ggATTTGTTAAATCAATTGCATTTTG 8005.2 rs1003504

13 PON3_W2_15e 26521 2 TCGATAAAAACAGAAGGAGG 6232.1 rs978903

14 PON3_W2_16e 29055 2 AAAAGGGATTAAAATATCCAGG 6824.5 Campo219

15 PON3_11e 29133 1 ggAACCCAAGGGCACAAGC 5840.8 rs1053275

16 PON3_12e 29155 1 CCATGTGGATTAAATAATTCTTTGT 7661 rs2375003

17 PON3_W2_17e 29330 2 cCAAGGTTTTATACCTATTTATCATTT 8189.4 rs2375002

18 PON3_13e 32735 1 gTTCTCCATCTCCTCATTCC 5929.9 rs468

19 PON3_W2_18#1e 33772 2 ACCTATCATGTAGACTGTGAG 6445.2 Wang133

20 PON3_W2_18#2e 33797 2 TTTCTTCTTACATCTTGCATTT 6607.3 rs3757708

21 PON3_14e 33898 1 gTTCCATGTAGACAATACTGT 6420.2 rs17879114

22 PON3_15e 33956 1 AGAGAACGTTGTTGTTCCT 5833.8 rs17878827

23 PON3_W2_20e 35664 2 CATGGCCCTACCAATAACAC 6014.9 var37120

24 PON3_16e 36134 1 GTTCCAGCTGCTGCTA 4848.2 Campo219

25 PON3_17e 37354 1 AATAGTGGTCTCTGGTG 5256.4 rs2375002

26 PON3_18e 37427 1 cGATCTTCGCTGGACTTA 5465.6 rs17880470

27 PON3_W2_22e 38537 2 GCTGCTACATCAGCTACATAGACA 7305.8 Y233C

28 PON3_W2_23e 39056 2 ACCCCAACAAATTTGTTC 5402.5 var40512

29 PON3_19e 39924 1 TTCTCAATGAGGCCTACTCT 6042.9 rs2057682

30 PON3_20e 40352 1 GGAGAATTGTTTAGGATCTTTTT 7114.6 rs7778771

31 PON3_W2_25e 41269 2 CGCATCCAGAATGTTTTG 5489.6 S311T

32 PON3_W2_26e 41309 2 ttCACCGTGTATGCCAACAATG 6694.4 G324D

33 PON3_21e 41438 1 CAATTATCAGTTTACTTTTACAAAATAT 8519.6 rs17885558

34 PON3_W2_27e 44028 2 CCATTCTTTCCAAAGGATAG 6076 var45486

35 PON3_W2_28e 53688 2 gACCTTGAGGCAATGTG 5250.4 var55146

39 PON3_W2_31e 84608 2 AACTGGCTCTGAAGAC 4890.2 rs854560

40 PON3_W2_32e 93246 2 gTTCTTGACCCCTACTTAC 5689.7 rs662
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